
U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

1 Relationships between PCA and PLS-regression

2 José L.Q1 Godoy a,b,⁎, Jorge R. Vega a,c, Jacinto L. Marchetti a

3
a INTEC (CONICET and Universidad Nacional del Litoral), Güemes, 3450 (3000) Santa Fe, Argentina

4
b FRP-UTN (Facultad Regional Paraná, Universidad Tecnológica Nacional), Almafuerte, 1033 (3100) Paraná, Argentina

5
cQ2 FRSF-UTN (Facultad Regional Santa Fe, Universidad Tecnológica Nacional), Lavaisse, 610 (3000), Santa Fe Argentina

6

7

a b s t r a c t

Q3

a r t i c l e i n f o

8 Article history:

9 Received 22 January 2013

10 Received in revised form 28 October 2013

11 Accepted 20 November 2013

12 Available online xxxx

131415

16 Keywords:

17 PLS-regression

18 PCA

19 Latent models

20 Prediction models

21 Fault detection indices

22This work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares

23Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivar-

24iate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the

25PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the

26models derivedwith PLSR andYX-PCA (i.e., PCAof the joint input–output variables) are presented; and regarding

27to processmonitoring applications, the specific PLSR andYX-PCA fault detection indices are compared.Numerical

28examples are used to illustrate the relationships between latent models, output predictive models, and fault

29detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with

30regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for

31enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the

32fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are

33given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have

34similar capacity for fault detection, but PLSR is recommended for processmonitoring because it presents a better

35diagnosing capability; 2) PLSR ismore reliable for output prediction purposes (e.g., for soft sensor development);

36and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.

37© 2013 Published by Elsevier B.V.
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40

41

42 1. Introduction

43 Principal Component Analysis (PCA) [1] and Partial Least Squares

44 Regression (PLSR) [2] techniques allow the numerical adjustment of a

45 linear model for describing the main relationships among process

46 variables. These techniques are especially useful for reducing high-

47 dimension multivariate systems that include collinear variables,

48 thus minimizing the problems associated with the treatment of ill-

49 conditioned datasets [3]. As ordinary least squares andprincipal compo-

50 nents regression, PLSR can also be considered as a particular case of

51 other more general regression approaches [4,5].

52 In recent years, many studies have shown how PCA and PLSR can

53 successfully be used for calibration of multivariate models [6,7], control

54 of batch processes [8], control of quality variables that cannot be mea-

55 sured online [9], development of soft-sensors [10], detection of faults

56 and process anomalies [11], treatment of missing values in the dataset

57 [12],monitoring the performance of industrialmodel-predictive control

58 systems [13], and latent variable model predictive control (LV-MPC)

59 [8,14,15].

60 Several multivariate techniques, such as PCA [1] and Independent

61 Component Analysis (ICA) [16], are based on the underlying correlation

62among variables only, while PLSR is also adequate to explicitly expose

63the existence of causal relationships [2,17]. For instance, PLSR is often

64used in chemometrics applications to infer process causality from ex-

65perimental data [18]. Based on these techniques, the processmonitoring

66strategies initially fit the latent variable models to later define the fault

67detection indices. Today, such strategies have remarkable possibilities of

68industrial applications [7,19].

69In a multivariate process, input measurements (X) are typically

70associatedwith recipe conditions,manipulated variables, undesired dis-

71turbances, etc.;while outputmeasurements (Y) are normally associated

72to production and quality variables. In particular, for monitoring varia-

73tions and abnormal situations with the input measurements (X) only,

74a PCA decomposition of theX space (X-PCA) can be performed. Howev-

75er, a more important objective of process monitoring is to ensure good

76product quality when this can be impacted by the process operating

77conditions. In general, the quality variables (Y) are affected by process

78conditions that can be partially disclosed by themeasuredX-data. Addi-

79tionally, some Y variables are often difficult to measure, or are available

80with significant measurement delays. For monitoring changes in vari-

81ables that are relevant to the product quality it seems convenient to per-

82form PLSR decomposition of the X-space; this is because PLSR produces

83an output-conditioned decomposition of the X-space, while X-PCA pro-

84duces an orthogonal decomposition. PLSR has been widely used for

85monitoring complex industrial processes where the quality variables

86are important [3]; however, more details seem necessary to make
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87 clear how Y affects the decomposition of the X-space, and the outcome

88 of themonitoring task. Besides, the relationships between PCA and PLSR

89 have not been formally established so far, as suggest recent review arti-

90 cles where these two techniques are presented as completely different

91 [3,20,21].

92 This paper first investigates some properties and analogies of PLSR

93 and PCA as multivariate statistical techniques, and then recommends

94 which of them would be more appropriate for latent pattern analysis,

95 output prediction, ormonitoring purposes. The paper is organized as fol-

96 lows: Section 2 summarizes the modeling strategies based on PLSR and

97 YX-PCA (i.e., PCA of the joint input–output variables). Section 3 describes

98 and compares the space decompositions and the fault detection indices

99 based on PLSR and YX-PCA. In Section 4, both modeling techniques are

100 compared. In particular, Section 4.1 describes the geometric properties

101 and the decomposition structure of PLSR in relation to X-PCA and Y-

102 PCA. Section 4.2 describes some analogies between PLSR and YX-PCA

103 models. In Section 4.3, the fault detection indices of bothmodeling tech-

104 niques are compared. For a better comprehension, Section 5 includes nu-

105 merical examples that illustrate the analysis and present some

106 simulation tests where the analogies and differences are visualized and

107 discussed. Finally, the main conclusions are presented in Section 6.

