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Abstract—A mixed integer linear programming model for the 

simultaneous planning and scheduling of multistage 

multiproduct batch plants in a multiperiod context is presented 

in this work. The batch plant is composed by a set of stages with 

parallel units of different sizes. The scheduling decisions are 

modeled considering mixed product campaign-based operation 

mode and sequence-dependent changeover times. Thus, for each 

time period, the number of batches of each product in the 

campaign, the batch assignment to units in each stage and its 

sequencing, and the number of repetitions of the campaign are 

jointly determined. Also, decisions about production and storage 

of different products, and raw material consumption and storage 

are taken into account. The approach capabilities are highlighted 

through an example.  

Keywords—mixed product campaign; non-identical parallel 

units; changeovers; multiperiod planning; mixed integer linear 

programming. 

I.  INTRODUCTION 

The increasing product customization and diversification 
in the chemical industry have led to the installation (or 
retrofit) of facilities where different products have to share 
limited resources (equipment units and utilities) and which can 
be operated in multiple modes. The flexibility of this type of 
plants, called multiproduct facilities, improves the resource 
utilization and allows lower inventory costs and better reaction 
to demand fluctuations. However, these advantages can only 
be materialized if the production is planned well, a task which 
is hard mainly due to the increased flexibility, and, thus, 
multiplicity of solutions [1].  

A number of researchers have proposed scheduling as well 
as integrated production planning and scheduling approaches 
in the area of process system engineering (PSE). The two 
problems are interdependent since the solution of production 
planning (production targets) is input to scheduling, and the 
production capacity constraints in production planning depend 
on the scheduling solution [2]. Reference [3] presents an 
excellent review of methodologies and solution strategies of 
scheduling problem, while [4], [5] and [6] provide overviews 
of production planning and scheduling approaches.  

In this work, a mixed integer linear programming (MILP) 
model for the simultaneous planning and scheduling of a batch 
plant over different time periods is proposed. Deterministic 
variations in prices, product demands limits, costs, and raw 
materials availability due to seasonal or market fluctuations 
are included in this approach. The operation policy based on 
mixed product campaigns (MPCs) is adopted in order to 
reduce idle times, increase unit utilization, and avoid 
inventory buildups of materials. The objective is to determine 
the detailed production planning scheme, inventory levels, and 
raw material consumption that allow fulfilling customer 
demand limits at the maximum benefits. 

The proposed formulation represents a suitable tool for 
decision making in supporting the plant management. 

II. PROBLEM DEFINITION 

The problem addressed deals with a multiproduct batch 
plant that processes I products during T time periods of 
duration Ht. All products follow the same production sequence 
throughout J batch processing stages and they are produced 
using C raw materials. Kj represents the set of non-identical 
parallel batch units that operate out-of-phase in stage j. Since 
different unit sizes are admitted in each stage, Vkj is used to 
denote the size of unit k of stage j. The processing time of 
each product i in unit k, tik, and the size factor SFij that denotes 
the required capacity of units in stage j to produce one mass 
unit of final product i, are problem data. Sequence-dependent 
changeover times, cii’k, are considered between consecutive 
batches processed in the same unit k, even of the same 
product. This transition time corresponds to the preparation or 
cleaning of the equipment to perform the following batch 
processing. 

Intermediate storage tanks are not allowed. Besides, it is 
assumed that a batch cannot wait in a unit after finishing its 
processing. Therefore, the Zero Wait (ZW) transfer policy 
between stages is adopted. This policy assumes that a batch, 
after finishing its processing at a stage, must be transferred 
immediately to the next stage. 

For each product i, lower and upper bounds on its demands 

in every period t, L

itDE and U

itDE , are known. The amounts of 



raw materials consumed are determined by mass balances with 
a given parameter Fcit that accounts for the process conversion 
of raw material c to produce product i during period t. Costs 
and availability of raw materials as well as prices of final 
products vary from period to period and they are assumed to 
be known. Maximum available storage capacities are problem 
data and at the beginning of the global time horizon, the initial 
inventories of both raw material and product, IMi0 and IPi0, are 
assumed to be given. 

