Relationships between PCA and PLS-regression

José L. Godoy ${ }^{\text {ab, }, *, ~ J o r g e ~ R . ~ V e g a ~}{ }^{\text {a,c }}$, Jacinto L. Marchettia ${ }^{\text {a }}$
${ }^{\text {a }}$ INTEC (CONICET and Universidad Nacional del Litoral), Güemes, 3450 (3000) Santa Fe, Argentina
${ }^{\text {b }}$ FRP-UTN (Facultad Regional Paraná, Universidad Tecnológica Nacional), Almafuerte, 1033 (3100) Paraná, Argentina
${ }^{\text {c }}$ FRSF-UTN (Facultad Regional Santa Fe, Universidad Tecnológica Nacional), Lavaisse, 610 (3000), Santa Fe Argentina^

ARTICLE INFO

Article history:

Received 22 January 2013
Received in revised form 28 October 2013
Accepted 20 November 2013
Available online xxxx

Keywords:

PLS-regression
PCA
Latent models
Prediction models
Fault detection indices

Abstract

This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input-output variables) are presented; and regarding 26 to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical 27 examples are used to illustrate the relationships between latent models, output predictive models, and fault 28 detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with 29 regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the 31 fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.

© 2013 Published by Elsevier B.V.

1. Introduction

Principal Component Analysis (PCA) [1] and Partial Least Squares Regression (PLSR) [2] techniques allow the numerical adjustment of a linear model for describing the main relationships among process variables. These techniques are especially useful for reducing highdimension multivariate systems that include collinear variables, thus minimizing the problems associated with the treatment of illconditioned datasets [3]. As ordinary least squares and principal components regression, PLSR can also be considered as a particular case of other more general regression approaches [4,5].

In recent years, many studies have shown how PCA and PLSR can successfully be used for calibration of multivariate models [6,7], control of batch processes [8], control of quality variables that cannot be measured online [9], development of soft-sensors [10], detection of faults and process anomalies [11], treatment of missing values in the dataset [12], monitoring the performance of industrial model-predictive control systems [13], and latent variable model predictive control (LV-MPC) [8,14,15].

Several multivariate techniques, such as PCA [1] and Independent Component Analysis (ICA) [16], are based on the underlying correlation

[^0]among variables only, while PLSR is also adequate to explicitly expose 62 the existence of causal relationships [2,17]. For instance, PLSR is often 63 used in chemometrics applications to infer process causality from ex- 64 perimental data [18]. Based on these techniques, the process monitoring 65 strategies initially fit the latent variable models to later define the fault 66 detection indices. Today, such strategies have remarkable possibilities of 67 industrial applications [7,19].

In a multivariate proce associated with recipe conditions, manipulated variables, undesired dis 70 turbances, etc.; while output measurements (\mathbf{Y}) are normally associated 71 to production and quality variables. In particular, for monitoring varia- 72 tions and abnormal situations with the input measurements (\mathbf{X}) only, 73 a PCA decomposition of the \mathbf{X} space (X-PCA) can be performed. Howev- 74 er, a more important objective of process monitoring is to ensure good 75 product quality when this can be impacted by the process operating 76 conditions. In general, the quality variables (\mathbf{Y}) are affected by process 77 conditions that can be partially disclosed by the measured \mathbf{X}-data. Addi- 78 tionally, some Y variables are often difficult to measure, or are available 79 with significant measurement delays. For monitoring changes in vari- 80 ables that are relevant to the product quality it seems convenient to per- 81 form PLSR decomposition of the \mathbf{X}-space; this is because PLSR produces 82 an output-conditioned decomposition of the \mathbf{X}-space, while \mathbf{X}-PCA pro- 83 duces an orthogonal decomposition. PLSR has been widely used for 84 monitoring complex industrial processes where the quality variables 85 are important [3]; however, more details seem necessary to make
clear how \mathbf{Y} affects the decomposition of the \mathbf{X}-space, and the outcome of the monitoring task. Besides, the relationships between PCA and PLSR have not been formally established so far, as suggest recent review articles where these two techniques are presented as completely different [3,20,21].

This paper first investigates some properties and analogies of PLSR and PCA as multivariate statistical techniques, and then recommends which of them would be more appropriate for latent pattern analysis, output prediction, or monitoring purposes. The paper is organized as follows: Section 2 summarizes the modeling strategies based on PLSR and YX-PCA (i.e., PCA of the joint input-output variables). Section 3 describes and compares the space decompositions and the fault detection indices based on PLSR and YX-PCA. In Section 4, both modeling techniques are compared. In particular, Section 4.1 describes the geometric properties and the decomposition structure of PLSR in relation to \mathbf{X}-PCA and \mathbf{Y} PCA. Section 4.2 describes some analogies between PLSR and YX-PCA models. In Section 4.3, the fault detection indices of both modeling techniques are compared. For a better comprehension, Section 5 includes numerical examples that illustrate the analysis and present some simulation tests where the analogies and differences are visualized and discussed. Finally, the main conclusions are presented in Section 6.

2. Latent variable modeling by PLSR and YX-PCA

A process with collinear variables can be modeled through YX-PCA, without differentiating outputs from inputs. Alternatively, the same dataset can be analyzed by PLSR, which explicitly considers the existence of intrinsic causal relationships among process variables. Also, PLSR allows the identification and subsequent elimination from the original dataset of interfering input variables to get an improved model [10,22]. Therefore, we might expect that the PLSR technique yields a model closer to the intrinsic structure of a multi-input multioutput process [6].

Consider a process with m measured input variables plus p measured output variables. Assume that N measurements of each variable are collected while the process is operating under normal conditions. In order to build a model, the N multivariate measurements are arranged into a predictor matrix $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{N}\right]^{\prime}(N \times m)$ consisting of N samples of m variables per sample, and a response matrix $\mathbf{Y}=\left[\mathbf{y}_{1} \ldots\right.$ $\left.\mathbf{y}_{\mathrm{N}}\right]^{\prime}(N \times p)$ with N samples of p variables per sample. Then, PLSR can be used to find a regression model between the measurement vectors $\mathbf{x}=\left[x_{1} \ldots x_{m}\right]^{\prime}$ and $\mathbf{y}=\left[y_{1} \ldots y_{p}\right]^{\prime}$. This technique produces a projection of \mathbf{X} and \mathbf{Y} into low-dimension spaces defined by A latent variables which are then regressed [23,24].

Alternatively, the same multivariate process can be modeled by applying PCA to all input and output variables together, as a single dataset. In other words, given a data matrix $\mathbf{Z}=\left[\begin{array}{lll}\mathbf{Y} & \mathbf{X}\end{array}\right]=\left[\begin{array}{lll}\mathbf{z}_{1} & \ldots & \mathbf{z}_{N}\end{array}\right]^{\prime}$ $(N \times(p+m))$, consisting of N samples of $p+m$ variables, PCA can be used to find a latent model of \mathbf{Z} that describes the correlations among the variables included in the vector $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$. Let us assume that this PCA approach produces a projection of \mathbf{Z} into a space with the same low-dimension A as determined when modeling through PLSR. Notice that this alternative space of latent variables should also explain the underlying correlation between \mathbf{Y} and $\mathbf{X}[11,24,25]$.

2.1. Extended PLSR modeling

The PLSR model is typically derived by the application of the PLSRNIPALS algorithm [26], and produces one internal and two external models. The two external models respectively decompose \mathbf{X} and \mathbf{Y} into score vectors (\mathbf{t}_{a} and \mathbf{u}_{a}), loading vectors (\mathbf{p}_{a} and \mathbf{q}_{a}), and residual error matrices ($\widetilde{\mathbf{X}}$ and $\widetilde{\mathbf{Y}}$), as follows [26]:

$$
\begin{array}{lc}
\mathbf{X}=\mathbf{T P}^{\prime}+\widetilde{\mathbf{X}}, & \mathbf{P}=\left[\mathbf{p}_{1} \ldots \mathbf{p}_{A}\right], \mathbf{T}=\left[\mathbf{t}_{1} \ldots \mathbf{t}_{A}\right], \\
\mathbf{Y}=\mathbf{U} \mathbf{Q}^{\prime}+\widetilde{\mathbf{Y}}_{2}, & \mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{A}\right], \mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{A}\right], \tag{2}
\end{array}
$$

where the matrices \mathbf{T} and \mathbf{U} are orthogonal by columns. In the internal 148 model, these score matrices are related through the following regres- 149 sion model [26]:
$\mathbf{U}=\mathbf{T B}+\widetilde{\mathbf{U}}, \quad \mathbf{B}=\operatorname{diag}\left(b_{1} \ldots b_{A}\right), \quad \mathbf{U}=\left[\mathbf{u}_{\mathbf{1}, . .} \mathbf{u}_{A}\right]$.
Call \mathbf{R} and \mathbf{S} the pseudo-inverses of \mathbf{P}^{\prime} and \mathbf{Q}^{\prime} respectively, where 153 $\mathbf{P}^{\prime} \mathbf{R}=\mathbf{I}$ and $\mathbf{Q}^{\prime} \mathbf{S}=\mathbf{I}$. Then, \mathbf{T} and \mathbf{U} can be calculated from the original 154 data \mathbf{X} and \mathbf{Y} respectively, as follows [27]:
$\mathbf{T}=\mathbf{X R}, \quad \mathbf{R}=\left[\mathbf{r}_{1} \ldots \mathbf{r}_{A}\right]$,
$\mathbf{U}=\mathbf{Y S}, \quad \mathbf{S}=\left[\mathbf{s}_{1} \ldots \mathbf{s}_{A}\right]$.
Since the row space of $\widetilde{\mathbf{X}}$ (Eq. (1)) belongs to the null space of \mathbf{R}, then 160 $\widetilde{\mathbf{X}} \mathbf{R}=0$. Similarly, $\widetilde{\mathbf{Y}}$ (Eq. (2)) belongs to the null space of \mathbf{S}, and conse- 161 quently $\widetilde{\mathbf{Y}}=0$. Hence, by combining Eqs. (2)-(4), the following decom- 162 position is obtained:

$$
\begin{equation*}
\mathbf{Y}=\mathbf{X R B}^{\prime}+\widetilde{\mathbf{U}} \mathbf{Q}^{\prime}+\widetilde{\mathbf{Y}}=\hat{\mathbf{Y}}+\widetilde{\mathbf{Y}}_{x}+\widetilde{\mathbf{Y}} \tag{6}
\end{equation*}
$$

where $\hat{\mathbf{Y}}$ is the \mathbf{X}-based output prediction and $\widetilde{\mathbf{Y}}_{\chi}$ is the error originated 163 by the internal regression. This description has been called the "extend- 166 ed PLSR modeling" [27] ${ }^{1}$ because the projection of \mathbf{Y} to \mathbf{U} (Eq. (5)) was 167 added, which induces the decomposition of the prediction error in two 168 terms: $\widetilde{\mathbf{Y}}_{x}$ and $\widetilde{\mathbf{Y}}$. 169

