SCIENTIFIC O % 3V

REP{%}RTS

SUBJECT AREAS:

PHASE TRANSITIONS
AND CRITICAL
PHENOMENA

NONLINEAR PHENOMENA

Received
31 October 2014

Accepted
18 November 2014

Published
4 December 2014

Correspondence and
requests for materials
should be addressed to
I.Z. (iker@unav.es)

Clogging transition of many-particle
systems flowing through bottlenecks

lker Zuriguel', Daniel Ricardo Parisi??, Radl Cruz Hidalgo', Celia Lozano', Alvaro Janda?,
Paula Alejandra Gago®?, Juan Pablo Peralta®, Luis Miguel Ferrers, Luis Ariel Pugnaloni®®, Eric Clément’,
Diego Maza', Ignacio Pagonabarraga® & Angel Garcimartin'

"Departamento de Fisica y Matemdtica Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain, ZInstituto
Tecnoldgico de Buenos Aires, 25 de Mayo 444, (1002) C. A. de Buenos Aires, Argentina, *Comisién Nacional de Investigaciones
Cientificas y Técnicas (CONICET), Argentina, “School of Engineering, University of Edinburgh, King’s Buildings, Edinburgh EH9 3L,
UK, Dpto. de Ingenieria Mecénica, Facultad Regional La Plata, Universidad Tecnolégica Nacional, Av. 60 Esq. 124, 1900 La Plata,
Argentina, ®Departamento de Patologia Animal, Faculiad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, 50013
Zaragoza, Spain, "PMMHESPCI, UMR7636-CNRS-Univ. P.& M. Curie and ParisDiderot, 10 rue Vauquelin, 75005 Paris, France,
8Departament de Fisica Fonamental, Universitat de Barcelona, C. Marti i Franques 1, 08028 Barcelona, Spain.

When alarge set of discrete bodies passes through a bottleneck, the flow may become intermittent due to the
development of clogs that obstruct the constriction. Clogging is observed, for instance, in colloidal
suspensions, granular materials and crowd swarming, where consequences may be dramatic. Despite its
ubiquity, a general framework embracing research in such a wide variety of scenarios is still lacking. We
show that in systems of very different nature and scale -including sheep herds, pedestrian crowds, assemblies
of grains, and colloids- the probability distribution of time lapses between the passages of consecutive bodies
exhibits a power-law tail with an exponent that depends on the system condition. Consequently, we identify
the transition to clogging in terms of the divergence of the average time lapse. Such a unified description
allows us to put forward a qualitative clogging state diagram whose most conspicuous feature is the presence
of a length scale qualitatively related to the presence of a finite size orifice. This approach helps to
understand paradoxical phenomena, such as the faster-is-slower effect predicted for pedestrians evacuating
a room and might become a starting point for researchers working in a wide variety of situations where
clogging represents a hindrance.

in a finite time? It is an everyday experience that a saltcellar has to be shaken to break the clogging arches'

and pour the salt. Arches also cause flow interruptions in industrial conduits and silos. At smaller scales,
the intermittent flow of a dense microparticle suspension can occlude microchannel constrictions>’; this is
exploited in medicine to provoke embolization of blood vessels in order to shrink a tumour. Intermittent flows
are also observed at the nanoscale when electrons on the liquid helium surface pass through nanoconstrictions*.
The most dramatic instance of clogging is a crowd trying to escape through a door in a life-and-death situation®”’.
Human stampedes —some of them leading to a clog in narrow passages— often result in fatalities, such as those at
Hillsborough Stadium (England), The Station nightclub (USA), and Kiss nightclub (Brazil). Here, we show that
clogging in several disparate systems is amenable to a unified treatment. A careful analysis of experimental and
numerical results in four different scenarios allows us to evidence the generality of the flow of many-particle
systems through bottlenecks, revealing that clogging is linked to a particular characteristic of the intermittent
flow.