108 2. Latent variable modeling by PLSR and YX-PCA

109 A process with collinear variables can be modeled through YX-PCA,

110 without differentiating outputs from inputs. Alternatively, the same

111 dataset can be analyzed by PLSR, which explicitly considers the exis-

112 tence of intrinsic causal relationships among process variables. Also,

113 PLSR allows the identification and subsequent elimination from the

114 original dataset of interfering input variables to get an improved

115 model [10,22]. Therefore, we might expect that the PLSR technique

116 yields a model closer to the intrinsic structure of a multi-input multi-

117 output process [6].

118 Consider a process with m measured input variables plus p mea-

119 sured output variables. Assume that N measurements of each variable

120 are collected while the process is operating under normal conditions.

121 In order to build a model, the N multivariate measurements are ar-

122 ranged into a predictor matrix X = [x1 … xN]′ (N × m) consisting of N

123 samples of m variables per sample, and a response matrix Y = [y1 …

124 yN]′ (N × p) with N samples of p variables per sample. Then, PLSR can

125 be used to find a regression model between the measurement vectors

126 x = [x1…xm]′ and y = [y1…yp]′. This technique produces a projection

127 of X and Y into low-dimension spaces defined by A latent variables

128 which are then regressed [23,24].

129 Alternatively, the same multivariate process can be modeled by ap-

130 plying PCA to all input and output variables together, as a single dataset.

131 In other words, given a data matrix Z = [Y X] = [z1 … zN]′

132 (N × (p + m)), consisting of N samples of p + m variables, PCA can

133 be used to find a latent model of Z that describes the correlations

134 among the variables included in the vector z = [y′ x′]′. Let us assume

135 that this PCA approach produces a projection of Z into a space with

136 the same low-dimension A as determined when modeling through

137 PLSR. Notice that this alternative space of latent variables should also

138 explain the underlying correlation between Y and X [11,24,25].

139 2.1. Extended PLSR modeling

140 The PLSR model is typically derived by the application of the PLSR-

141 NIPALS algorithm [26], and produces one internal and two external

142 models. The two external models respectively decompose X and Y

143 into score vectors (ta and ua), loading vectors (pa and qa), and residual

144 error matrices (eX and eY), as follows [26]:

X ¼ TP
′
þ eX; P ¼ p1…pA½ #;T ¼ t1…tA½ #; ð1Þ

145146
Y ¼ UQ

′
þ eY2; Q ¼ q1…qA½ #;U ¼ u1…uA½ #; ð2Þ

147148where the matrices T and U are orthogonal by columns. In the internal

149model, these score matrices are related through the following regres-

150sion model [26]:

U ¼ TBþ eU; B ¼ diag b1…bAð Þ; U¼ ul…uA½ #: ð3Þ

151152

153Call R and S the pseudo-inverses of P′ and Q′ respectively, where

154P′R = I and Q′S = I. Then, T and U can be calculated from the original

155data X and Y respectively, as follows [27]:

T ¼ XR; R ¼ r1…rA½ #; ð4Þ

156157
U ¼ YS; S ¼ s1…sA½ #: ð5Þ

158159

160Since the row space of eX (Eq. (1)) belongs to the null space of R, then

161eXR ¼ 0. Similarly, eY (Eq. (2)) belongs to the null space of S, and conse-

162quentlyeYS ¼ 0. Hence, by combining Eqs. (2)–(4), the following decom-

163position is obtained:

Y ¼ XRBQ
′
þ eUQ ′

þ eY ¼ Ŷ þ eYx þ
eY; ð6Þ

164165where Ŷ is the X-based output prediction and eYx is the error originated

166by the internal regression. This description has been called the “extend-

167ed PLSR modeling” [27]1 because the projection of Y to U (Eq. (5)) was

168added, which induces the decomposition of the prediction error in two

169terms: eYx and
eY.

1702.2. YX-PCA modeling

171The YX-PCA modeling alternative (typically obtained through the

172NIPALS algorithm [24,26]) produces a latent model that decomposes

173Z = [Y X] into score vectors (ta
z), loading vectors (pa

z), and residual

174errors (eZ), as follows [11]:

Z ¼ TzPz þ
eZ; Tz¼ t

z

l…t
z

A

! "
; Pz ¼ p

z
l…p

z
A

! "
; ð7Þ

175176where Tz is orthogonal by columns and Pz is orthonormal by columns

177(i.e., Pz′Pz = I). The scores Tz can be represented in terms of the original

178data Z as follows:

Tz ¼ ZPz ¼ Y X½ #
Py

Px

# $
¼ YPy þ XPx; ð8Þ

179180since the row space of eZ (Eq. (7)) belongs to the null space of Pz, hence

181eZPz ¼ 0. The matrix Pz unambiguously defines the decomposition of Z

182as follows: Z is projected to the latent space through Pz (Eq. (8)), and

183it is reconstructed by means of Pz′ (Eq. (7)). In summary, PCA involves

184the decomposition of the complete data set Z along the directions of

185maximum variability.