During each time period, the plant operates in MPC mode, 
i.e. the production campaign, composed by a set of batches of 
the different products manufactured in this period, is cyclically 
repeated over Ht. For product i, a set of generic batches 
associated to that product, IBi, is proposed and the size of this 
set is the maximum number of batches in the campaign. An 
asynchronous slot-based continuous-time representation for 
modeling the scheduling decisions is employed [7]. The slots 
correspond to time intervals of variable length where batches 
will be assigned. In each slot l of a specific unit k at most one 
batch b of product i can be processed and, if no product is 
assigned to slot l, its length will be zero. 

Then, the problem consists of determining for each time 
period t: (1) the amounts of product i to be produced Qit, raw 
material c to be used for production, RMct, purchased raw 
material c during the period, Cct, and wasted raw material, 
RWct; (2) the MPC composition, i.e. the number of batches of 
each product in the campaign, and the size of each batch of 
product i elaborated in the campaign of period t; (3) the 
assignment of batches to units in each stage, the production 
sequence on each unit, initial and final processing times for 
the batches in each unit and the campaign cycle time, CTCt; 
(4) the number of times that the campaign is cyclically 
repeated over the time horizon Ht, denoted by NNt; (5) the 
levels of both final product, IPit, and raw material inventories, 
IMit; (6) the wastes due to the expired product shelf life, PWit; 
and (7) the total sales of each product i elaborated, QSit; in 
order to maximize the net benefit. 

III. MODEL FORMULATION 

The model basically considers two sets of constraints, 
which are summarized below: 

A. Production planning constraints 

These constraints allow determining, at each time period, 
the amount of raw materials purchased and used for producing 
each product, the total production, the levels of raw material 
and final product inventories, and the amount of sold products. 
The equations description is omitted due to space reasons. 

B. Scheduling constraints 

1)  Batching constraints: The number of batches of 

product i that must be manufactured in the campaign of period 

t is a model variable. Then, a binary variable zibt is introduced, 

which takes value 1 if batch b of product i is selected to satisfy 

the production level of that product at the period t and 0 

otherwise. 

Let Bibt be the size of batch b of product i elaborated in 
period t and Qit the total amount of product i produced in that 
time period. Then, taking into account that the MPC will be 
cyclically repeated NNt times over the time period t: 
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Due to Bibt and NNt are optimization variables, (1) is 
reformulated to avoid non linearities. Discrete variable NNt 
can be expressed using a 2-based representation as: 
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Parameter Mt = ceil  112  ) (NNlog UP
t , where ceil is a 

function that rounds the argument to the next integer, UP
tNN is 

the maximum number of times that the campaign can be 
cyclically repeated over the time period t and cmt are binary 
variables. 

In particular, if production at the period t is null, all binary 
variables cmt take value zero: 
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Then, replacing (2) into (1), the following constraint is 
hold: 
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Bilinear terms in (4) are eliminated defining a non negative 
continuous variable, wibmt, which is equal to Bibt if cmt take 
value 1, and 0 otherwise. So (4) is represented by: 
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Besides, the following constraints are imposed, where M1 
is a sufficiently large number that makes the constraint 
redundant when cmh takes value 0: 

t,m,IBb,icMBw imtibtibmt           )( 11  (6)  

t,m,IBb,iBw iibtibmt              (7) 
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Taking into account that the size of unit k of stage j 
denoted by Vkj and the size factor SFij are model parameters, if 
batch b of product i is processed in unit k of stage j during 
period t, the following inequalities limit the size Bibt of batch b 
between the minimum and maximum processing capacities of 
unit k: 
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where ik is the minimum filled rate required to process 
product i in unit k. Due to the units selected to process the 
batches of each product are optimization variables and their 
sizes are different, (9) must be expressed through a variable 
that indicates this selection, as it will see later. 