C an it be taken for granted that an enclosure filled with particles could be emptied through a small opening

Results

The first observation concerns the rush of sheep herds through a gate, to obtain food. An accurate timing of each
animal crossing the door (Fig. 1B) is obtained by means of spatio-temporal diagrams as the one shown in Fig. 1C,
built from videos taken on a farm (S1). We observe a characteristic alternation between events of sheep flow, or
bursts, separated by periods of arrest, or clogs. The nature of this intermittent flow is also captured in the plot of
the number of evacuated sheep versus time (Fig. 1D) where horizontal lines evidence clogs. The complementary
cumulative distribution function (CDF) of the time lapses T between the passage of consecutive sheep is then built,
as displayed in Fig. 1E. The distribution has a power-law tail, T=%, as observed before in other intermittent flows
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Figure 1 | Sheep flow through a bottleneck. (A) Picture taken near the gate in a test performed placing an obstacle in front of it. (B) Picture taken after the
gate, with a green line marking the pixels used to build the spatio-temporal diagram. (C) Spatio-temporal diagram (time increases from bottom to top).
The two horizontal yellow lines mark a long time lapse and the two horizontal blue lines a short time lapse; the meaning of “long” and “short” in this
context is explained in the main text. A burst of size s = 17 spans from the green horizontal line to the lower yellow line. The upper yellow line defines the
beginning of the next burst. (D) Number of evacuated sheep (#) versus time for several realizations. Horizontal segments correspond to time lapses during
which no sheep crossed the green line shown in b. (E) Complementary CDF of the time lapses obtained with and without an obstacle in front of the gate.
The continuous lines represent the power law fits with their exponent a, as given by the Clauset-Shalizi-Newman method". (F) Histogram of burst sizes
(s) rescaled by the average burst size ({s)) for the experiments with and without obstacle. The minimum lapse T,,;, used here to set apart bursts is 1 s.
Although this choice affects the particular value of (s), the exponential tail of the distribution (continuous line in the figure) is unaffected. A

straightforward calculation of the mean avalanche size gives (s) = 17 with an obstacle and (s) = 11 without an obstacle, an enhancement similar to that

found in silos'.

with mice® and vibrated silos’. This slowly decaying probability indi-
cates the existence of long time lapses in the flow. We use a rigorous
method' to fit the exponent o that also gives the minimum time
lapse T, from which the power law fit is valid. This T,,;, is used as a
threshold to set apart successive bursts. The size of bursts s (mea-
sured in number of individuals) always displays an exponential dis-
tribution (Fig. 1F), as predicted theoretically'"'> and observed for the
avalanches in granular silos® and fluid-driven particle flow'*. The
flow of sheep can be altered, without changing the doorway, by
placing a column in front of the door (Fig. 1A). In both cases (with
and without column) burst sizes follow exponential distributions (so
the average <<s> is well defined), and the complementary CDF of
time lapses displays power-law tails. Interestingly, the complement-
ary CDF captures the sensitivity of the flow intermittencies to the
presence of an obstacle. With the obstacle in place, the value of o is
higher, which demonstrates its role in precluding long flow
interruptions.

Given the limited control of the variables affecting the flow of
sheep, we have developed an alternative approach to explore a wider
range of conditions. To this end, we have performed numerical

simulations modelling the passage of pedestrians through a small
door (Fig. 2). We find again exponential burst size distributions
(Fig. 2B) and power law tails in the time lapse distributions
(Fig. 2C-E). Changing the parameters that determine pedestrian
behaviour, we observe important variations in the exponent o of
the power law decay, which in some cases falls below 2. When o =
2 the average time lapse between consecutive pedestrians diverges'®
and so does the mean evacuation time. This implies that in this
regime the average flow rate is not well defined, as it depends on
the measuring time: as the measuring time increases, the average flow
rate decreases and eventually vanishes. These observations have
prompted us to propose as an order parameter the flowing parameter,
@ = (tp/({ty + (tg), where (ty) is the average duration of the bursts
and (t.) the average clog duration. @ captures the clogging transition
in the sense that it defines a state, but it cannot tell whether the orifice
is flowing or not at a given time: a system in a clogged state can briefly
release some outflow, and an unclogged system can be blocked, but
the obstruction will not persist. Since bursts have a finite average size
and the flow is not interrupted within a burst by definition, it follows
that ® = 0 when (t.) diverges (ot =< 2) and ® > 0 when (t.) is finite (o
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Figure 2 | Pedestrian simulation. Simulation of pedestrians evacuating a room using the Social Force Model’ plus a random force in the y-direction