1863. Process monitoring based on latent variable models

187Consider an industrial process operating around the desired condi-

188tions. Then, if a sufficiently large amount of measurements of the most

189important variables is available, the correlation structure underlying in

190the measured data can be reasonably described by PCA or PLSR data

191processing techniques. These modeling alternatives decompose the

192space of measured data into subspaces, and then the process anomalies

193or faults can be detected bymonitoring these subspaces. Typically, spe-

194cific functions like the squared prediction error (SPE), the Hotelling's T2

195and some combined forms can be used as indices to alert about the pres-

196ence of possible anomalies during the process operation [3,20]. An

197alarm signal typically appears when an index exceeds its predefined

1 In comparison to Ref. [27], the following equivalent notations are used: eYx ≡ eY1; eY ≡
eY2 .
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198 control limit. In this section we summarize these space decompositions

199 and fault detection indices originated from both, PLSR and YX-PCA.

200 3.1. Fault detection indices induced by PLSR

201 Once the extended PLSR model is available, the following decompo-

202 sition of new data samples x and y is obtained [27]:

x ¼ x̂ þ ex; x̂ ¼ PR
′
x; ex ¼ I−PR

′
& '

x; ð9Þ

203204

y ¼ ŷ þ eyx þ ey; ŷ ¼ QBR
′
x; eyx ¼ QS

′
y−ŷ; ey ¼ I−QS

′
& '

y; ð10Þ

205206 where x̂ and ex are oblique projections of x; ŷ and eyx denote the

207 prediction and prediction error, respectively; and ey is the oblique pro-

208 jection of y on the residual subspace. These terms can be measured by

209 the following four non-overlapped indices:

T
2
PLS ¼ Λ

−1=2
R

′
x̂

(((
(((
2
; SPEx ¼ ex

(( ((2; SPEyx ¼ eyx
(( ((2; SPEy ¼ ey

(( ((2;

ð11Þ

210211 where T2 is the score distance, the three SPEs are Euclidean distances to

212 themodel, and Λ = diag(λ1…λA), with λa being the estimated variance

213 of the a-th latent variable ta in the score vector t ¼ R′x̂. Then, these four

214 statistics are combined into a unified detection index, given by

ITC ¼
T2
PLS

τ2α
þ
SPEx
δ2x;α

þ
SPEyx

δ2yx;α
þ
SPEy

δ2y;α
¼ y

′
x

′

h i
ΦPLSR

y
x

# $
; ð12Þ

215216 where τα
2 , δx,α

2 , δyx,α
2 , and δy,α

2 are the control limits [27]. The vector

217 arrangement on the right of Eq. (12) is derived from Eqs. (9)–(11) to

218 explicitly show that the resulting index depends on the extended vector

219 [y′ x′]′.

220 3.2. Fault detection indices induced by YX-PCA

221 An YX-PCA model induces on new data sample z = [y′ x′]′ the

222 following decomposition [11]:

z ¼ ẑþ ez; ẑ ¼ PzP
′

zz; ez ¼ I−PzP
′

z

& '
z ð13Þ

223224 where ẑ and ez are the orthogonal projections of z. These terms can be

225 measured through

T
2
PCA ¼ Λ

−1=2
z P

′

z ẑ
(((

(((
2
; SPEz ¼ ez

(( ((2 ð14Þ

226227 where Λz = diag(λ1
z…λA

z) and λa
z (a = 1…A) is the estimated variance

228 of the a-th latent variable ta
z of the score vector tz ¼ P′

z ẑ. Then, these

229 two statistics are combined in a unique detection index that maintains

230 the same structure with Eq. (12), as follows:

IC ¼
T2
PCA

τ2α
þ
SPEz
δ2z;α

¼ z
′
ΦPCAz ¼ y

′
x

′

h i
ΦPCA

y
x

# $
: ð15Þ

231232

233 The control limits of these statistics (TPCA
2 , SPEz and IC) are described

234 elsewhere [25].

235 4. Relationships between PCA and PLSR

236 4.1. Geometric relationships between PLSR and X-PCA plus Y-PCA

237 In this section, the geometric interpretation of the PLSR-

238 decomposition is described in relation to X-PCA and Y-PCA. In particu-

239 lar, the effect of Y on the PLSR-decomposition of the X-space can be re-

240 vealed by comparing with the decomposition of X-PCA. Section 2.1

241showed that the PLSR-decomposition of X into the model and residual

242subspaces (SMX and SRX, respectively) is defined by the matrices R and

243P, i.e., the matrix X is projected onto the latent space by R (Eq. (4)),

244while the modeled part is reconstructed by P′ (Eq. (1)). These projec-

245tions and reconstructions induce the angles ϕa (a = 1…A) between

246the vectors pa and ra, which are generally non-zero [17]. This is a direct

247consequence of the PLSR modeling procedure that forces all the pa and

248ra to yield the best description of Y.

249Let us now represent the X-PCA decomposition by

X ¼ TxV
′
; Tx ¼ t

x
1…t

x
A

! "
; V ¼ v1…vA½ #; A ¼ rank Xð Þ≤m; ð16Þ

250251where vi (i = 1…A) are the eigenvectors associated with the nonzero

252eigenvalues λ1
x ≥ ⋯ ≥ λA

x of the covariance matrix X′X = VΛxV′, with

253Λx = diag(λ1
x…λA

x).