2.2. YX-PCA modeling

The YX-PCA modeling alternative (typically obtained through the 171 NIPALS algorithm [24,26]) produces a latent model that decomposes 172 $\mathbf{Z}=[\mathbf{Y} \mathbf{X}]$ into score vectors $\left(\mathbf{t}_{a}^{\mathbf{Z}}\right)$, loading vectors $\left(\mathbf{p}_{a}^{\mathbf{Z}}\right)$, and residual 173 errors ((\mathbf{Z}), as follows [11]:
$\mathbf{Z}=\mathbf{T}_{\mathbf{z}} \mathbf{P}_{\mathbf{z}}+\widetilde{\mathbf{Z}}, \quad \mathbf{T}_{\mathbf{z}}=\left[\mathbf{t}_{\mathbf{1}}^{\mathbf{z}} \ldots \mathbf{t}_{A}^{\mathbf{z}}\right], \quad \mathbf{P}_{\mathbf{z}}=\left[\mathbf{p}_{\mathbf{1}}^{\mathbf{z}} \ldots \mathbf{p}_{A}^{\mathbf{z}}\right]$,
where $\mathbf{T}_{\mathbf{z}}$ is orthogonal by columns and $\mathbf{P}_{\mathbf{z}}$ is orthonormal by columns 176 (i.e., $\mathbf{P}_{\mathbf{Z}}^{\prime} \mathbf{P}_{\mathbf{z}}=\mathbf{I}$). The scores $\mathbf{T}_{\mathbf{z}}$ can be represented in terms of the original 177 data \mathbf{Z} as follows:
$\mathbf{T}_{\mathbf{z}}=\mathbf{Z P}_{\mathbf{z}}=\left[\begin{array}{ll}\mathbf{Y} & \mathbf{X}\end{array}\right]\left[\begin{array}{l}\mathbf{P}_{\mathbf{y}} \\ \mathbf{P}_{\mathbf{x}}\end{array}\right]=\mathbf{Y} \mathbf{P}_{\mathbf{y}}+\mathbf{X} \mathbf{P}_{\mathbf{x}}$,
since the row space of $\widetilde{\mathbf{Z}}$ (Eq. (7)) belongs to the null space of $\mathbf{P}_{\mathbf{z}}$, hence 180 $\widetilde{\mathbf{Z}} \mathbf{P}_{\mathbf{z}}=0$. The matrix $\mathbf{P}_{\mathbf{z}}$ unambiguously defines the decomposition of $\mathbf{Z} 181$ as follows: \mathbf{Z} is projected to the latent space through $\mathbf{P}_{\mathbf{Z}}$ (Eq. (8)), and 182 it is reconstructed by means of $\mathbf{P}_{\mathbf{Z}}^{\prime}$ (Eq. (7)). In summary, PCA involves 183 the decomposition of the complete data set \mathbf{Z} along the directions of 184 maximum variability.

3. Process monitoring based on latent variable models

Consider an industrial process operating around the desired condi- 187 tions. Then, if a sufficiently large amount of measurements of the most 188 important variables is available, the correlation structure underlying in 189 the measured data can be reasonably described by PCA or PLSR data 190 processing techniques. These modeling alternatives decompose the 191 space of measured data into subspaces, and then the process anomalies 192 or faults can be detected by monitoring these subspaces. Typically, spe- 193 cific functions like the squared prediction error (SPE), the Hotelling's $T^{2} 194$ and some combined forms can be used as indices to alert about the pres- 195 ence of possible anomalies during the process operation [3,20]. An 196 alarm signal typically appears when an index exceeds its predefined 197

[^1]control limit. In this section we summarize these space decompositions and fault detection indices originated from both, PLSR and YX-PCA.

3.1. Fault detection indices induced by PLSR

Once the extended PLSR model is available, the following decomposition of new data samples \mathbf{x} and \mathbf{y} is obtained [27]:
$\mathbf{x}=\hat{\mathbf{x}}+\widetilde{\mathbf{x}}, \quad \hat{\mathbf{x}}=\mathbf{P R}^{\prime} \mathbf{x}, \quad \widetilde{\mathbf{x}}=\left(\mathbf{I}-\mathbf{P R}^{\prime}\right) \mathbf{x}$,
$\mathbf{y}=\hat{\mathbf{y}}+\widetilde{\mathbf{y}}_{x}+\widetilde{\mathbf{y}}, \quad \hat{\mathbf{y}}=\mathbf{Q} \mathbf{B R}^{\prime} \mathbf{x}, \quad \widetilde{\mathbf{y}}_{x}=\mathbf{Q} \mathbf{S}^{\prime} \mathbf{y}-\hat{\mathbf{y}}, \quad \widetilde{\mathbf{y}}=\left(\mathbf{I}-\mathbf{Q} \mathbf{S}^{\prime}\right) \mathbf{y}$,
where $\hat{\mathbf{x}}$ and $\widetilde{\mathbf{x}}$ are oblique projections of $\mathbf{x} ; \hat{\mathbf{y}}$ and $\widetilde{\mathbf{y}}_{x}$ denote the prediction and prediction error, respectively; and $\tilde{\mathbf{y}}$ is the oblique projection of \mathbf{y} on the residual subspace. These terms can be measured by the following four non-overlapped indices:
$T_{P L S}^{2}=\left\|\Lambda^{-1 / 2} \mathbf{R}^{\prime} \hat{\mathbf{x}}\right\|^{2}, \quad S P E_{\mathbf{x}}=\|\widetilde{\mathbf{x}}\|^{2}, \quad S P E_{\mathbf{y} x}=\left\|\widetilde{\mathbf{y}}_{x}\right\|^{2}, \quad S P E_{\mathbf{y}}=\|\widetilde{\mathbf{y}}\|^{2}$,
where T^{2} is the score distance, the three SPEs are Euclidean distances to the model, and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1} \ldots \lambda_{A}\right)$, with λ_{a} being the estimated variance of the a-th latent variable t_{a} in the score vector $\mathbf{t}=\mathbf{R}^{\prime} \hat{\mathbf{x}}$. Then, these four statistics are combined into a unified detection index, given by
$I_{T C}=\frac{T_{P L S}^{2}}{\tau_{\alpha}^{2}}+\frac{S P E_{\mathbf{x}}}{\delta_{\mathbf{x}, \alpha}^{2}}+\frac{S P E_{\mathbf{y}}}{\delta_{\mathbf{y} x, \alpha}^{2}}+\frac{S P E_{\mathbf{y}}}{\delta_{\mathbf{y}, \alpha}^{2}}=\left[\begin{array}{ll}\mathbf{y}^{\prime} & \mathbf{x}^{\prime}\end{array}\right] \boldsymbol{\Phi}_{P L S R}\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$,
where $\tau_{\alpha,}^{2}, \delta_{\mathbf{x}, \alpha}^{2}, \delta_{\mathbf{y x}, \alpha}^{2}$, and $\delta_{\mathbf{y}, \alpha}^{2}$ are the control limits [27]. The vector arrangement on the right of Eq. (12) is derived from Eqs. (9)-(11) to explicitly show that the resulting index depends on the extended vector $\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$.

3.2. Fault detection indices induced by YX-PCA

An YX-PCA model induces on new data sample $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$ the following decomposition [11]:
$\mathbf{z}=\hat{\mathbf{z}}+\widetilde{\mathbf{z}}, \quad \hat{\mathbf{z}}=\mathbf{P}_{\mathbf{z}} \mathbf{P}_{\mathbf{z}}^{\prime} \mathbf{z}, \quad \tilde{\mathbf{z}}=\left(\mathbf{I}-\mathbf{P}_{\mathbf{z}} \mathbf{P}_{\mathbf{z}}^{\prime}\right) \mathbf{z}$
where $\hat{\mathbf{z}}$ and $\tilde{\mathbf{z}}$ are the orthogonal projections of \mathbf{z}. These terms can be measured through
$T_{P C A}^{2}=\left\|\boldsymbol{\Lambda}_{\mathbf{z}}^{-1 / 2} \mathbf{P}_{\mathbf{z}}^{\prime} \hat{\mathbf{z}}\right\|^{2}, \quad S P E_{\mathbf{z}}=\|\widetilde{\mathbf{z}}\|^{2}$
where $\boldsymbol{\Lambda}_{\mathbf{z}}=\operatorname{diag}\left(\lambda_{1}^{z} \ldots \lambda_{A}^{z}\right)$ and $\lambda_{a}^{z}(a=1 \ldots A)$ is the estimated variance of the a-th latent variable t_{a}^{z} of the score vector $\mathbf{t}_{\mathbf{z}}=\mathbf{P}_{\mathbf{z}}^{\prime} \hat{\mathbf{z}}$. Then, these two statistics are combined in a unique detection index that maintains the same structure with Eq. (12), as follows:
$I_{C}=\frac{T_{P C A}^{2}}{\tau_{\alpha}^{2}}+\frac{S P E_{\mathbf{z}}}{\delta_{\mathbf{z}, \alpha}^{2}}=\mathbf{z}^{\prime} \Phi_{P C A} \mathbf{z}=\left[\begin{array}{ll}\mathbf{y}^{\prime} & \mathbf{x}^{\prime}\end{array}\right] \Phi_{P C A}\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$.
The control limits of these statistics $\left(T_{P C A}^{2}, S P E_{\mathbf{z}}\right.$ and $\left.I_{C}\right)$ are described elsewhere [25].