(perpendicular to the door) uniformly distributed in the interval [—6, 0] inspired by the random force term used by Helbing and coworkers

16,17

(A) Sketch of the simulated system where L is the size of the door. (B) Distribution of burst sizes (s) rescaled by the average burst size ({s)) for the
simulation conditions displayed in (C). The lower limit used to define the bursts is t = 5 s. Although this choice affects the particular value of (s), the
exponential tail of the distribution (dashed line in the figure) is unaffected. (C,D,E) Complementary CDFs of the time lapses obtained using different
simulation parameters. The reference conditions are: pedestrian desired velocity v4 = 6 m/s, random force in the y-direction 6 = 10 kN, and door size L
= 1.0 m. In (¢, d, and e), we vary vq, 6 and L, respectively. In Fig. (C-E) the continuous lines represent the power-law fits with exponent o, as given by the
Clauset-Shalizi-Newman method'’. The transition from o = 2 (clogged system) to o > 2 (clog-free system) is observed in all the cases as the desired

velocity is reduced and the random force or the door size are increased.

> 2). Accordingly, we define that the system is in a clogged state
when @ = 0, and in an unclogged state when @ > 0. In thislatter case,
the flow is intermittent if 0 < @ < 1 and continuous if ® = 1. Even if
the clogging transition is identified when the mean clogging time
diverges, as it has been done previously, the choice of the order
parameter highlights the universality of the clogging transition,
which is preceded by a regime of intermittent flow.

In Fig. 2C-E, a transition from clogged (® = 0, i.e. & = 2) to
unclogged states (@ > 0, i.e. o > 2) is obtained by reducing the
desired velocity of pedestrians (vq), by increasing the door size (L),
or by increasing the random force exerted by the individuals in the
direction perpendicular to the door (6). The behaviour obtained by
varying L and 0 is somehow expected, while that encountered for v4
might be the origin of the well known faster-is-slower phenomenon®.

In order to extend the generality of this behaviour to inert grains,
we resorted to a series of experiments using three configurations of
vibrated silos (Fig. 3). As observed for sheep and simulated pedes-
trians, the outcomes reveal exponential burst size distributions (not
shown as they have been extensively studied in the literature®'''%)
and power law tails for the time lapse distributions. We observe that
the clogging transition can be achieved in different ways. In a two-
dimensional flat bottomed vertical silo (Fig. 3A-D) we show that the
system becomes unclogged (® > 0) as the head of grains above the
orifice (h) is reduced, the intensity of vibration (I') is increased, or the
outlet size (L) is enlarged. In a two-dimensional inclined and vibrated

hopper, we also observe the transition to an unclogged regime when
we tilt the silo, therefore reducing the effect of gravity (Fig. 3E-F).
Note that reducing pressure as a strategy to ease arch destabilization
by vibration was already anticipated by Valdes and Santamarina'.
Finally, we use a 3D silo which is locally vibrated at the very orifice
(Fig. 3G) to examine a I'-L projection of the clogging phase diagram
(Fig. 3H) in terms of ®.