254For a hypothetical process, Fig. 1 represents the model subspace SMX

255spanned by the loading vectorspa, ra or va. The anglesψa (a = 1…A) be-

256tween the vectors va and ra represent the difference between theX-PCA

257and PLSR decompositions of X. Note that any vector ra can be written as

258a linear combination of the X-PCA vectors va, as follows:

ra ¼ rak k
XA

i¼1

α
a
i vi ¼ rak kV α

a
1…α

a
A

! "′
a ¼ 1…Að Þ; ð17Þ

259260where αi
a are weight coefficients satisfying ∑

A

i¼1
α
a
i

, -2
¼ 1 and hence

261αa
a = cos ψa. The α i

a's determine the ra-direction and are given by

262(see proof in Appendix A):

α
a
i ¼ λ

x
i

, -−1
t
x
i
′
ua ba rak kð Þ

−1
i ¼ 1…Að Þ: ð18Þ

263264

265Eq. (18) shows that eachαi
a is the correlation coefficient between the

266i-th principal component ofX (inX-PCA) and the a-th PLSR-component

267of Y. Furthermore, for a better interpretation of Fig. 1, note that the

268angles between the loading vectors va and pa are given by (see proof

269in Appendix A):

∠ va;pað Þ ¼ cos
−1

λ
x
aα

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XA

i¼1

λ
x
i

, -2
α
a
i

, -2
vuut

2
6664

3
7775≥ cos

−1
α
a
a

, -
¼ ψa; a ¼ 1…Að Þ:

ð19Þ

270271

272Eq. (19) shows that each angle∠ (va,pa) increases when the λa
x's be-

273come more different, i.e., when the X-covariance becomes more ellip-

274soidal. Also, if all λa
x's are equal, then ∠ (va,pa) = ψa and ϕa = 0.

275Additionally, note that if ra becomes an eigenvector of X′X, then

276Eq. (17) yields: α i
a = 0 (i ≠ a) and α a

a = 1, in which case ψa = 0

277and pa = ra = va.

278Concerning the relations between PLSR and Y-PCA, recall that the

279PLSR-NIPALS algorithm maximizes the covariance among the compo-

280nents present in the X and Y spaces. Therefore, X affects the PLSR-

281decomposition of Y as in the previous case (see Appendix B).

282In summary, when the PLSR-components of Y (or X) are strongly

283correlated with the principal components of X (or Y), then the PLSR-

284and PCA-decompositions ofX (or Y) are similar; otherwise such decom-

285positions might be quite different.

2864.2. Relationships between PLSR and YX-PCA models

287Consider first the YX-PCA model of Eqs. (7) and (8) expressed in

288terms of a single sample z = [y′ x′]′, as follows:

ẑ ¼ Pztz ¼
Py

Px

# $
tz ¼

Py

Px

# $
P

′

y P
′

x

h i
y
x

# $
: ð20Þ

289290
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291 Now, let us derive an analogous model using the PLSR matrices for

292 the same number of latent variables. The PLSR model of Eqs. (1)–(3)

293 can be written in terms of the new measurements as follows:

x ¼ Ptþ ex; ð21Þ

294295
y ¼ Quþ ey; ð22Þ

296297
u ¼ Btþ eu ð23Þ

298299 where the latent vectors of Eqs. (4) and (5) are given by:

t ¼ R
′
x; u ¼ S

′
y: ð24Þ

300301

302 FromEqs. (9) and (10), the PLSR estimation of the augmented vector

303 [y′ x′] from t is given by:

ŷ
x̂

# $
¼

QB
P

# $
t: ð25Þ

304305

306 From Eqs. (23) and (24), the vector t can be connected with vectors

307 x and y, as follows:

t ¼ ω B
−1

S
0
y−B

−1eu
& '

þ 1−ωð ÞR
0
x ¼ ωB

−1
S
0
1−ωð ÞR

0
h i

y
x

# $
−ωB

−1eu;

ð26Þ

308309 with a weighting factor ω b 1. By substituting Eq. (26) into Eq. (25),

310 one obtains:

ŷ
x̂

# $
¼

QB
P

# $
ωB

−1
S
0

1−ωð ÞR
0

h i
y
x

# $
−ω

QB
P

# $
B
−1eu; ð27Þ

311312

313 In order to get a closer comparison betweenEqs. (20) and (27), let us

314 assume an ideal PLSR model with an almost exact internal regression

315 (Eq. (23)); i.e., with the rather infrequent condition eu→0 . Then,

316 Eq. (27) can be rewritten as follows (for simplicity, ω = 1/2 was arbi-

317 trarily chosen):

ŷ
x̂

# $
¼

ffiffiffiffiffiffiffiffi
1=2

p
QBffiffiffiffiffiffiffiffi

1=2
p

P

# $ ffiffiffiffiffiffiffiffi
1=2

p
B
−1

S
′

ffiffiffiffiffiffiffiffi
1=2

p
R

′

h i
y
x

# $
;

ŷ
x̂

# $
¼

ffiffiffiffiffiffiffiffi
1=2

p
QBDyffiffiffiffiffiffiffiffi

1=2
p

PDx

" #
ffiffiffiffiffiffiffiffi
1=2

p
D

−1
y B

−1
S

′
ffiffiffiffiffiffiffiffi
1=2

p
D

−1
x R

′

h i
y
x

# $
;

ẑ
)
¼ P

b
zP

c
z
′
z ¼ P

b
zt
)
z:

ð28Þ

318319where Dy = B−1diag(‖s1‖ ⋯ ‖sA‖) and Dx = diag(‖r1‖ ⋯ ‖rA‖) were

320included to obtain unitary norms in the rows of Pz
c′ and to satisfy

321Pz
c′Pz

b = I. Note that the projectormatrices Pz
b and Pz

c′ are built withma-

322trices of the PLSR model. In such a sense, Eq. (28) can be seen as an

323“analogous PCA model” of z = [y′ x′]′, but obtained on the basis of the

324PLSR matrices. In Eq. (28), the “analogous PCA scores” are

t
)
z ¼ P

c
z
′ y
x

# $
¼

ffiffiffiffiffiffiffiffi
1=2

p
diag 1= s1k k⋯1= sAk kð ÞBþ diag 1= r1k k⋯1= rAk kð Þ½ #t;

ð29Þ

325326where

P
c
z
′
¼

ffiffiffiffiffiffiffiffi
1=2

p
diag 1= s1k k⋯1= sAk kð ÞS

′
ffiffiffiffiffiffiffiffi
1=2

p
diag 1= r1k k⋯1= rAk kð ÞR

′

h i

ð30Þ

327328are the “analogous principal directions”. Eqs. (29) and (30) indicate that

329theYX-PCA and the ideal PLSRmodel have the same latent space, except

330for some differences in the score scales.

331From Eq. (28), the residual of the extended vector z = [y′ x′]′ in the

332ideal PLSR model is

ey
ex

# $
¼

y
x

# $
−

ŷ
x̂

# $
¼ I−P

b
zP

c
z
′

& '
y
x

# $

ez) ¼ I−P
b
zP

c
z
′

& '
z

ð31Þ

333334which is analogous to the YX-PCA residuals ez in Eq. (13).

335In summary, Eqs. (28)–(31) present the analogies between the YX-

336PCA and ideal PLSR models. However, it should be noticed that in a

337real case the last term of Eq. (27) can be significant. Hence, a measure

338of the dissimilarity between the PLSR and YX-PCA models could be

339evaluated from the norm of this last term; or simply from eu
(( (( ¼

340S′y−BR′x
(( ((, which would in turn be calculated on the basis of the cur-

341rent measurements. Also, it is worthwhile noting that if an accurate

342PLSR fit were available, then the expected value of eu would be close to

343zero, and therefore the expected values of the predictions provided by

344the PLSR and YX-PCA models would be equivalent.

3454.3. Relationships between PLSR and YX-PCA fault detection indices

346This section aims at comparing the components of the combined in-

347dices ITC (Eq. (12)) and IC (Eq. (15)) that can be utilized for process

Fig. 1. A low dimension example of PLSR-decomposition of the X-space in relation to X-PCA. The model subspace SMX is spanned by P = [p1 p2], R = [r1 r2] or V = [v1 v2].
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348 monitoring in PLSR and YX-PCA respectively. As in Section 4.2, let us

349 start assuming an ideal PLSR model with eu→0. Then, by substituting

350 the analogous PCA scores tz⁎ (Eq. (29)) and its corresponding covariance

351 matrix Λz
⁎ = 0.5 Λ[diag(1/‖s1‖ ⋯ 1/‖sA‖)B + diag(1/‖r1‖ ⋯ 1/‖rA‖)]

2

352 into the PCA-statistic TPCA
2 /τα

2 = ‖Λz
−1/2tz‖

2/τα
2 of IC (Eqs. (14) and

353 (15)), one obtains ‖Λ−1/2t‖2/τα
2 , which coincides with the PLSR-

354 statistic TPLS
2 /τα

2 of ITC (Eqs. (11) and (12)). Therefore, themodel compo-

355 nents TPLS
2 /τα

2 and TPCA
2 /τα

2 in the combined indices are analogous, i.e.:

Λ
−1=2
z tz

(((
(((
2

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{YX−PCA

τ2α
≡
Λ
−1=2

t
(((

(((
2

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{PLSR

τ2α
: ð32Þ

356357

358 Similarly, by substituting the analogous PCA residuals ez) (Eq. (31))
359 into the PCA-statistic SPEz=δ

2
z;α ¼ ez

(( ((2=δ2z;α of IC (Eqs. (14) and (15));

360 and taking into account that ez)
(( ((2 ¼ ex

(( ((2 þ ey
(( ((2 and δz,α2 = δy,α

2 + δx,α
2

361 [3,28], the following can be written:

SPEz
δ2z;α

zfflffl}|fflffl{YX−PCA

≡
ez)
(( ((2

δ2z;α

zfflfflffl}|fflfflffl{PLSR

b
SPEx
δ2x;α

þ
SPEy

δ2y;α

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{PLSR

: ð33Þ

362363

364 Note that the early assumption eu→0 also implies eu
(( (( ¼ S0eyx

(( ((
→0

365 (or equivalently, eyx
(( ((
→0); and then Eqs. (32) and (33) together with

366 Eqs. (12) and (15) indicate that IC b ITC. However, in a real case eyx
(( ((N

367 0; then allmembers in Eq. (33)will be altered, and the inequality IC b ITC
368 can no longer be ensured.