4. Relationships between PCA and PLSR

4.1. Geometric relationships between PLSR and X-PCA plus Y-PCA

In this section, the geometric interpretation of the PLSRdecomposition is described in relation to \mathbf{X}-PCA and \mathbf{Y}-PCA. In particular, the effect of \mathbf{Y} on the PLSR-decomposition of the \mathbf{X}-space can be revealed by comparing with the decomposition of X-PCA. Section 2.1
showed that the PLSR-decomposition of \mathbf{X} into the model and residual 241 subspaces ($S_{M X}$ and $S_{R X}$, respectively) is defined by the matrices \mathbf{R} and 242 P, i.e., the matrix \mathbf{X} is projected onto the latent space by \mathbf{R} (Eq. (4)), 243 while the modeled part is reconstructed by \mathbf{P}^{\prime} (Eq. (1)). These projec- 244 tions and reconstructions induce the angles $\phi_{a}(a=1 \ldots A)$ between 245 the vectors \mathbf{p}_{a} and \mathbf{r}_{a}, which are generally non-zero [17]. This is a direct 246 consequence of the PLSR modeling procedure that forces all the \mathbf{p}_{a} and 247 \mathbf{r}_{a} to yield the best description of \mathbf{Y}.

Let us now represent the X-PCA decomposition by
$\mathbf{X}=\mathbf{T}_{\mathbf{x}} \mathbf{V}^{\prime}, \quad \mathbf{T}_{\mathbf{x}}=\left[\mathbf{t}_{1}^{\mathbf{x}} \ldots \mathbf{t}_{A}^{\mathbf{x}}\right], \quad \mathbf{V}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{A}\right], \quad A=\operatorname{rank}(\mathbf{X}) \leq m$,
where $\mathbf{v}_{i}(i=1 \ldots A)$ are the eigenvectors associated with the nonzero 250 eigenvalues $\lambda_{1}^{\chi} \geq \cdots \geq \lambda_{A}^{X}$ of the covariance matrix $\mathbf{X}^{\prime} \mathbf{X}=\mathbf{V} \mathbf{\Lambda}_{\mathbf{x}} \mathbf{V}^{\prime}$, with 252 $\Lambda_{\mathbf{x}}=\operatorname{diag}\left(\lambda_{1}^{X} \ldots \lambda_{A}^{X}\right)$.

For a hypothetical process, Fig. 1 represents the model subspace $S_{M X} 254$ spanned by the loading vectors $\mathbf{p}_{a}, \mathbf{r}_{a}$ or \mathbf{v}_{a}. The angles $\psi_{a}(a=1 \ldots A)$ be- 255 tween the vectors \mathbf{v}_{a} and \mathbf{r}_{a} represent the difference between the \mathbf{X}-PCA 256 and PLSR decompositions of \mathbf{X}. Note that any vector \mathbf{r}_{a} can be written as 257 a linear combination of the X-PCA vectors \mathbf{v}_{a}, as follows:
$\mathbf{r}_{a}=\left\|\mathbf{r}_{a}\right\| \sum_{i=1}^{A} \alpha_{i}^{a} \mathbf{v}_{i}=\left\|\mathbf{r}_{a}\right\| \mathbf{V}\left[\alpha_{1}^{a} \ldots \alpha_{A}^{a}\right]^{\prime} \quad(a=1 \ldots A)$,
where α_{i}^{a} are weight coefficients satisfying $\sum_{i=1}^{A}\left(\alpha_{i}^{a}\right)^{2}=1$ and hence 260 $\alpha_{a}^{a}=\cos \psi_{a}$. The $\alpha_{i}^{a \prime}$'s determine the \mathbf{r}_{a}-direction and are given by 261 (see proof in Appendix A):
$\alpha_{i}^{a}=\left(\lambda_{i}^{X}\right)^{-1} \mathbf{t}_{i}^{\mathbf{x}^{\prime}} \mathbf{u}_{a}\left(b_{a}\left\|\mathbf{r}_{a}\right\|\right)^{-1} \quad(i=1 \ldots A)$.
Eq. (18) shows that each α_{i}^{a} is the correlation coefficient between the 265 i-th principal component of \mathbf{X} (in \mathbf{X}-PCA) and the a-th PLSR-component 266 of \mathbf{Y}. Furthermore, for a better interpretation of Fig. 1, note that the 267 angles between the loading vectors \mathbf{v}_{a} and \mathbf{p}_{a} are given by (see proof 268 in Appendix A):
$\angle\left(\mathbf{v}_{a}, \mathbf{p}_{a}\right)=\cos ^{-1}\left[\frac{\lambda_{a}^{\chi} \alpha_{a}^{a}}{\sqrt{\sum_{i=1}^{A}\left(\lambda_{i}^{\chi}\right)^{2}\left(\alpha_{i}^{a}\right)^{2}}}\right] \geq \cos ^{-1}\left(\alpha_{a}^{a}\right)=\psi_{a}, \quad(a=1 \ldots A)$.

270
Eq. (19) shows that each angle $\angle\left(\mathbf{v}_{a}, \mathbf{p}_{a}\right)$ increases when the λ_{a}^{X} 's be- 272 come more different, i.e., when the \mathbf{X}-covariance becomes more ellip- 273 soidal. Also, if all $\lambda_{a}^{x \prime}$'s are equal, then $\angle\left(\mathbf{v}_{a}, \mathbf{p}_{a}\right)=\psi_{a}$ and $\phi_{a}=0.274$ Additionally, note that if \mathbf{r}_{a} becomes an eigenvector of $\mathbf{X}^{\prime} \mathbf{X}$, then 275 Eq. (17) yields: $\alpha_{i}^{a}=0(i \neq a)$ and $\alpha_{a}^{a}=1$, in which case $\psi_{a}=0276$ and $\mathbf{p}_{a}=\mathbf{r}_{a}=\mathbf{v}_{a}$.

277
Concerning the relations between PLSR and Y-PCA, recall that the 278 PLSR-NIPALS algorithm maximizes the covariance among the compo- 279 nents present in the \mathbf{X} and \mathbf{Y} spaces. Therefore, \mathbf{X} affects the PLSR- 280 decomposition of \mathbf{Y} as in the previous case (see Appendix B).

In summary, when the PLSR-components of $\mathbf{Y}($ or $\mathbf{X})$ are strongly 282 correlated with the principal components of \mathbf{X} (or \mathbf{Y}), then the PLSR- 283 and PCA-decompositions of \mathbf{X} (or \mathbf{Y}) are similar; otherwise such decom- 284 positions might be quite different.

4.2. Relationships between PLSR and YX-PCA models

Consider first the YX-PCA model of Eqs. (7) and (8) expressed in 287 terms of a single sample $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$, as follows:

288
$\hat{\mathbf{z}}=\mathbf{P}_{\mathbf{z}} \mathbf{t}_{\mathbf{z}}=\left[\begin{array}{l}\mathbf{P}_{\mathbf{y}} \\ \mathbf{P}_{\mathbf{x}}\end{array}\right] \mathbf{t}_{\mathbf{z}}=\left[\begin{array}{l}\mathbf{P}_{\mathbf{y}} \\ \mathbf{P}_{\mathbf{x}}\end{array}\right]\left[\begin{array}{ll}\mathbf{P}_{\mathbf{y}}^{\prime} & \mathbf{P}_{\mathbf{x}}^{\prime}\end{array}\right]\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$.

Fig. 1. A low dimension example of PLSR-decomposition of the \mathbf{X}-space in relation to \mathbf{X}-PCA. The model subspace $S_{M X}$ is spanned by $\mathbf{P}=\left[\mathbf{p}_{1} \mathbf{p}_{2}\right], \mathbf{R}=\left[\mathbf{r}_{1} \mathbf{r}_{2}\right]$ or $\mathbf{V}=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$.