Clogging is finally analysed on a model colloidal suspension, simu-
lated using the Lattice Boltzmann method***', which is forced to pass
through a constriction by means of an external pressure gradient that
forces the solvent (Fig. 4A). Once again, we find that the time lapse
distributions display power-law tails (Fig. 4B) while the burst size
distributions remain exponential. The clogging transition can be
achieved naturally by changing the temperature, which controls
the interplay between colloidal particle fluctuations and the intensity
of the driving force. Low temperatures lead to clogged states, and
high temperatures to unclogged states. Previous studies in colloids
have focused on the mechanisms leading to the development of
permanent clogs®; a scenario which is of practical relevance, and
corresponds to the regime where ® = 0. Our approach is concep-
tually different as we infer, from the statistical analysis of the flow
intermittencies, a situation in which ® = 0 without the necessity of
observing permanent clogs. We observe that the approach to com-
plete obstruction in colloidal suspensions obeys the same universal
scenario than in the human models and granular materials, evid-
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Figure 3 | Time lapse distributions in three different silos. (A) Photograph of the two-dimensional silo filled with 1 mm particles. (B) Time lapse
complementary CDFs obtained using L = 4.50 and I = 0.26 for two different heights of the layer of grains (h > 6 cm and h < 6 cm). (C) Time lapse
complementary CDFs obtained for h > 6 ¢m, L = 4.76 and several I" as indicated in the legend. (D) Time lapse complementary CDFs obtained for h >
6 cm, I = 0.26, and several outlet sizes as indicated in the legend. (E) Sketch of the inclined hopper. (F) Time lapse complementary CDFs obtained using
two different inclination angles. (G) Sketch of the 3-D hopper vibrated at the orifice’. (H) Phase diagram for the plane I'-L obtained for the 3-D hopper.
The values measured experimentally are marked by crosses (@ = 0) or circles (® > 0). The colour scale from blue to green (as indicated by the colour bar)
is a linear interpolation for the values of ®. The dashed white line is a guide to the eye for the transition from ® = 0 to ® > 0.
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Figure 4 | Time lapse distributions of a colloidal suspension driven by a
pressure gradient through a constriction. (A) Illustration of a clog as
obtained in the numerical simulation of the colloidal system passing
through a bottleneck. (B) Complementary CDF of the time lapses obtained
for an outlet size of radius 1.7 times the particle radius, a driving pressure
AP = 5 1077 (in lattice units) and two different temperatures (in units of
the colloid characteristic kinetic energy, as indicated in the legend). The
time is expressed in Stokes times, T = R/(V,), the typical time it takes a
particle of radius R to move a distance equal to its own size.

encing that the transition to clogging is not very sensitive to the
microscopic details of the system. The latter are relevant to identify
the specific mechanism that controls the clog growth and the quant-
itative values of the parameters where clogging takes place (i.e. when
® =0).

Discussion/conclusion

The foregoing analysis shows that clogging in a wide variety of
systems can be understood as a transition between different inter-
mittent regimes. We have identified an order parameter @ that dis-
tinguishes between states with well-defined mean clog duration and
states where this magnitude diverges. In the latter, the mean flow rate
tends to zero (a situation still compatible with a finite mean burst
size). The transition from clogged to unclogged states can be
achieved in a variety of ways summarized in Table 1. All the strat-
egies grouped in column A imply controlling the driving force (or
pressure) at the orifice, by tilting a silo or reducing the layer of grains
above the orifice, by placing an obstacle before the door for a sheep
herd, or by reducing the pedestrians’ desired velocity. Generally
speaking, we can relate these with a compatible load C;, which is
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Table 1 | Strategies leading to an increase of the exponent of the power law fits of the time lapses distribution. Each column corresponds to a
classification of the control parameter consistent with three general features: (A) a change in the compatible load, (B) a change in the
incompatible load, or (C) a change in the characteristic length scale. In green we show the cases where we have observed the transition from
o = 2 (clogged system) to o > 2 (unclogged system), with the arrow indicating the direction of the change necessary to unclog the system. In
black we show the strategy that revealed a change in the exponent o, but for which experiments in the region o = 2 were not performed. In

red we show the strategies we have not implemented in our experiments

Inclined 2D hopper
Locally vibrated 3D hopper
Colloids

|Gravity

|Pressure gradient

A B C
sheep Placing an obstacle 2 1Gate size
Pedestrian model
2D ssilo

1Orifice size

responsible for the development of clogging structures as proposed
by Cates et al.”’.

The variables in column B are related with the intensity of the
background noise acting on the particles, for instance, the random
force in the case of pedestrians, the external excitation in the case of
silos or the temperature in a colloidal suspension. Following the
proposal of Cates et al. we ascribe these variables to an incompatible
load Iy that can eventually destabilize the clogging structures. Finally,
the outlet sizes grouped in column C should be related with the
physical constrictions that govern the passage through the bottle-
neck: a characteristic length scale A, that manifests the local nature of
clogging.