369 5. Simulation examples

370 A synthetic example representing a hypothetical process, with an ar-

371 bitrary chosen internal data structure, is simulated for better interpreta-

372 tion and comparison of the modeling methodologies. The normal

373 operation of the chosen process follows a sequence of four internal

374states, which are represented by the following four points in the latent

375space (t-scores): {(t1
0,t2

0)}1…4 = {(1,1),(1,3),(3,3),(3,1)}. The “multivar-

376iate measurements” of the external variables, x and y, are generated by

377adding zero-mean Gaussian random noises (εi, i = 1…4) to the PLSR

378correlation structure characterized by the arbitrarily-selected process

379matrices P, Q, and B, as follows:

(
t ¼ t

0
þ ε1; ε1 ∼N 0;0:1

2
I2

& '
;

u ¼ Btþ ε2; B ¼ diag 2;0:5ð Þ; ε2 ∼N 0;σ
2
uI2

& '
; σu ¼ 0:03

x ¼ Ptþ ε3; P ¼ p1 p2½ #; ε3 ∼N 0;0:05
2
I7

& '
;

y ¼ Quþ ε4; Q ¼ q1 q2½ #; ε4 ∼N 0;0:05
2
I3

& '
;

8
<
:

ð34Þ

380381with:

pi ¼ p
0
i = p

0
i

(((
(((; p

0
1 ¼ 1:5;0;2;1;0:5;0;2:5½ #

′
; p

0
2 ¼ 0;2:5;0:5;−0:5;−1;1:5;0½ #

′
;

q j ¼ q
0
j = q

0
j

(((
(((; q

0
1 ¼ 1:5;0:5;1½ #

′
; q

0
2 ¼ 0;−1;0:5½ #

′
:

382383

384Fig. 2a shows several realizations of the sequence of the four internal

385states followed by the process. The datasets are obtained by collecting

38636 observations of x and y into the matrices X and Y, respectively.

3875.1. Comparison of the PLSR and PCA models

388To visualize differences and analogies, the PLSR and PCAmodels are

389compared. The PLSR model is fitted to centered data in order to identify

390a centered sequence of the latent process. The selection of A = 2 is de-

391termined bymonitoring the simultaneous deflation of Xa and Ya [10]. In

392this way, the errors regarding the “true”matrices Q, B, and P are negli-

393gible (note that the opposite signs of vectors p2 and q2 with respect to

394those in the true loading vectors are not meaningful). Fig. 2b shows

395the latent coordinates, (t1, t2) and (u1, u2), corresponding to x and y

396PLSR-projections. Note that the t and u scores are correlated (as indicat-

397ed by their similar alignment) and that the scatter plots are centered

398versions of the true latent variables of Fig. 2a.

Fig. 2. Scatter plots for the t and u observations corresponding to: a) the true sequences of the internal states, b) the score sequences obtained by the PLSR model, and c) the score se-

quences obtained by two independent PCAmodels, one forX and the other for Y. The dash-dot and dash lines in the subfigure a) are theX-PCA and Y-PCAmaximumvariability directions,

respectively.
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399 On the other hand, X-PCA and Y-PCA models are independently

400 fitted by using centered data, to illustrate the differenceswith the latent

401 model identified by PLSR. Fig. 2c shows the scores estimated through

402 independent PCA models for X and Y; i.e., the X and Y data projected

403 in the X-PCA and Y-PCA directions, respectively. The figure suggests a

404 lack of alignment (or correlation) between the t (by X-PCA) and u (by

405 Y-PCA) scores. This is because X-PCA looks for orthogonal maximum

406 variability directions in X (diagonal lines 1–3 and 2–4 in Fig. 2a),

407 which are not correlated with the orthogonal maximum variability di-

408 rections in Y (lines 1′–2′ and 1′–4′, which are parallel to the square

409 sides in Fig. 2a). By contrast, PLSR adjusts the X-projecting directions

410 so that the t scores are correlated with u scores (Fig. 2b). In summary,

411 maximum variability directions (dash-dot lines) in X-PCA are 45°

412 from the PLSR latent directions in X (dot lines parallel to dash lines).

413 To further analyze the differences illustrated in Fig. 2, we resort to

414 biplot representations [24]. A biplot is an effective tool for visualizing

415 the magnitude and sign of the contribution of each variable to the first

416 two or three principal components. Also, in this plot each observation

417 is represented in terms of the corresponding scores. This provides a

418 framework for understanding the displacements of the latent variables

419 in relation to the original ones. Usually, the biplot representation im-

420 poses a sign convention, forcing the elementwith the largestmagnitude

421 in each loading vector to be positive.

422 Fig. 3a and b shows the PLSR biplot of X and Y, respectively; i.e., the

423 latent coordinates of the x and y projections through R′ and S′, respec-

424 tively; and the directions (and magnitudes) of all the variables in

425 these spaces. Fig. 3c shows the X-PCA biplot; i.e., the latent coordinates

426 of the x projections through V′ for the same datasetX, together with the

427 contribution of each variable to the two principal components. The di-

428 rections of the variables in Fig. 3c are quite different from those in the

429 PLSR biplot of X (Fig. 3a), because the maximum variability directions

430 in X-PCA are rotated 45° from the PLSR latent directions in X (see

431 Fig. 2). Therefore, the loadingmatrix R is different from the loadingma-

432 trix V; and consequently their biplots are different too (compare Fig. 3a

433 and c). By contrast, the principal components of Y (Fig. 3d) and the

434 PLSR-components of Y (Fig. 3b) are similar since the directions of

435maximum variability in Y (given by Y-PCA) match the latent directions

436in Y that are correlated to the latent directions inX. Therefore, the direc-

437tions of the Y-PCA loading vectors (wa) are quite similar to the

438sa-directions and thus also their components (see Fig. 3b and d).