Now, let us derive an analogous model using the PLSR matrices for the same number of latent variables. The PLSR model of Eqs. (1)-(3) can be written in terms of the new measurements as follows:
$\mathbf{x}=\mathbf{P t}+\widetilde{\mathbf{x}}$,
$\mathbf{y}=\mathbf{Q u}+\widetilde{\mathbf{y}}$,
$\mathbf{u}=\mathbf{B} \mathbf{t}+\widetilde{\mathbf{u}}$
where the latent vectors of Eqs. (4) and (5) are given by:

$$
\begin{equation*}
\mathbf{t}=\mathbf{R}^{\prime} \mathbf{x}, \quad \mathbf{u}=\mathbf{S}^{\prime} \mathbf{y} \tag{24}
\end{equation*}
$$

From Eqs. (9) and (10), the PLSR estimation of the augmented vector [$\left.\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]$ from \mathbf{t} is given by:
$\left[\begin{array}{l}\hat{\mathbf{y}} \\ \hat{\mathbf{x}}\end{array}\right]=\left[\begin{array}{c}\mathbf{Q B} \\ \mathbf{P}\end{array}\right] \mathbf{t}$.
From Eqs. (23) and (24), the vector \mathbf{t} can be connected with vectors \mathbf{x} and \mathbf{y}, as follows:
$\mathbf{t}=\omega\left(\mathbf{B}^{-1} \mathbf{S}^{\prime} \mathbf{y}-\mathbf{B}^{-1} \widetilde{\mathbf{u}}\right)+(1-\omega) \mathbf{R}^{\prime} \mathbf{x}=\left[\omega \mathbf{B}^{-1} \mathbf{S}^{\prime}(1-\omega) \mathbf{R}^{\prime}\right]\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]-\omega \mathbf{B}^{-1} \widetilde{\mathbf{u}}$,
with a weighting factor $\omega<1$. By substituting Eq. (26) into Eq. (25), one obtains:

$$
\left[\begin{array}{c}
\hat{\mathbf{y}} \tag{27}\\
\hat{\mathbf{x}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{Q B} \\
\mathbf{P}
\end{array}\right]\left[\begin{array}{ll}
\omega \mathbf{B}^{-1} \mathbf{S}^{\prime} & (1-\omega) \mathbf{R}^{\prime}
\end{array}\right]\left[\begin{array}{c}
\mathbf{y} \\
\mathbf{x}
\end{array}\right]-\omega\left[\begin{array}{c}
\mathbf{Q B} \\
\mathbf{P}
\end{array}\right] \mathbf{B}^{-1} \widetilde{\mathbf{u}},
$$

In order to get a closer comparison between Eqs. (20) and (27), let us assume an ideal PLSR model with an almost exact internal regression (Eq. (23)); i.e., with the rather infrequent condition $\widetilde{\mathbf{u}} \rightarrow 0$. Then, Eq. (27) can be rewritten as follows (for simplicity, $\omega=1 / 2$ was arbitrarily chosen):
$\left[\begin{array}{l}\hat{\mathbf{y}} \\ \hat{\mathbf{x}}\end{array}\right]=\left[\begin{array}{c}\sqrt{1 / 2} \mathbf{Q B} \\ \sqrt{1 / 2} \mathbf{P}\end{array}\right]\left[\begin{array}{ll}\sqrt{1 / 2} \mathbf{B}^{-1} \mathbf{S}^{\prime} & \sqrt{1 / 2} \mathbf{R}^{\prime}\end{array}\right]\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$,
$\left[\begin{array}{l}\hat{\mathbf{y}} \\ \hat{\mathbf{x}}\end{array}\right]=\left[\begin{array}{c}\sqrt{1 / 2} \mathbf{Q B D}_{\mathbf{y}} \\ \sqrt{1 / 2} \mathbf{P D}_{\mathbf{x}}\end{array}\right]\left[\begin{array}{ll}\sqrt{1 / 2} \mathbf{D}_{\mathbf{y}}^{-1} \mathbf{B}^{-1} \mathbf{S}^{\prime} & \sqrt{1 / 2} \mathbf{D}_{\mathbf{x}}^{-1} \mathbf{R}^{\prime}\end{array}\right]\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$,
$\hat{\mathbf{z}}^{*}=\mathbf{P}_{\mathbf{z}}^{b} \mathbf{P}_{\mathbf{z}}^{c^{\prime}} \mathbf{z}=\mathbf{P}_{\mathbf{z}}^{b} \mathbf{t}_{\mathbf{z}}^{*}$.
where $\mathbf{D}_{\mathbf{y}}=\mathbf{B}^{-1} \operatorname{diag}\left(\left\|\mathbf{s}_{1}\right\| \cdots\left\|\mathbf{S}_{A}\right\|\right)$ and $\mathbf{D}_{\mathbf{x}}=\operatorname{diag}\left(\left\|\mathbf{r}_{1}\right\| \cdots\left\|\mathbf{r}_{A}\right\|\right)$ were 318 included to obtain unitary norms in the rows of $\mathbf{P}_{\mathbf{Z}}^{c}$ and to satisfy 320 $\mathbf{P}_{\mathbf{Z}}^{c} \mathbf{P}_{\mathbf{z}}^{b}=\mathbf{I}$. Note that the projector matrices $\mathbf{P}_{\mathbf{Z}}^{b}$ and $\mathbf{P}_{\mathbf{z}}^{c}$ ' are built with ma- 321 trices of the PLSR model. In such a sense, Eq. (28) can be seen as an 322 "analogous PCA model" of $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$, but obtained on the basis of the 323 PLSR matrices. In Eq. (28), the "analogous PCA scores" are
$\mathbf{t}_{\mathbf{z}}^{*}=\mathbf{P}_{\mathbf{z}}^{c^{\prime}}\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]=\sqrt{1 / 2}\left[\operatorname{diag}\left(1 /\left\|\mathbf{s}_{1}\right\| \cdots 1 /\left\|\mathbf{s}_{A}\right\|\right) \mathbf{B}+\operatorname{diag}\left(1 /\left\|\mathbf{r}_{1}\right\| \cdots 1 /\left\|\mathbf{r}_{A}\right\|\right)\right] \mathbf{t}$,
where
$\mathbf{P}_{\mathbf{z}}^{c^{\prime}}=\left[\sqrt{1 / 2} \operatorname{diag}\left(1 /\left\|\mathbf{s}_{1}\right\| \cdots 1 /\left\|\mathbf{s}_{A}\right\|\right) \mathbf{S}^{\prime} \quad \sqrt{1 / 2} \operatorname{diag}\left(1 /\left\|\mathbf{r}_{1}\right\| \cdots 1 /\left\|\mathbf{r}_{A}\right\|\right) \mathbf{R}^{\prime}\right]$
are the "analogous principal directions". Eqs. (29) and (30) indicate that 328 the YX-PCA and the ideal PLSR model have the same latent space, except 329 for some differences in the score scales.

From Eq. (28), the residual of the extended vector $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$ in the 331 ideal PLSR model is
$\left[\begin{array}{l}\widetilde{\mathbf{y}} \\ \widetilde{\mathbf{x}}\end{array}\right]=\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]-\left[\begin{array}{l}\hat{\mathbf{y}} \\ \hat{\mathbf{x}}\end{array}\right]=\left(\mathbf{I}-\mathbf{P}_{\mathbf{z}}^{b} \mathbf{P}_{\mathbf{z}}^{c^{\prime}}\right)\left[\begin{array}{l}\mathbf{y} \\ \mathbf{x}\end{array}\right]$
$\widetilde{\mathbf{z}}^{*}=\left(\mathbf{I}-\mathbf{P}_{\mathbf{z}}^{b} \mathbf{P}_{\mathbf{z}}^{c^{\prime}}\right) \mathbf{z}$
which is analogous to the YX-PCA residuals $\widetilde{\mathbf{z}}$ in Eq. (13).
In summary, Eqs. (28)-(31) present the analogies between the YX- 335 PCA and ideal PLSR models. However, it should be noticed that in a 336 real case the last term of Eq. (27) can be significant. Hence, a measure 337 of the dissimilarity between the PLSR and YX-PCA models could be 338 evaluated from the norm of this last term; or simply from $\|\widetilde{\mathbf{u}}\|=339$ $\left\|\mathbf{S}^{\prime} \mathbf{y}-\mathbf{B R}^{\prime} \mathbf{x}\right\|$, which would in turn be calculated on the basis of the cur- 340 rent measurements. Also, it is worthwhile noting that if an accurate 341 PLSR fit were available, then the expected value of $\widetilde{\mathbf{u}}$ would be close to 342 zero, and therefore the expected values of the predictions provided by 343 the PLSR and YX-PCA models would be equivalent.

4.3. Relationships between PLSR and YX-PCA fault detection indices

This section aims at comparing the components of the combined in- 346 dices $I_{T C}$ (Eq. (12)) and I_{C} (Eq. (15)) that can be utilized for process 347
monitoring in PLSR and YX-PCA respectively. As in Section 4.2, let us start assuming an ideal PLSR model with $\widetilde{\mathbf{u}} \rightarrow 0$. Then, by substituting the analogous PCA scores $\mathbf{t}_{\mathbf{z}}^{*}$ (Eq. (29)) and its corresponding covariance matrix $\Lambda_{\mathbf{z}}^{*}=0.5 \boldsymbol{\Lambda}\left[\operatorname{diag}\left(1 /\left|\left|\mathbf{s}_{\mathbf{1}}\right|\right| \cdots 1 /| | \mathbf{s}_{A} \|\right) \mathbf{B}+\operatorname{diag}\left(1 /\left|\left|\mathbf{r}_{1}\left\|\cdots 1 /| | \mathbf{r}_{A}\right\|\right)\right]^{2}\right.\right.$ into the PCA-statistic $T_{P C A}^{2} / \tau_{\alpha}^{2}=\left\|\boldsymbol{\Lambda}_{\mathbf{z}}^{-1 / 2} \mathbf{t}_{\mathbf{z}}\right\|^{2} / \tau_{\alpha}^{2}$ of I_{C} (Eqs. (14) and (15)), one obtains $\left\|\boldsymbol{\Lambda}^{-1 / 2} \mathbf{t}\right\|^{2} / \tau_{\alpha}^{2}$, which coincides with the PLSRstatistic $T_{P L S}^{2} / \tau_{\alpha}^{2}$ of $I_{T C}$ (EqS. (11) and (12)). Therefore, the model components $T_{P L S}^{2} / \tau_{\alpha}^{2}$ and $T_{P C A}^{2} / \tau_{\alpha}^{2}$ in the combined indices are analogous, i.e.:
$\frac{\overbrace{\left\|\boldsymbol{\Lambda}_{\mathbf{z}}^{-1 / 2} \mathbf{t}_{\mathbf{z}}\right\|^{2}}^{Y(}}{\tau_{\alpha}^{2}} \equiv \frac{\overbrace{\left\|\boldsymbol{\Lambda}^{-1 / 2} \mathbf{t}\right\|^{2}}^{\text {YLSCR }}}{\tau_{\alpha}^{2}}$.