One might be tempted to consider the packing fraction ¢ of the
sample at the orifice as the natural variable to define the state of the
system. However, ¢ near the outlet is a variable that cannot be rig-
orously measured (since it is strongly dependent on the distance to
the outlet) nor controlled (because it is spontaneously set by the
system as a result of imposed driving force, gravity, layers of grains,
etc.). Only a careful preparation of the initial ¢ before the very first
burst might be controlled (see Ref. 41). Of course, it is expected that a
system with extremely low packing fraction will never develop clog-
ging, but in this case the value of Cy, at the bottleneck will also
approach zero. Previous studies in colloidal suspensions have shown
that clog formation is controlled by the local mechanisms that deter-
mine how an aggregate grows and sticks to a surface, again indicating
that the average packing fraction is not relevant to capture the
essence of clogging. Nonetheless, the intermittent flow regime that
precedes clogging indicates that there exists strong correlation
between particles in the neighbourhood of the opening. Such corre-
lations are local and decoupled from the mean system concentration.

Identifying the generic nature of the clogging transition and the
relevant parameters that control it allow us to sketch a qualitative
state diagram (Fig. 5) which conceptually encompasses the many
different situations presented in this letter. The diagram presents
qualitative differences with the one proposed for the jamming trans-
ition**. The presence of a characteristic length scale highlights the
finite-size nature of clogging, where the outlet size competes with the
scale of the structures that allow particle motion near a blockade.
This parameter accounts for collective processes* which were iden-
tified near the jamming transition for athermal systems* or close to
the glassy transition for thermal ones®*%. It is likely that the nature of
such mobile arrangements -developing on scales of several particle
sizes- will be strongly affected by the specific boundary conditions at
the outlet and their features will be related to the mechanical con-
figurations controlling the arrest dynamics. For each specific situ-
ation (thermal/athermal, soft/hard, active/passive particles) the
nature of the states landscape near the opening and its dynamical
exploration can be extremely different. Nevertheless, the fact that we
find strikingly similar signatures plea in favour of a unified scenario
as proposed in Fig. 5. The quantitative assessment of the relevant

parameters characterizing each of the diagram branches -that may
depend on the specific situation- is left open for future investigation.
Furthermore, the effect of the outlet geometry™, particle inter-
action®, or shear stresses® on the proposed variables remains to be
understood. At present, the insight gained in this work enables us -
for instance- to explain the increased stability of clogs exhibited by
suspensions when are subjected to higher fluid velocities®, or why
ant traffic does not display clogging®?*. Ants are characterized by
avoiding the exertion of pressure on each other, hence there is no
compatible load at the bottleneck. This knowledge will also open new
ways to tune and control flow in constrictions and can be used to
minimize the harmful effects of clogging.

Methods

The methods were carried out in “accordance” with the approved guidelines. We
explore the passage of particles through bottlenecks in four different scenarios: sheep
passing through a gate, pedestrian simulations of room evacuation, the discharge of
three different vibrated silos or hoppers, and the flow of colloids through a con-
striction. In all cases the final goal is to obtain the complementary CDF of the time
lapses (namely, 1-CDF) and use it as a tool to assess the state of the system.
Experimental measurements provide the time at which the particles pass through the

I

L

1

CL

Figure 5 | Proposed clogging phase diagram. Clogging phase diagram
where all the variables explored in different systems are grouped in three
generic parameters: A (a length scale), which includes the relationship
between the outlet size and particle size; Iy (incompatible load), a load that
leads to the collapse of the clogging structure, i.e. 8 for pedestrians, I" for
silos, and T for colloidal particles; C; (compatible load), typically related to
the pressure or the driving force, i.e. v4 for pedestrians, gravity and height
of the layer of grains for silos, presence or not of the obstacle for sheep, and
fluid velocity for colloidal particles.
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outlet. From these data, the time lapse T between the passage of two consecutive
particles is obtained. The histograms of T display a power law tail T ~*. The exponents
of these power laws are calculated by means of the method developed by Clauset,
Shalizi and Newman'® which provides the exponent of the power-law tail and the
minimum value T,,;, from which the fit is valid (note that the slope of the comple-
mentary CDF is o + 1). The power law breaks down at short times due to finite size
effects. For instance, in the case of sheep, the typical dimensions of an animal, its
velocity and the door width, all combine so that for short periods of time the power
law breaks down. This time scale is then used to define bursts (e.g., groups of sheep
separated by less than 1,,,;,) and clogs (time lapses longer than t,;,). Additionally, the
procedure gives an estimate of the fit accuracy, based on a number of realizations. In
all cases, we find a p-value > 0.1.