439In order to illustrate the equivalence of the PLSR latent model re-

440garding the YX-PCA latent model, their biplots are compared. Fig. 4a

441shows the PCA biplot of Z = [Y X]; and Fig. 4b shows the biplot created

442with analogous Pz
c′ directions and Tz⁎ scores, as obtained from PLSR

443(Eqs. (29) and (30)). The difference between Pz′ and Pz
c′ is negligible,

444and consequently the biplots are identical. Hence, all these results con-

445tribute to support the claim thatYX-PCA and PLSRprovide analogous la-

446tent models, which is in turn quite reasonable because both techniques

447model the samedataset, evenwhen they use different calibration proce-

448dures. However, there is a key difference between YX-PCA and PLSR in

449the estimation of the latent variables. The first method uses all the var-

450iables (Eq. (8)), while the second one uses the inputs (Eq. (4)) or the

451outputs (Eq. (5)) only. When a causal process is identified, a PLSR

452model may be closer to the true system structure than a PCA model

453[24]; however, the latter explains the causal relationships as correla-

454tions (see Eq. (28)). Note that Fig. 4b coincides with the overlap of

455Fig. 3a and b (after inversion of the sign of the latent variable t2).

456Fig. 5 shows the (t1, t2) model plane in the (y1, y2, y3) space and the

457dispersion of the observations around it. This plane was found by mini-

458mizing the distances of the scatter observations to a common plane. The

459directions of the variables x1,…, x7 are represented in relation to co-

460linearity with the original variables y1, y2, and y3 (see Fig. 3a and b).

461This representation includes all the variables present in z = [y′ x′]′ in

462order to illustrate the similarity found between YX-PCA and PLSR.

463Note that Fig. 4 could be obtained by centering and projecting the obser-

464vations and the variable directions of Fig. 5 on the plane model.

4655.2. Comparison of the PLSR and PCA monitoring strategies

466A frequent application of YX-PCA and PLSR consists on predicting y

467from x. For example, it is used in LV-MPC [8,14] where once the

Fig. 3. Biplots based on: a) PLSR-components of X (R′). b) PLSR-components of Y (S′). c) Principal components of X (V′). d) Principal components of Y (W′).
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468 YX-PCAmodel (Eq. (20)) is available, then y can be predicted from x as

469 follows [12]:

ŷ ¼ Py P
′

xPx

& '−1
P

′

xx: ð35Þ

470471

472 Similarly, when LV-MPC is based on a PLSRmodel [15], then y can be

473 predicted from x as follows (Eq. (10)):

ŷ ¼ QBR
′
x: ð36Þ

474475

476 According to Section 4.2, no meaningful differences would be ex-

477 pected when using an YX-PCA prediction model (Eq. (35)) or a PLSR

478 prediction model (Eq. (36)) for estimating y. Note that by analogy be-

479 tween Pz (Eq. (20)) and Pz
b (Eq. (28)), one obtains Py ≡

ffiffiffiffiffiffiffiffi
1=2

p
Qdiag

480s1k k⋯ sAk kð Þ and Px ≡
ffiffiffiffiffiffiffiffi
1=2

p
Pdiag r1k k⋯ rAk kð Þ. Then, the PCA and PLSR

481prediction matrices (Eqs. (35) and (36)) are analogous, i.e.:

Py P
′

xPx

& '−1
P

′

x ≡Qdiag s1k k= r1k k⋯ sAk k= rAk kð Þ P
′
P

& '−1
P

′
¼ QBR

′
: ð37Þ

482483

484However, as PLSR and YX-PCA utilize different algorithms, then a

485numerical comparison was carried out to verify the equivalence of

486both predictive models (Eq. (37)). To this effect, the process described

487by Eq. (34) was independently adjusted through: a) the PLSR model

488by using the PLSR-NIPALS algorithm, and b) the YX-PCA model by

489using the NIPALS algorithm. Then, the goodness of fit of each calibration

490algorithm was evaluated for decreasing signal-to-noise ratios, which is

491simulated increasing the variance of ε2 (Eq. (34)). Table 1 shows the

492Mean Squared Error (MSE) for the YX-PCA and PLSR methods, for in-

493creasing degradations in the inner causal relationships (see σu in

494Eq. (34)). SuchMSEs are defined as:MSEx ¼ E x−x̂ð Þ
′
x−x̂ð Þ

h i
; MSEy ¼

495E y−ŷð Þ
′
y−ŷð Þ

h i
, andMSEz ¼ E z−ẑð Þ

′
z−ẑð Þ

h i
. Table 1 shows that the

496prediction errors (MSEy) of bothmethods are similar for moderate deg-

497radations even when the PCA calibration shows a smaller calibration

498error (MSEz).

499From Table 1, the following conclusions are obtained: (i) since the

500calibration error MSEz b MSEy + MSEx, then more precise estimates of

501the latent variables are obtained through YX-PCA; and (ii) the PLSR-

502NIPALS algorithm produces smaller prediction errors than NIPALS algo-

503rithm, thus allowing better predictive model adjustments. It should be

504noted that the PLSR-NIPALS algorithm is able to efficiently identify

505quite degraded causal relationships (last row of Table 1).

Fig. 4. Biplot representations based on: a) principal components of Z = [Y X] (Pz′). b) Analogous principal components of Z obtained with the PLSR model (Pz
c′).

Fig. 5. The bi-dimensional projection plane. The measurements of x and y projected by

PLSR, and the measurements z = [y′ x′]′ projected by PCA lie on this plane.