Besides, without loss the generality and in order to reduce 
the number of alternative solutions, the selection of batches of 
a same product as well as the assigned sizes to them are made 
in ascending and descending numerical order, respectively, 
that is: 

tIBbIBbIizz iiibttib ,1,,          1   (10) 

tIBbIBbIi BB iiibttib ,1,,          1   (11) 

2) Assignment and sequencing constraints: For each 

period t, selected batches must be assigned, in each stage, to 

specific slots in the units. Then, the binary variable Ybklt is 

introduced, which takes value 1 if batch b is assigned to slot l 

in unit k in period t and 0 otherwise. Although this variable is 

enough for formulating the scheduling problem, the binary 

variable Xkl, which specifies the slots set utilized in unit k for 

processing batches, will be also used in order to reduce the 

search space and, therefore, to improve the computational 

performance.  
Logical relations can be defined among binary variables 

zibt, Xklt and Ybklt. In fact, if slot l of unit k is not utilized in 
period t, then none of the proposed batches is processed in it. 
Moreover, if slot l of unit k is utilized, then only one of the 
proposed batches is processed in it. Then, the following 
constraint is imposed: 
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On the other hand, if batch b of product i is selected (i.e. 
zibt = 1), then this batch is processed in only one slot of some 
of the available units at each stage j. This condition is 
guaranteed by: 
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Without loss of generality and in order to reduce the search 
space, it is assumed that slots of each unit are consecutively 
used in ascending numerical order. Hence, the slots of zero 
length take place at the end of each unit. Eq. (14) establishes 
that for each unit k, slot l+1 is only used if slot l has been 
already allocated: 

t,l,Kk, j,XX jtklklt           1     (14) 

Finally, variable Ybklt allows correctly expressing the 
inequalities posed in (9) as: 
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where scalar M3 is a sufficiently large number.  

3) Timing constraints: Nonnegative continuous variables, 

TIklt and TFklt, are used to represent the initial and final 

processing times, respectively, of the proposed slots in each 

unit k during period t. When slot l is not the last slot used in 

unit k of stage j for processing one batch, that is, if Yb’kl+1t take 

value 1 for some b’, final processing time TFklt of slot l in unit 

k at period t is constrained by:  
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A nonnegative variable YYblb’l’kt is defined to eliminate the 
bilinear products, which takes value 1 if Ybklt =1 and Yb’kl+1t =1 
and 0 otherwise, so (17) is represent using Big-M expressions.  

On the other hand, when the sequence of slots used in unit 
k is 1, 2, ... l, i.e. slot l is the last slot used at unit k of stage j to 
process some batch, taking into account that the campaign can 
be cyclical repeated over time period t, the final processing 
time TFklt is calculated considering the changeover time 
required for processing the batch assigned to slot 1 in unit k of 
stage j. Constraints of type Big-M analogous to those required 
to represent (17) are posed for this case. 

Constraints to avoid the overlapping between the 
processing times of different slots in a unit as well as to match 
the initial times of empty slots with the final time of the 
previous slot are considered in the formulation. In order to 
assure ZW transfer policy, constraints of Big-M type are 
included, depending if slot l is or is not the last slot used at 
unit k for processing one batch. Due to space reasons, this set 
of constraints is not provided in this manuscript, but interested 
readers can request it to authors. 

Finally, taking into account that, for all periods, slots of 
each unit are used in ascending numerical order, the 
expression for the cycle time of the campaign, CTCt, is given 
by: 

tKkjTITFCTC jtkkLtt ,,      ,1    (18) 

Then, as the campaign is cyclically repeated NNt times 
along the time period Ht, the following inequality is imposed: 

t,HNNCTC ttt            (19) 

Equation (2) allows transforming (19) in the nonlinear 
inequality: 
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Then, a nonnegative variable wwmt is defined to eliminate 
the bilinear products, which is equal to CTCt if cmt =1 and 0 
otherwise.  

C. Objective function 

The problem goal is to maximize the net benefit, which is 
calculated by the difference between the revenue due to 
product sales and the overall costs, with the latter consists of 
the expenses due to raw materials, inventories, operation, 
wastes due to the expired raw material and products shelf life. 