Sheep passage through a door. The study presented here consists on recordings on
the normal practices undertaken for the purposes of recognised animal husbandry.
Hence, according to the Directive 2010/63/EU (European Union) on the protection of
animals use for scientific purposes, no project evaluation by ethical committee was
necessary. This directive explicitly states that it does not apply to the non-
experimental agricultural practices or practices undertaken for the purposes of
recognised animal husbandry or practices not likely to cause pain, suffering, distress
or lasting harm equivalent to, or higher than, that caused by the introduction of a
needle in accordance with good veterinary practice.

Data for the time passage of sheep have been collected at a farm in Cubel (Zaragoza,
Spain). The herd comprises about 1500 sheep of Rasa Aragonesa breed and belong to
aherd of selection inscribed in the genealogical book of the breed. From among them,
a flock of young breeding mothers was picked, so the body mass and size of indivi-
duals in this subset is quite uniform. We observed this flock during 30 to 40 days, and
then the flock is replaced. The flocks comprise 75 % 10 animals.

The sheep are kept in a barn, and they are taken out every morning. Feeders inside
the barn are stocked and a door is open. Then the sheep enter the barn in haste. This is
the usual procedure carried out by the farmer, and it is this entrance that we have been
allowed to record every day during several months. The relevant dimensions are the
width of the gate (77 cm) and the sheep width as measured at their hips (35 cm in
average). In order to test whether an obstacle before the door is beneficial for the flow,
a section of concrete drainpipe is set vertically in front of the door, as shown in
Fig. 1A. This is a cylinder of 114 cm diameter and higher than the sheep (so the
animals cannot see the door from behind) placed at a distance of 80 cm from the gate.
For the flocks on which the obstacle was tested, the procedure was to record the
entrance during a month, two weeks with an obstacle and two weeks without it, in
order to verify that the flock behaved as the others when the obstacle was not there.
After checking that there are no significant differences in the results of the different
flocks, we aggregated all the data. The recordings of some days were useless due to
poor conditions; in total, 3070 sheep were logged passing through the gate without an
obstacle, and 1432 with an obstacle in front of the gate.

To characterize the flow properties of the sheep, we have installed a standard
surveillance video camera above the door (in a zenithal arrangement). A film is
registered every day in a hard-disc, and at the end of the month the data are collected.
The recordings have a resolution of 704 X 576 pixels at 25 frames per second. A
procedure akin to the photo finish used in track and field events is carried out to
obtain an accurate timing for the passage of each animal. A line of pixels (see Fig. 1B)
is sampled from every frame and stacked vertically, therefore forming an image where
the vertical dimension is the time and the horizontal dimension the distance along the
line of pixels —a spatio-temporal diagram, as shown in Fig. 1C. In order to increase the
time resolution, we have sampled a five-pixel-thick line. Passage detection has to be
made once the sheep have crossed the door, so this line is located at approximately
one body length from the entrance, as depicted in Fig. 1B. We have nevertheless
checked that our results are insensitive to the particular choice of this line. The head of
every animal is marked manually in the spatio-temporal diagram, and a simple image
processing program produces a file with the passage time for every animal in the flock.
With these files we produce the graphs of Fig. 1D and also obtain the time intervals t
between the passage of two consecutive sheep needed to build the cumulative his-
tograms of Fig. 1E.

In order to define bursts and clogs, it is unavoidable to set a threshold for the
minimum time lapse between two consecutive sheep above which the bursts are
considered to be separated. A sound choice is the minimum value of T (T;i,) above
which the power law holds, which is provided by the method used'’. Another clue
comes from the flow at maximum density: animals are then separated typically by
time intervals that depend on the characteristic speeds and sizes of the system. Both
clues point to a time lapse of about one second. We have tested that choosing values
for T,y between 0.7 seconds and 2 seconds, made no significant difference in the
results. The outcomes for a threshold of t,,,;, = 1 s are displayed in Fig. 1F.