Similarly, by substituting the analogous PCA residuals $\widetilde{\mathbf{z}}^{*}$ (Eq. (31)) into the PCA-statistic $S P E_{\mathbf{z}} / \delta_{z, \alpha}^{2}=\|\widetilde{\mathbf{z}}\|^{2} / \delta_{z, \alpha}^{2}$ of I_{C} (Eqs. (14) and (15)); and taking into account that $\left\|\widetilde{\mathbf{z}}^{*}\right\|^{2}=\|\widetilde{\mathbf{x}}\|^{2}+\|\widetilde{\mathbf{y}}\|^{2}$ and $\delta_{\mathbf{z}, \alpha}^{2}=\delta_{\mathbf{y}, \alpha}^{2}+\delta_{\mathbf{x}, \alpha}^{2}$ $[3,28]$, the following can be written:
$\overbrace{\frac{S P E_{\mathbf{z}}}{\delta_{\mathbf{z}, \alpha}^{2}}}^{\text {YX-PCA }} \equiv \overbrace{\frac{\left\|\mathbf{z}^{*}\right\|^{2}}{\delta_{\mathbf{z}, \alpha}^{2}}}^{P L S R}<\overbrace{\frac{S P E_{\mathbf{x}}}{\delta_{\mathbf{x}, \alpha}^{2}}+\frac{S P E_{\mathbf{y}}}{\delta_{\mathbf{y}, \alpha}^{2}}}^{P I S R}$

Note that the early assumption $\widetilde{\mathbf{u}} \rightarrow 0$ also implies $\|\widetilde{\mathbf{u}}\|=\left\|\mathbf{S}^{\prime} \widetilde{\mathbf{y}}_{x}\right\| \rightarrow 0$ (or equivalently, $\left\|\widetilde{\mathbf{y}}_{x}\right\| \rightarrow 0$); and then Eqs. (32) and (33) together with Eqs. (12) and (15) indicate that $I_{C}<I_{T C}$. However, in a real case $\left\|\widetilde{\mathbf{y}}_{X}\right\|>$ 0 ; then all members in Eq. (33) will be altered, and the inequality $I_{C}<I_{T C}$ can no longer be ensured.

5. Simulation examples

A synthetic example representing a hypothetical process, with an arbitrary chosen internal data structure, is simulated for better interpretation and comparison of the modeling methodologies. The normal operation of the chosen process follows a sequence of four internal
states, which are represented by the following four points in the latent 374 space $\left(\mathbf{t}\right.$-scores): $\left\{\left(t_{1}^{0}, t_{2}^{0}\right)\right\}_{1 \ldots .}=\{(1,1),(1,3),(3,3),(3,1)\}$. The "multivar- 375 iate measurements" of the external variables, \mathbf{x} and \mathbf{y}, are generated by 376 adding zero-mean Gaussian random noises ($\boldsymbol{\varepsilon}_{i}, i=1 \ldots 4$) to the PLSR 377 correlation structure characterized by the arbitrarily-selected process 378 matrices \mathbf{P}, \mathbf{Q} and \mathbf{B}, as follows:

$$
\begin{align*}
& \begin{cases}\mathbf{t}=\mathbf{t}^{0}+\boldsymbol{\varepsilon}_{1}, & \boldsymbol{\varepsilon}_{1} \sim N\left(\mathbf{0}, 0.1^{2} \mathbf{I}_{2}\right), \\
\mathbf{u}=\mathbf{B t}+\boldsymbol{\varepsilon}_{2}, & \mathbf{B}=\operatorname{diag}(2,0.5), \\
\boldsymbol{\varepsilon}_{2} \sim N\left(\mathbf{0}, \sigma_{u}^{2} \mathbf{I}_{2}\right), & \sigma_{u}=0.03\end{cases} \\
& \begin{cases}\mathbf{x}=\mathbf{P t}+\boldsymbol{\varepsilon}_{3}, & \mathbf{P}=\left[\begin{array}{ll}
\mathbf{p}_{1} & \mathbf{p}_{2}
\end{array}\right], \\
\boldsymbol{\varepsilon}_{3} \sim N\left(\mathbf{0}, 0.05^{2} \mathbf{I}_{7}\right), \\
\mathbf{y}=\mathbf{Q u}+\boldsymbol{\varepsilon}_{4}, & \mathbf{Q}=\left[\begin{array}{ll}
\mathbf{q}_{1} & \mathbf{q}_{2}
\end{array}\right], \\
\boldsymbol{\varepsilon}_{4} \sim N\left(\mathbf{0}, 0.05^{2} \mathbf{I}_{3}\right),\end{cases} \tag{34}
\end{align*}
$$

with:

$$
\begin{aligned}
& \mathbf{p}_{i}=\mathbf{p}_{i}^{0} /\left\|\mathbf{p}_{i}^{0}\right\|,, \mathbf{p}_{1}^{0}=[1.5,0,2,1,0.5,0,2.5]^{\prime}, \quad \mathbf{p}_{2}^{0}=[0,2.5,0.5,-0.5,-1,1.5,0]^{\prime}, \\
& \mathbf{q}_{j}=\mathbf{q}_{j}^{0} /\left\|\mathbf{q}_{j}^{0}\right\|, \mathbf{q}_{1}^{0}=[1.5,0.5,1]^{\prime}, \quad \mathbf{q}_{2}^{0}=[0,-1,0.5]^{\prime} .
\end{aligned}
$$

Fig. 2a shows several realizations of the sequence of the four internal 384 states followed by the process. The datasets are obtained by collecting 385 36 observations of \mathbf{x} and \mathbf{y} into the matrices \mathbf{X} and \mathbf{Y}, respectively. 386

5.1. Comparison of the PLSR and PCA models

To visualize differences and analogies, the PLSR and PCA models are 388 compared. The PLSR model is fitted to centered data in order to identify 389 a centered sequence of the latent process. The selection of $A=2$ is de- 390 termined by monitoring the simultaneous deflation of \mathbf{X}_{a} and \mathbf{Y}_{a} [10]. In 391 this way, the errors regarding the "true" matrices \mathbf{Q}, \mathbf{B}, and \mathbf{P} are negli- 392 gible (note that the opposite signs of vectors \mathbf{p}_{2} and \mathbf{q}_{2} with respect to 393 those in the true loading vectors are not meaningful). Fig. 2b shows 394 the latent coordinates, (t_{1}, t_{2}) and (u_{1}, u_{2}), corresponding to \mathbf{x} and $\mathbf{y} 395$ PLSR-projections. Note that the \mathbf{t} and \mathbf{u} scores are correlated (as indicat- 396 ed by their similar alignment) and that the scatter plots are centered 397 versions of the true latent variables of Fig. 2a.

Fig. 2. Scatter plots for the \mathbf{t} and \mathbf{u} observations corresponding to: a) the true sequences of the internal states, b) the score sequences obtained by the PLSR model, and c) the score sequences obtained by two independent PCA models, one for \mathbf{X} and the other for \mathbf{Y}. The dash-dot and dash lines in the subfigure a) are the \mathbf{X}-PCA and \mathbf{Y}-PCA maximum variability directions, respectively.

On the other hand, X-PCA and Y-PCA models are independently fitted by using centered data, to illustrate the differences with the latent model identified by PLSR. Fig. 2c shows the scores estimated through independent PCA models for \mathbf{X} and \mathbf{Y}; i.e., the \mathbf{X} and \mathbf{Y} data projected in the \mathbf{X}-PCA and \mathbf{Y}-PCA directions, respectively. The figure suggests a lack of alignment (or correlation) between the \mathbf{t} (by X-PCA) and \mathbf{u} (by Y-PCA) scores. This is because \mathbf{X}-PCA looks for orthogonal maximum variability directions in \mathbf{X} (diagonal lines 1-3 and 2-4 in Fig. 2a), which are not correlated with the orthogonal maximum variability directions in \mathbf{Y} (lines $1^{\prime}-2^{\prime}$ and $1^{\prime}-4^{\prime}$, which are parallel to the square sides in Fig. 2a). By contrast, PLSR adjusts the \mathbf{X}-projecting directions so that the \mathbf{t} scores are correlated with \mathbf{u} scores (Fig. 2b). In summary, maximum variability directions (dash-dot lines) in X-PCA are 45° from the PLSR latent directions in \mathbf{X} (dot lines parallel to dash lines).

To further analyze the differences illustrated in Fig. 2, we resort to biplot representations [24]. A biplot is an effective tool for visualizing the magnitude and sign of the contribution of each variable to the first two or three principal components. Also, in this plot each observation is represented in terms of the corresponding scores. This provides a framework for understanding the displacements of the latent variables in relation to the original ones. Usually, the biplot representation imposes a sign convention, forcing the element with the largest magnitude in each loading vector to be positive.