IV. EXAMPLE 

The considered batch plant consists of three stages with 
two non-identical parallel units operating out-of-phase on 
stage 2. The units at each stage are denoted by the sets: K1 = 
{1}, K2 = {2, 3}, and K3 = {4}, respectively. Units sizes are 
4000 L in stage 1, 4200 L and 3000 L in stage 2, and 3000 L 
in stage 3. The plant produces 3 products (A, B and C) with 2 
different raw materials (C1 and C2). A global time horizon of 
1 month (576 h) with 4 equal time periods of 1 week each    
(Ht = 144 h) is considered. 

Data on processing times, size factors and sequence-
dependent changeover times are shown in Table I. Prices of 
raw materials and final products, and maximum bounds on 
demand forecasts over each period, are given in Table II. 
Minimum product demands in each period are assumed as 
50% of maximum product demands. Due to space reasons, 
data on conversion factors, products and raw materials 
lifetimes in time periods, and inventory costs of both final 
products and raw materials were not reported. However, they 
are available for everyone who requests them. 

Considering the unit sizes at each stage, the size factors for 
each product in each stage, and assuming that the equipment 
utilization minimum rate is 0.50 for all products and 
equipment items, the minimum feasible batch sizes for 
products A, B and C are: 

  kg 3000kg 6000 kg, 5000  kg, 571450  max.Bmin
A  

  kg 3333kg 6666 kg, 4285  kg, 666650  max.Bmin
B  

  kg 2857kg 5454  kg, 4615  kg, 571450  max.Bmin
C . 

For each period, the number of batches of product i in the 
composition of the campaign is upper bounded by 3. Then, the 
sets of batches proposed for each product are: IBA={b1, b2, b3}, 
IBB={b4, b5, b6} and IBC={b7, b8, b9}. The upper bound for the 
variable representing the number of repetitions of the 
campaign over Ht, NNt, is proposed considering one extreme 
type of campaign that can be arisen in period, namely, that 
with minimum cycle time. For this example, the upper bound 
for variable NNt is fixed to 12, i.e. three binary variables have 
been defined for the 2-based representation of that variable. In 
order to avoid undesirable combinations for the value of NNt, 
the following constraints are added to the formulation: c3t + c2t 

+ c1t ≤ 2; c3t + c2t + c0t ≤ 2,  t. 

The model under these assumptions comprises 70296 
linear constraints, 16396 continuous variables, and 1092 

binary variables. It was implemented and solved using GAMS, 
via CPLEX 12.1 solver, in 1853.14 CPU seconds with a 0% of 
optimality gap. 

For each period, the amounts of final products produced 
and sold, amounts of raw materials purchased for producing 
all products, and the inventories levels of both raw materials 
and products, are summarized in Table III. 

Both raw materials are purchased in periods where costs 
are the lowest ones, except C2 due to raw material and final 
product inventories levels are null at the beginning of the 
planning horizon and both raw material are required to satisfy 
the production of period 1. For raw material C1, the extra 
material purchased in period 1 is kept as inventory for 
fulfilling production in the two next periods. Analogously, for 
raw material C2, the extra material purchased in periods 1 and 
3 are kept as inventory for production in subsequent periods. 
For each product, extra amounts are produced in some periods, 
which are kept as inventory to satisfy maximum demands in 
subsequent periods. 

For each period t, the batches of each product involved in 
the optimal production campaign, batch sizes, the campaign 
cycle time and the number of times that it is repeated over the 
time period are depicted in Table IV. Figs. 1 to 4 illustrate the 
production sequence in the different stages for all time 
periods. Since product C is not produced in period 4, the 
campaign only consists of one batch of each of the other 
products, which is sufficient to meet the production plan in 
this period. The economic results for this example are 
summarized in Table V. 

V. CONCLUSIONS 

In this work, the optimal production planning and 
scheduling of multistage batch plants with non-identical 
parallel units that operate in campaign-mode is addressed. 
Scheduling decisions are modeled according to this operation 
mode. So, in each period, the campaign cycle time must be 
calculated in order to achieve the appropriate overlapping of 
them. Sequence-dependent changeover times are considered 
for each ordered pair of products in each unit of the different 
stages.  