Pedestrian simulation. We have modelled the behaviour of a group of 30 pedestrians
evacuating a room with periodic boundary conditions, meaning that pedestrians who
leave the enclosure are reinserted in random positions inside the room once they are
3 m away beyond the door. In this way, the state of maximum density near the door is
maintained. The simulations were performed using the Social Force Model put
forward by Helbing and coworkers® plus a fluctuating random force'*'” perpendicular
to the door line (i.e. in the y-coordinate, see Fig. 2A). This fluctuating force is
uniformly distributed in the range [—0, 6], where 0 is the noise amplitude.

The equations of motion were integrated using the velocity-Verlet algorithm with a
time step At = 0.001 s. Fifty four simulations of 2.000.000 s each one (simulated

time) were performed changing the initial configuration of the pedestrians and the
parameters v4 (desired speed), L (door width), and 0 (noise amplitude), as shown in
Fig. 2. The desired speeds were chosen with an average value as indicated and a
dispersion of = 0.05 m/s.

The fixed parameters of the model were: number of pedestrians, N = 30; room
dimensions, 20 m X 20 m; for the Social Force Model: A = 11 N, B = 0.08 m;
contact force parameter: k,, = 180 kN/m, k, = 300 kN/m; relaxation time of the
driving force: T, = 0.5 s; pedestrian radii r = 0.27 + 0.03 m; pedestrian mass m = 80
+10 kg,

Silo experiments. The automated two-dimensional silo displayed in Fig. 3A has
already been described in detail®. Brass spheres of 1 mm diameter confined in a
monolayer start to flow until an arch is formed at the orifice and the outpouring is
halted (this condition is detected with a video camera). At this point, a vertical 100 Hz
sinusoidal vibration at constant acceleration I" (measured in units of g, the
acceleration of gravity) is switched on. We measure the time it takes to break the arch
by inspecting the system with a video camera that can detect the moment at which the
grains start to move with a resolution of 45 milliseconds. The silo is then turned
upside down to collect the grains in the upper side, and half turned again to start a new
run. Typically, about two thousand arches are registered and broken for each case in
order to get enough data to perform the statistical analysis shown. In different
experimental runs we have explored the influence of the orifice size L and the
vibration amplitude I'. In general, we only considered the arches formed when the
material head in the silo (h) ish > 6 cm (which is the silo width), but in some runs we
have also measured the time taken to break the arches when the head is lower than this
value. In the latter case, the pressure at the base of the silo is smaller.

The inclined two-dimensional hopper (Fig. 3E) consists in two Plexiglas sheets
separated by a narrow frame allowing the confinement of 500 glass beads (4 mm in
diameter) ina 5 mm wide gap. The rectangular silo is 6 cm wide and ends in a hopper
with walls at 17 degrees with the horizontal that leaves an aperture of 12 mm (three
particle diameters). The inner side of the bottom sheet, on which the beads roll, is
covered with aluminium foil connected to ground to prevent electrostatic charging. A
relay is used to open and close a gate at the opening. A speaker glued outside of the
bottom Plexiglas sheet can make the system vibrate at the desired amplitude and
frequency. A microphone below the aperture (inside the frame) detects the glass beads
as they exit the hopper; this signal is used to analyse the discharge process. The entire
system is fixed to an axis driven by a motor so that the beads can roll back and forth on
the bottom sheet by changing the inclination angle. A set of photo-diodes sense the
angle of inclination and the moment at which the hopper is emptied. An accel-
erometer attached to the bottom sheet measures the vibration acceleration amplitude.