Fig. 3a and b shows the PLSR biplot of \mathbf{X} and \mathbf{Y}, respectively; i.e., the latent coordinates of the \mathbf{x} and \mathbf{y} projections through \mathbf{R}^{\prime} and \mathbf{S}^{\prime}, respectively; and the directions (and magnitudes) of all the variables in these spaces. Fig. 3c shows the X-PCA biplot; i.e., the latent coordinates of the \mathbf{x} projections through \mathbf{V}^{\prime} for the same dataset \mathbf{X}, together with the contribution of each variable to the two principal components. The directions of the variables in Fig. 3c are quite different from those in the PLSR biplot of \mathbf{X} (Fig. 3a), because the maximum variability directions in \mathbf{X}-PCA are rotated 45° from the PLSR latent directions in \mathbf{X} (see Fig. 2). Therefore, the loading matrix \mathbf{R} is different from the loading matrix \mathbf{V}; and consequently their biplots are different too (compare Fig. 3a and c). By contrast, the principal components of \mathbf{Y} (Fig. 3d) and the PLSR-components of \mathbf{Y} (Fig. 3b) are similar since the directions of
maximum variability in \mathbf{Y} (given by $\mathbf{Y}-\mathrm{PCA}$) match the latent directions 435 in \mathbf{Y} that are correlated to the latent directions in \mathbf{X}. Therefore, the direc- 436 tions of the Y-PCA loading vectors $\left(\mathbf{w}_{a}\right)$ are quite similar to the 437 \mathbf{s}_{a}-directions and thus also their components (see Fig. 3b and d). 438

In order to illustrate the equivalence of the PLSR latent model re- 439 garding the YX-PCA latent model, their biplots are compared. Fig. 4a 440 shows the PCA biplot of $\mathbf{Z}=[\mathbf{Y} \mathbf{X}]$; and Fig. 4 b shows the biplot created 441 with analogous $\mathbf{P}_{\mathbf{Z}}^{c,}$ directions and $\mathbf{T}_{\mathbf{Z}}^{*}$ scores, as obtained from PLSR 442 (Eqs. (29) and (30)). The difference between $\mathbf{P}_{\mathbf{Z}}^{\prime}$ and $\mathbf{P}_{\mathbf{Z}}^{c \prime}$ is negligible, 443 and consequently the biplots are identical. Hence, all these results con- 444 tribute to support the claim that YX-PCA and PLSR provide analogous la- 445 tent models, which is in turn quite reasonable because both techniques 446 model the same dataset, even when they use different calibration proce- 447 dures. However, there is a key difference between YX-PCA and PLSR in 448 the estimation of the latent variables. The first method uses all the var- 449 iables (Eq. (8)), while the second one uses the inputs (Eq. (4)) or the 450 outputs (Eq. (5)) only. When a causal process is identified, a PLSR 451 model may be closer to the true system structure than a PCA model 452 [24]; however, the latter explains the causal relationships as correla- 453 tions (see Eq. (28)). Note that Fig. 4b coincides with the overlap of 454 Fig. 3a and b (after inversion of the sign of the latent variable t_{2}). 455

Fig. 5 shows the $\left(t_{1}, t_{2}\right)$ model plane in the $\left(y_{1}, y_{2}, y_{3}\right)$ space and the 456 dispersion of the observations around it. This plane was found by mini- 457 mizing the distances of the scatter observations to a common plane. The 458 directions of the variables x_{1}, \ldots, x_{7} are represented in relation to co- 459 linearity with the original variables y_{1}, y_{2}, and y_{3} (see Fig. 3a and b). 460 This representation includes all the variables present in $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$ in 461 order to illustrate the similarity found between YX-PCA and PLSR. 462 Note that Fig. 4 could be obtained by centering and projecting the obser- 463 vations and the variable directions of Fig. 5 on the plane model. 464

5.2. Comparison of the PLSR and PCA monitoring strategies

465

A frequent application of YX-PCA and PLSR consists on predicting y 466 from \mathbf{x}. For example, it is used in LV-MPC $[8,14]$ where once the 467

Fig. 3. Biplots based on: a) PLSR-components of $\mathbf{X}\left(\mathbf{R}^{\prime}\right)$. b) PLSR-components of $\mathbf{Y}\left(\mathbf{S}^{\prime}\right)$. c) Principal components of $\mathbf{X}\left(\mathbf{V}^{\prime}\right)$. d) Principal components of $\mathbf{Y}\left(\mathbf{W}^{\prime}\right)$.

b

Fig. 4. Biplot representations based on: a) principal components of $\mathbf{Z}=[\mathbf{Y} \mathbf{X}]\left(\mathbf{P}_{\mathbf{z}}^{\prime}\right)$. b) Analogous principal components of \mathbf{Z} obtained with the PLSR model ($\mathbf{P}_{\mathbf{Z}}^{c_{\mathbf{\prime}}}$).
$\hat{\mathbf{y}}=\mathbf{Q B R}^{\prime} \mathbf{x}$.
YX-PCA model (Eq. (20)) is available, then \mathbf{y} can be predicted from \mathbf{x} as follows [12]:
$\hat{\mathbf{y}}=\mathbf{P}_{\mathbf{y}}\left(\mathbf{P}_{\mathbf{x}}^{\prime} \mathbf{P}_{\mathbf{x}}\right)^{-1} \mathbf{P}_{\mathbf{x}}^{\prime} \mathbf{x}$.

Similarly, when LV-MPC is based on a PLSR model [15], then \mathbf{y} can be predicted from \mathbf{X} as follows (Eq. (10)):

According to Section 4.2, no meaningful differences would be expected when using an YX-PCA prediction model (Eq. (35)) or a PLSR prediction model (Eq. (36)) for estimating \mathbf{y}. Note that by analogy between $\mathbf{P}_{\mathbf{z}}$ (Eq. (20)) and $\mathbf{P}_{\mathbf{z}}^{b}$ (Eq. (28)), one obtains $\mathbf{P}_{\mathbf{y}} \equiv \sqrt{1 / 2 \mathbf{Q}} \operatorname{diag}$

Fig. 5. The bi-dimensional projection plane. The measurements of \mathbf{x} and \mathbf{y} projected by PLSR, and the measurements $\mathbf{z}=\left[\mathbf{y}^{\prime} \mathbf{x}^{\prime}\right]^{\prime}$ projected by PCA lie on this plane.
$\left(\left\|\mathbf{s}_{1}\right\| \cdots\left\|\mathbf{s}_{A}\right\|\right)$ and $\mathbf{P}_{\mathbf{x}} \equiv \sqrt{1 / 2} \mathbf{P} \operatorname{diag}\left(\left\|\mathbf{r}_{1}\right\| \cdots\left\|\mathbf{r}_{A}\right\|\right)$. Then, the PCA and PLSR 480 prediction matrices (Eqs. (35) and (36)) are analogous, i.e.:
$\mathbf{P}_{\mathbf{y}}\left(\mathbf{P}_{\mathbf{x}}^{\prime} \mathbf{P}_{\mathbf{x}}\right)^{-1} \mathbf{P}_{\mathbf{x}}^{\prime} \equiv \mathbf{Q} \operatorname{diag}\left(\left\|\mathbf{s}_{1}\right\| /\left\|\mathbf{r}_{1}\right\| \cdots\left\|\mathbf{s}_{A}\right\| /\left\|\mathbf{r}_{A}\right\|\right)\left(\mathbf{P}^{\prime} \mathbf{P}\right)^{-1} \mathbf{P}^{\prime}=\mathbf{Q B R}^{\prime}$.
483
However, as PLSR and YX-PCA utilize different algorithms, then a 484 numerical comparison was carried out to verify the equivalence of 485 both predictive models (Eq. (37)). To this effect, the process described 486 by Eq. (34) was independently adjusted through: a) the PLSR model 487 by using the PLSR-NIPALS algorithm, and b) the YX-PCA model by 488 using the NIPALS algorithm. Then, the goodness of fit of each calibration 489 algorithm was evaluated for decreasing signal-to-noise ratios, which is 490 simulated increasing the variance of $\boldsymbol{\varepsilon}_{2}$ (Eq. (34)). Table 1 shows the 491 Mean Squared Error (MSE) for the YX-PCA and PLSR methods, for in- 492 creasing degradations in the inner causal relationships (see σ_{u} in 493 Eq. (34)). Such MSEs are defined as: MSE $_{\mathbf{x}}=E\left[(\mathbf{x}-\hat{\mathbf{x}})^{\prime}(\mathbf{x}-\hat{\mathbf{x}})\right]$, MSE $_{\mathbf{y}}=494$ $E\left[(\mathbf{y}-\hat{\mathbf{y}})^{\prime}(\mathbf{y}-\hat{\mathbf{y}})\right]$, and $M S E_{\mathbf{z}}=E\left[(\mathbf{z}-\hat{\mathbf{z}})^{\prime}(\mathbf{z}-\hat{\mathbf{z}})\right]$. Table 1 shows that the 495 prediction errors $\left(M S E_{\mathbf{y}}\right)$ of both methods are similar for moderate deg- 496 radations even when the PCA calibration shows a smaller calibration 497 error $\left(M S E_{\mathbf{z}}\right)$.

498
From Table 1, the following conclusions are obtained: (i) since the 499 calibration error $M S E_{\mathbf{z}}<M S E_{\mathbf{y}}+M S E_{\mathbf{x}}$, then more precise estimates of 500 the latent variables are obtained through YX-PCA; and (ii) the PLSR- 501 NIPALS algorithm produces smaller prediction errors than NIPALS algo- 502 rithm, thus allowing better predictive model adjustments. It should be 503 noted that the PLSR-NIPALS algorithm is able to efficiently identify 504 quite degraded causal relationships (last row of Table 1).

Table 1
Comparison of goodness of fit and predictive ability of YX-PCA versus PLSR.