Taking into account the complexity of the simultaneous 
involved decisions, some additional constraints that eliminate 
equivalent symmetric solutions maintaining the model 
generality are considered, in order to reduce the search space 
and therefore improve the computational performance. Also, 
various equations are reformulated in order to attain a MILP 
model and assure the global optimality of the solution. 
Through the example the capabilities of the proposed 
formulation are shown. 

With the proposed model, the operation management and 
production planning, which are common activities at the plant 
floor, can be controlled. Moreover, it allows making different 
decisions, like the forecast of material requirement, the 
inventory management of raw materials and final products, the 
distribution policy determination, etc. 



TABLE I.  PROCESS DATA 

Product 

i 

Processing times: tik (h) Size factors: SFij (L/kg) Sequence-dependent changeover times: cii’k (h) 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

1 2 3 4 1 2, 3 4 A B C A B C A B C 

A 13 24 20 7 0.70 0.60 0.50 0.0 0.5 0.3 0.25 0.3 0.4 0.0 1.0 0.0 

B 16 18 18 5 0.60 0.70 0.45 0.0 0.0 1.0 1.2 0.25 0.8 0.5 0.0 0.8 

C 12 15 12 4 0.70 0.65 0.55 1.5 0.0 0.0 1.5 0.5 0.25 2.25 1.0 0.25 

TABLE II.  PRICES AND DEMAND BOUNDS 

Period 

t 

Raw material costs ($/kg) Products prices ($/kg) Maximum demands ( 103 kg) 

C1 C2 A B C A B C 

1 0.5 1.4 2.05 2.6 2.0 15.0 16.5 9.0 

2 1.0 0.6 2.25 2.6 2.20 16.5 25.5 15.0 

3 1.0 0.6 2.25 2.4 2.20 13.15 15.0 7.5 

4 0.5 1.8 2.05 2.4 2.0 15.0 20.0 16.2 

TABLE III.  OPTIMAL PRODUCTION PLAN FOR EACH PERIOD 

Period 

t 

Product A ( 103 kg) 
Product B ( 103 

kg) 
Product B ( 103 kg) 

Raw material C1 

( 103 kg) 

Raw material C2 

( 103 kg) 

Qit QSit IPit Qit QSit IPit Qit QSit IPit Cct IMct Cct IMct 

1 15.0 15.0 0.0 18.0 16.5 1.5 15.0 9.0 6.0 112.71 76.734 128.26 69.18 

2 19.65 16.5 3.15 24.0 25.5 0.0 10.9 15.0 1.9 0.0 35.27 0.0 0.0 

3 10.0 13.15 0.0 15.0 15.0 0.0 21.8 7.5 16.2 0.0 0.0 101.32 46.5 

4 15.0 15.0 0.0 20.0 20.0 0.0 0.0 16.2 0.0 27.50 0.0 0.0 0.0 

TABLE IV.  OPTIMAL PRODUCTION CAMPAIGN FOR EACH TIME PERIOD 

Period 

t 

Batch sizes for product 

A (kg) 

Batch sizes for product 

B (kg) 

Batch sizes for product 

C (kg) 

Campaign 

cycle time: 

CTCt (h) 

Number of 

repetitions: 

 NNt 
b1 b2 b3 b4 b5 b6 b7 b8 b9 

1 5000 0 0 6000 0 0 4990 0 0 41.3 3 

2 5000 4825 0 6000 6000 0 5455 0 0 70.8 2 

3 5000 0 0 4166 3334 0 5455 5455 0 70.3 2 

4 3750 0 0 5000 0 0 0 0 0 29.5 4 

TABLE V.  ECONOMIC EVALUATION RESULTS 

Description Optimal value ($) 

Sales income 419812.50 

Raw material cost 255002.50 

Raw material inventory cost 327.87 

Product inventory cost 413.35 

Operating cost 18435.00 

Waste disposal cost 0.00 

Total 145633.78 
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Fig. 1. Gantt chart of the optimal MPC for period 1.                 Fig. 2.    Gantt chart of the optimal MPC for period 4. 
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Fig. 3.   Gantt chart of the optimal MPC for period 2. 
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Fig. 4.   Gantt chart of the optimal MPC for period 3. 
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