A PC controls the motor and the gate. If the hopper is empty, the axis is turned so
that the glass beads roll to the “upper” side of the silo. When driving the system back
to the desired inclination, two deflectors direct the grains towards the hopper. Then,
the speaker starts vibrating and the gate is opened. The microphone registers the
discharge until the hopper is emptied and a new cycle begins. Typically, 200 dis-
charges are carried out for the two inclination angles reported in this manuscript (20
and 60 degrees with respect to the horizontal). The vibration acceleration amplitude
was 0.13 g and the fundamental frequency 150 Hz. Since at the end of the discharge
the pressure at the orifice considerably depends on the filling level, we only consider
in the analysis the first half of the discharge, where pressure is expected to vary
marginally.

The microphone signal is processed to detect the peaks that correspond to the
particle impacts. The signal is raised to the fourth power to reduce the signal to noise
ratio and then a running average is performed to smooth out high frequency com-
ponents. The maxima of the resulting signal are used as estimates for the instants
when particles knock the microphone. Since many beads may knock the microphone
within a short time interval, we most likely detect fewer maxima than beads have
flown through the aperture. However, since we are interested in the statistics of long-
lasting blockages, this loss of information at short time scales is irrelevant.

The eccentrically discharged hopper shown in Fig. 3F is described in a previous
work’. It consists of a cylinder with a partially closed base (forming an angle of 45
degrees with the cylinder axis). The base is vibrated at a fixed frequency and ampli-
tude by means of a piezoelectric element. A plastic sheet with a microphone attached
to it is placed beneath the exit orifice. The sound produced by the impact of the falling
grains is recorded and the time lapses between particles are measured. A minimum
time lapse Ty, = 0.1 s is used to sort between flowing and clogged states. We then
calculate the average time lapse in the flowing state (t;) and the average time lapse in
the clogged state (t.). For each orifice size (L) and acceleration of the imposed
vibration (I'), we compute the value of ® = (t)/({t;) + (t.). To this end, the exponent
(ar) of the complementary CDF is obtained as explained above. If o0 = 2, the value of
the parameter ® becomes zero (as (t) diverges). In the cases where a0 > 2, (t¢) and (t.)
are directly calculated from the measurements in order to compute ®.

Colloid simulation. We have modelled the motion of a colloidal suspension through
a constriction using the lattice-Boltzmann method* incorporating discrete solid
spherical particles, of radius R. The colloidal particles interact with the surrounding
fluid through the standard ‘bounce-back on the links’ method”. The same rule is
applied to enforce stick boundary conditions at the solid walls that define the system
geometry. Thermal fluctuations are incorporated using the scheme proposed in Refs.
38, 39, to ensure that in the absence of any forcing the suspension reaches thermal
equilibrium.
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In all simulations we consider a colloidal suspension confined between two parallel
solid walls that have a circular orifice of modifiable radius. In the other two directions
the system is periodic. The fluid parameters are chosen to ensure a Reynolds number,
Re = UR/v -based on the particle radius, R, the fluid kinematic viscosity, v, and the
characteristic particle velocity, U- smaller than 1/10.

In all simulations presented here, the system sizes are 44 node wide in the trans-
verse direction and 88 in the direction perpendicular to the solid walls. 128 colloidal
particles of radius 5 lattice units are initially randomly distributed, corresponding to
an average volume fraction ¢ = 0.4. The fluid is subject to a uniform force perpen-
dicular to the walls, mimicking a pressure driven flow that pushes the colloidal
particles through the opening. The forcing induces the accumulation of the colloidal
particles in the neighbourhood of the orifice. To avoid overlapping, we include a
short-range repulsion between colloidal particles*® and between the colloidal particles
and the walls, except in the orifice region. Moreover, wall bounce-back is suppressed
in the orifice region (allowing the fluid to flow through it) and the colloidal particles
do not experience the short-range wall repulsion. The discrete representation of the
colloidal particles on the lattice does not allow LB to recover exactly the diverging
lubrication forces when solid surfaces approach to contact. We have included a short-
range, pairwise approximation to the lubrication forces between all solid surfaces to
prevent any overlap®.

Long time simulations are required to sample appropriate clogging events. To this
end, in each simulation the colloidal particles are allowed to cross several times the
system size. Eventually they accumulate at the orifice forming clogs. In each simu-
lation we typically run 10® time steps and gather statistics over 10° colloidal particles
passing through the orifice.
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