Internal perturbation		Method	Calibration error		Prediction error				
σ_{u}	$\frac{\operatorname{var}\left\{\left\\|\boldsymbol{\varepsilon}_{2}\right\\|^{2}\right\}}{\operatorname{var}\left\{\\|\mathbf{B} \boldsymbol{B}\\|^{2}\right\}}$		$M S E_{\mathbf{z}}$	$M S E_{\mathbf{x}}+M S E_{\mathbf{y}}$	$M S E_{\mathbf{y}}$				
0.00	0.00	PLSR	-	0.0271	0.0143				
		YX-PCA	0.0189	-	0.0143				
0.03	4.2310^{-4}	PLSR	-	0.0317	0.0194				
		YX-PCA	0.0206	-	0.0195				
0.30	4.2310^{-2}	PLSR	-	0.1890	0.1774				
		YX-PCA	0.0968	-	0.1798				
3.00	4.23	PLSR	-	12.3682	12.3576				
		YX-PCA	1.5263	-	105.017				

Table 2
Simulated scenarios of anomalies

Anomaly/fault	Location	Magnitude of the change/fault
1	$k=11$	$\Delta \mathbf{B}_{22}=0.25$
2	$k=19$	$\Delta \mathbf{p}_{2}=\left[\begin{array}{lll}0.28 & 0.0-0.070 .14-0.14\end{array}\right]^{\prime}$
3	$k=27$	$\Delta \mathbf{q}_{1}=[-0.05-0.05-0.1]^{\prime}$
4	$k=35$	$\Delta \mathbf{x}=\left[\begin{array}{lllll}0.3 & 0 & 0 & 0 & 0\end{array} 0.250\right]^{\prime}$ (multiple sensor fault)
5	$k=43$	$\Delta \mathbf{y}=[0.400]^{\prime}$ (single sensor fault)
6	$k=51$	$\Delta \mathbf{t}=[06]^{\prime}$

To verify the equivalences between the fault detection indices based on YX-PCA and PLSR (Section 4.3), the process was disturbed according to six anomalous scenarios (see Table 2): a) the anomalies 1, 2, and 3 were implemented by altering the process matrices; b) the sensor faults 4 and 5 were simulated by disturbing the measurements \mathbf{x} and \mathbf{y}; and c) the anomaly 6 consisted in adding up to \mathbf{t} (Eq. (34)) a change $\Delta \mathbf{t}$, such that the combined index is greater than the control limit. Each fault was simulated by affecting only one sample point (at a discrete time,
k); and immediately the anomaly was canceled from $k+1$ onwards. 514 These anomalies represented a hard test for evaluating the ability of 515 the PLSR and YX-PCA methods and allow displaying the relationships 516 between their statistics (Eqs. (32) and (33)).

Fig. 6 shows the time evolution of the combined detection indices 518 and of their component statistics for the two methods. In Fig. 6a (or 519 Fig. 6b), the alarm condition is triggered at a given sample k, when the 520 I_{C} (or $I_{T C}$) global index overpasses the $100(1-\alpha) \%$ confidence (control) 521 limit. The index I_{C} (or $I_{T C}$) proved to be effective for detecting all simu- 522 lated anomalies. The patterns of alarmed component statistics recorded 523 in Fig. 6b allowed an efficient characterization of each fault type and 524 could be used to diagnose the root causes [27]. Figs. 6a,and b can help to better interpret the 526 inequality $I_{T C}>I_{C}$ suggested in Section 4.3. Note that such inequality 527 was verified at five fault locations ($k=19,27,35,43,51$), while it failed 528 at $k=11$. Then, three different situations can be analyzed: (i) at 529 $k=35,43,51,\left\|\widetilde{\mathbf{y}}_{X}\right\| \rightarrow 0$, and hence Eq. (33) allows us to ensure $I_{T C}>I_{C} ; 530$ (ii) at $k=19,27, I_{T C}>I_{C}$ is still valid even when $\left\|\widetilde{\mathbf{y}}_{x}\right\|>0$, probably 531

b

Fig. 6. Temporal evolution of the combined indices and of their component statistics for the six simulated faults. a) PCA indices. b) PLSR indices.
because the new $I_{T C}$ term $S P E_{\mathbf{y} /} / \delta_{\mathbf{y} \times, \alpha}^{2}$ is lesser than $S P E_{\mathbf{x}} / \delta_{\mathbf{x}, \alpha}^{2}+S P E_{\mathbf{y}} / \delta_{\mathbf{y}, \alpha}^{2}$, and Eq. (33) is only slightly altered; and (iii) at $k=11, I_{C}>I_{T C}$ because $S P E_{\mathbf{y} x} / \delta_{\mathbf{y} x, \alpha}^{2}$ is the only significant term of $I_{T C}$, and Eq. (33) is no longer valid. On the other hand, at the location $k=51$ the exact equivalence (Eq. (32)) between the T^{2} based on YX-PCA and PLSR is verified (see $T_{P C A}^{2} / \tau_{\alpha}^{2}$ and $T_{P L S}^{2} / \tau_{\alpha}^{2}$ in Fig. 6a and b, respectively).

On the basis of the simulation results, it was verified that: i) if an YX-PCA or PLSR model is used for estimating latent variables, then it is advisable to use the YX-PCA model adjusted through the NIPALS algorithm (see Table 1); and ii) if the model is used for either output prediction or process monitoring, then the PLSR-NIPALS algorithm is preferable for the fitting task (see Table 1) and the PLSR approach for the monitoring strategy (see Fig. 6).

6. Conclusions

From a formal point of view, this work contributes to a better interpretation of two well-known multivariate statistical techniques: PCA and PLSR. Particularly, some geometric properties of the decomposition induced by PLSR of the \mathbf{X}-space and \mathbf{Y}-space relative to \mathbf{X}-PCA, \mathbf{Y}-PCA, YX-PCA, are revealed. The present proposal provides specific criteria for selecting PLSR or PCA as the more appropriate data treatment technique, according to the pursue objective of latent variable estimation, output prediction, or process monitoring.

Similarities between PCA and PLSR are rather intuitive and have somehow been disclosed in the literature. In particular, previous extensions of the PLSR modeling strategy provided us a formal framework to reveal novel underlying equivalences. In this sense, new PLSR geometric properties and its relation with PCA are defined, and also equivalences and differences between the use of PLSR and PCA for modeling and monitoring multivariate processes are disclosed.

To the best of our understanding, three main features can be confirmed through the analysis reported in this work. 1) PLSR and YX-PCA present similar capacity for fault detection, while PLSR shows a better diagnosing capability, and hence the last one is recommended for process monitoring. 2) PLSR is more reliable for adjusting a model for output prediction, like in soft sensor development. 3) YX-PCA is more precise for estimating latent variables, and hence it is recommended for the analysis of latent patterns imbedded in datasets. In fact, the last two points confirm the traditional usage in the specialized literature.

Acknowledgments

The authors are grateful for the financial support received from CONICET, MinCyT, Universidad Nacional del Litoral, and Universidad Tecnológica Nacional (Argentina).

Appendix A. Proofs of the subsection 4.1

In order to find the α_{i}^{a} coefficients in Eq. (18), let us assume that $\widetilde{\mathbf{U}}=\mathbf{0}$ in Eq. (3), i.e. $\mathbf{U}=\mathbf{T B}$. Then, multiplying Eq. (6) by $\mathbf{S B}^{-1}$ and recalling that $\mathbf{Q}^{\prime} \mathbf{S}=\mathbf{I}$, the following expression is obtained for each a-th column (or each \mathbf{r}_{a}):
$\mathbf{Y} \mathbf{s}_{a} b_{a}^{-1}=\mathbf{X} \mathbf{r}_{a}$.
By substituting Eq. (17) into Eq. (A1) the $\alpha_{i}^{a \prime}$'s can be solved as follows:

$$
\begin{equation*}
\left[\alpha_{1}^{a} \ldots \alpha_{A}^{a}\right]^{\prime}=\mathbf{V}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \mathbf{s}_{a}\left(b_{a}\left\|\mathbf{r}_{a}\right\|\right)^{-1}=\boldsymbol{\Lambda}_{\mathbf{x}}^{-1} \mathbf{x}_{\mathbf{x}}^{\prime} \mathbf{u}_{a}\left(b_{a}\left\|\mathbf{r}_{a}\right\|\right)^{-1} \tag{A2}
\end{equation*}
$$

Since in real cases $\widetilde{\mathbf{U}} \neq \mathbf{0}$, a term $-\widetilde{\mathbf{u}}_{a}$ is added to \mathbf{u}_{a} in Eq. (A2) reducing the correlation coefficients between \mathbf{u}_{a} and the $\mathbf{t}_{i}^{\mathbf{x}^{\prime}} \mathrm{s}$ (where $i=1 \ldots A$). However, for a good PLSR fit, the a-th internal regression error follows a

Gaussian distribution with mean zero and variance much less than the 589 variance of the a-th latent variable. In such case, $\widetilde{\mathbf{u}}_{a}$ does not significantly 590 affect the coefficients (Eq. (A2)). In summary, for an acceptable fit, 591 Eq. (A2) allows estimating the $\alpha_{i}^{a \prime} \mathrm{~S}$ with enough accuracy. 592

In order to deduce Eq. (19), notice that $\mathbf{p}_{a}=\mathbf{X}_{a}^{\prime} \mathbf{X}_{a} \mathbf{r}_{a} /\left\|\mathbf{X}_{a}^{\prime} \mathbf{X}_{a} \mathbf{r}_{a}\right\|, \mathbf{X}_{a}^{\prime} \mathbf{X}_{a}$ $\mathbf{r}_{a}=\mathbf{X}^{\prime} \mathbf{X r}_{a}=\left\|\mathbf{r}_{a}\right\| \sum_{i=1}^{A} \lambda_{i}^{\chi} \alpha_{i}^{a} \mathbf{v}_{i}$ [27] and $\left\|\mathbf{v}_{a}\right\|=\left\|\mathbf{p}_{a}\right\|=1$, then the angle 594 $\angle\left(\mathbf{v}_{a}, \mathbf{p}_{a}\right)$ can be expressed as follows:

$$
\begin{align*}
\angle\left(\mathbf{v}_{a}, \mathbf{p}_{a}\right) & =\cos ^{-1}\left[\mathbf{v}_{a}^{\prime} \mathbf{p}_{a}\right] \\
& =\cos ^{-1}\left[\frac{\mathbf{v}^{\prime} \sum_{i=1}^{A} \lambda_{i}^{x} \alpha_{i}^{a} \mathbf{v}_{i}}{\sqrt{\left(\sum_{i=1}^{A} \lambda_{i}^{x} \alpha_{i}^{a} \mathbf{v}_{i}^{\prime}\right)\left(\sum_{i=1}^{A} \lambda_{i}^{x} \alpha_{i}^{a} \mathbf{v}_{i}\right)}}\right] \\
& =\cos ^{-1}\left[\frac{\lambda_{a}^{x} \alpha_{a}^{a}}{\left.\sqrt{\sum_{i=1}^{A}\left(\lambda_{i}^{x}\right)^{2}\left(\alpha_{i}^{a}\right)^{2}}\right] .}\right. \tag{A3}
\end{align*}
$$

Appendix B. PLSR-decomposition in relation to Y-PCA

Let us represent the Y-PCA decomposition by:
$\mathbf{Y}=\mathbf{U}_{\mathbf{y}} \mathbf{W}^{\prime}, \quad \mathbf{U}_{\mathbf{y}}=\left[\mathbf{u}_{1}^{\mathbf{y}} \ldots \mathbf{u}_{A}^{\mathbf{y}}\right], \quad \mathbf{W}=\left[\mathbf{w}_{1} \ldots \mathbf{w}_{A}\right], \quad A=\operatorname{rank}(\mathbf{Y}) \leq p,(\mathrm{~B} 1)$
where $\mathbf{w}_{a}(a=1 \ldots A)$ are the loading vectors and $\mathbf{u}_{a}^{\mathbf{y}}$ the associated 600 scores. Then, a loading vector \mathbf{s}_{a} of PLSR is written as linear combination 602 of the \mathbf{Y}-PCA vectors \mathbf{w}_{a}; i.e.,

$$
\begin{equation*}
\mathbf{s}_{a}=\left\|\mathbf{s}_{a}\right\| \sum_{i=1}^{A} \beta_{i}^{a} \mathbf{w}_{i}=\left\|\mathbf{s}_{a}\right\| \mathbf{W}\left[\beta_{1}^{a} \ldots \beta_{A}^{a}\right]^{\prime} \quad(a=1 \ldots A), \tag{B2}
\end{equation*}
$$

where β_{i}^{a} are such that $\sum_{i=1}^{A}\left(\beta_{i}^{a}\right)^{2}=1$; and hence $\angle\left(\mathbf{w}_{a}, \mathbf{s}_{a}\right)=\cos ^{-1}\left(\beta_{i}^{a}\right)$. 60 g By substituting Eq. (B2) into Eq. (A1) the $\beta_{i}^{a r}$ s are obtained as follows: 606

$$
\begin{equation*}
\left[\beta_{1}^{a} \ldots \beta_{A}^{a}\right]^{\prime}=\mathbf{W}^{\prime}\left(\mathbf{Y}^{\prime} \mathbf{Y}\right)^{-1} \mathbf{Y}^{\prime} \mathbf{X r}_{a} b_{a}\left\|\mathbf{s}_{a}\right\|^{-1}=\boldsymbol{\Lambda}_{\mathbf{y}}^{-1} \mathbf{U}_{\mathbf{y}}^{\prime} \mathbf{t}_{a} b_{a}\left\|\mathbf{s}_{a}\right\|^{-1} . \tag{B3}
\end{equation*}
$$

Therefore, the $\beta_{i}^{a r}$'s determine the \mathbf{s}_{a}-direction and are given by:

$\beta_{i}^{a}=\left(\lambda_{i}^{y}\right)^{-1} \mathbf{u}_{a}^{y^{\prime}} \mathbf{t}_{a} b_{a}\left\|\boldsymbol{s}_{a}\right\|^{-1} \quad(i=1 \ldots A)$.
where λ_{i}^{y} is the i-th eigenvalue nonzero of the covariance matrix 610 $\mathbf{Y}^{\prime} \mathbf{Y}=\mathbf{W} \mathbf{\Lambda}_{\mathbf{y}} \mathbf{W}^{\prime}$, associated with eigenvector \mathbf{W}_{i} (see Eq. (B1)). Besides, 612 the angles between the loading vectors \mathbf{w}_{a} and \mathbf{q}_{a} are given by:
$\angle\left(\mathbf{w}_{a}, \mathbf{q}_{a}\right)=\cos ^{-1}\left[\frac{\lambda_{a}^{y} \beta_{a}^{a}}{\sqrt{\sum_{i=1}^{A}\left(\lambda_{i}^{y}\right)^{2}\left(\beta_{i}^{a}\right)^{2}}}\right] \quad(a=1 \ldots A)$.
The Eq. (B5) is deduced in a similar way to Eq. (A3). Note also that 616 the Eqs. (B2), (B4) and (B5) are interpreted in similar manner to 617 Eqs. (17)-(19).

References

[1] I.T. Jolliffe, Principal Component Analysis, 2nd edition Springer-Verlag, 2002.
[2] A. Höskuldsson, PLS regression methods, J. Chemom. 2 (1988) 211-228.
[3] S.J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annu. 622 Rev. Control. 36 (2012) 220-234.
Rev. Control. 36 (2012) 220-234. 623
4] M. Stone, R.J. Brooks, Continuum regression: cross-validated sequentially construct- 624 ed prediction embracing ordinary least squares, partial least squares and principal 625 components regression, J. R. Stat. Soc. 52 (1990) 237-269.
[5] P.M. Lang, J.M. Brenchley, R.G. Nieves, J.H. Kalivas, Cyclic subspace regression, 627 J. Multivar. Anal. 65 (1998) 58-70.
[6] H.A.L. Kiers, A.K. Smilde, A comparison of various methods for multivariate regres- 629639
[7] J. Gabrielsson, N.-O. Lindberg, T. Lundstedt, Review: multivariate methods in pharmaceutical applications, J. Chemom. 16 (2002) 141-160.
[8] M. Golshan, J.F. MacGregor, M.J. Bruwer, P. Mhaskar, Latent variable model predictive control (LV-MPC) for trajectory tracking in batch processes, J. Process Control 20 (2010) 538-550.
[9] T. McAvoy, Model predictive statistical process control of chemical plants, Ind. Eng. Chem. Res. 41 (2002) 6337-6344.
[10] J.L. Godoy, R.J. Minari, J.R. Vega, J.L. Marchetti, Multivariate statistical monitoring of an industrial SBR process. Soft-sensor for production and rubber quality, Chemom. Intell. Lab. Syst. 107 (2011) 258-268.
[11] H.H. Yue, S.J. Qin, Reconstruction-based fault identification using a combined index, Ind. Eng. Chem. Res. 40 (2001) 4403-4414.
12] P. Nelson, P. Taylor, J. MacGregor, Missing data methods in PCA and PLSR: score calculations with incomplete observations, Chemom. Intell. Lab. Syst. 35 (1996) 45-65.
[13] A. AlGazzawi, B. Lennox, Model predictive control monitoring using statistics, J. Process Control 19 (2009) 314-327.

14] J. Flores-Cerrillo, J. MacGregor, Latent variable MPC for trajectory tracking in batch processes, J. Process Control 15 (2005) 651-663.
[15] D. Laurí, J.A. Rossiter, J. Sanchis, M. Martínez, Data-driven latent-variable model-based predictive control for continuous processes, J. Process Control 20 (2010) 1207-1219.
[16] J.M. Lee, C.K. Yoo, I.B. Lee, Statistical process monitoring with independent component analysis, J. Process Control 14 (2004) 467-485.
[17] G. Li, S.J. Qin, D. Zhou, Geometric properties of partial least squares for process monitoring, Automatica 46 (2010) 204-210.
[18] A.L. Pomerantsev, O.Y. Rodionova, Process analytical technology: a critical view of 656 the chemometricians, J. Chemom. 26 (2012) 299-310.

657
[19] T. Kourti, Application of latent variable methods to process control and multivariate 658 statistical process control in industry, Int. J. Adapt. Control Sig. Process. 19 (2005) 659 213-246.
[20] J. MacGregor, A. Cinar, Monitoring, fault diagnosis, fault-tolerant control and optimi- 661 zation: data driven methods, Comput. Chem. Eng. 47 (2012) 111-120.
[21] S. Yin, S.X. Ding, A. Haghani, H. Hao, P. Zhang, A comparison study of basic 663 data-driven fault diagnosis and process monitoring methods on the benchmark 664 Tennessee Eastman process, J. Process Control 22 (2012) 1567-1581. 665
[22] T. Mehmood, K.H. Liland, L. Snipen, S. Sæbø, A review of variable selection methods 666 in partial least squares regression, Chemom. Intell. Lab. Syst. 118 (2012) 62-69. 667
[23] S. Wold, M. Sjöström, L. Eriksson, PLS-regression: a basic tool of chemometrics, 668 Chemom. Intell. Lab. Syst. 58 (2001) 109-130.
[24] H. Martens, T. Naes, Multivariate Calibration, John Wiley \& Sons, 1989. 670
[25] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for monitoring, Automatica 671 45 (2009) 1593-1600. 672
[26] P. Geladi, B. Kowalski, Partial least-squares regression: a tutorial, Anal. Chim. Acta. 673 185 (1986) 1-17.
[27] J.L. Godoy, J.R. Vega, J.L. Marchetti, A fault detection and diagnosis technique for 675 multivariate processes using a PLSR-decomposition of the measurement space, 676 Chemom. Intell. Lab. Syst. 128 (2013) 25-36. 677
[28] G. Box, Some theorems on quadratic forms applied in the study of analysis of vari- 678 ance problems, I. Effect of inequality of variance in the one-way classification, 679 Ann. Math. Stat. 25 (1954) 290-302.

[^0]: * Corresponding author at: INTEC (CONICET and Universidad Nacional del Litoral), Güemes, 3450 (3000) Santa Fe, Argentina. Tel.: + 54342 4559175; fax: + 543424550944 .

 E-mail address: jlgodoy@santafe-conicet.gov.ar (J.L. Godoy).

[^1]: ${ }^{1}{ }^{1}$ In comparison to Ref. [27], the following equivalent notations are used: $\widetilde{\mathbf{Y}}_{x} \equiv \widetilde{\mathbf{Y}}_{1}, \widetilde{\mathbf{Y}} \equiv$ $\widetilde{\mathbf{Y}}_{2}$.