Table 1 t1:1

t1:2Comparison of goodness of fit and predictive ability of YX-PCA versus PLSR.

t1:3Internal

perturbation

Method Calibration error Prediction

error

t1:4σu var ε2k k2f g
var Btk k2f g

MSEz MSEx + MSEy MSEy

t1:50.00 0.00 PLSR – 0.0271 0.0143

t1:6YX-PCA 0.0189 – 0.0143

t1:70.03 4.23 10−4 PLSR – 0.0317 0.0194

t1:8YX-PCA 0.0206 – 0.0195

t1:90.30 4.23 10−2 PLSR – 0.1890 0.1774

t1:10YX-PCA 0.0968 – 0.1798

t1:113.00 4.23 PLSR – 12.3682 12.3576

t1:12YX-PCA 1.5263 – 105.017
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506 To verify the equivalences between the fault detection indices based

507 on YX-PCA and PLSR (Section 4.3), the process was disturbed according

508 to six anomalous scenarios (see Table 2): a) the anomalies 1, 2, and 3

509 were implemented by altering the processmatrices; b) the sensor faults

510 4 and 5were simulated by disturbing themeasurements x and y; and c)

511 the anomaly 6 consisted in adding up to t (Eq. (34)) a change Δt, such

512 that the combined index is greater than the control limit. Each fault

513 was simulated by affecting only one sample point (at a discrete time,

514k); and immediately the anomaly was canceled from k + 1 onwards.

515These anomalies represented a hard test for evaluating the ability of

516the PLSR and YX-PCA methods and allow displaying the relationships

517between their statistics (Eqs. (32) and (33)).

518Fig. 6 shows the time evolution of the combined detection indices

519and of their component statistics for the two methods. In Fig. 6a (or

520Fig. 6b), the alarm condition is triggered at a given sample k, when the

521IC (or ITC) global index overpasses the 100(1-α)% confidence (control)

522limit. The index IC (or ITC) proved to be effective for detecting all simu-

523lated anomalies. The patterns of alarmed component statistics recorded

524in Fig. 6b allowed an efficient characterization of each fault type and

525could be used to diagnose the root causes [27].

526A detailed analysis of Figs. 6a,and b can help to better interpret the

527inequality ITC N IC suggested in Section 4.3. Note that such inequality

528was verified atfive fault locations (k = 19, 27, 35, 43, 51), while it failed

529at k = 11. Then, three different situations can be analyzed: (i) at

530k = 35, 43, 51, eyx
(( ((
→0, and hence Eq. (33) allows us to ensure ITC N IC;

531(ii) at k = 19, 27, ITC N IC is still valid even when eyx
(( ((N0, probably

Table 2t2:1

t2:2 Simulated scenarios of anomalies.

t2:3 Anomaly/fault Location Magnitude of the change/fault

t2:4 1 k = 11 ΔB22 = 0.25

t2:5 2 k = 19 Δp2 = [0 0.28 0 0–0.07 0.14−0.14]′

t2:6 3 k = 27 Δq1 = [−0.05−0.05 −0.1]′

t2:7 4 k = 35 Δx = [0.3 0 0 0 0 0.25 0]′ (multiple sensor fault)

t2:8 5 k = 43 Δy = [0.4 0 0]′ (single sensor fault)

t2:9 6 k = 51 Δt = [0 6]′

Fig. 6. Temporal evolution of the combined indices and of their component statistics for the six simulated faults. a) PCA indices. b) PLSR indices.
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532 because the new ITC term SPEyx/δyx,α
2 is lesser than SPEx/δx,α

2 + SPEy/δy,α
2 ,

533 and Eq. (33) is only slightly altered; and (iii) at k = 11, IC N ITC because

534 SPEyx/δyx,α
2 is the only significant term of ITC, and Eq. (33) is no longer

535 valid. On the other hand, at the location k = 51 the exact equivalence

536 (Eq. (32)) between the T2 based on YX-PCA and PLSR is verified (see

537 TPCA
2 /τα

2 and TPLS
2 /τα

2 in Fig. 6a and b, respectively).

538 On the basis of the simulation results, it was verified that: i) if an

539 YX-PCA or PLSR model is used for estimating latent variables, then it is

540 advisable to use the YX-PCA model adjusted through the NIPALS

541 algorithm (see Table 1); and ii) if the model is used for either output

542 prediction or process monitoring, then the PLSR-NIPALS algorithm is

543 preferable for the fitting task (see Table 1) and the PLSR approach for

544 the monitoring strategy (see Fig. 6).

545 6. Conclusions

546 From a formal point of view, this work contributes to a better inter-

547 pretation of two well-known multivariate statistical techniques: PCA

548 and PLSR. Particularly, some geometric properties of the decomposition

549 induced by PLSR of the X-space and Y-space relative to X-PCA, Y-PCA,

550 YX-PCA, are revealed. The present proposal provides specific criteria

551 for selecting PLSR or PCA as the more appropriate data treatment tech-

552 nique, according to the pursue objective of latent variable estimation,

553 output prediction, or process monitoring.

554 Similarities between PCA and PLSR are rather intuitive and have

555 somehow been disclosed in the literature. In particular, previous exten-

556 sions of the PLSR modeling strategy provided us a formal framework to

557 reveal novel underlying equivalences. In this sense, newPLSR geometric

558 properties and its relation with PCA are defined, and also equivalences

559 and differences between the use of PLSR and PCA for modeling and

560 monitoring multivariate processes are disclosed.

561 To the best of our understanding, three main features can be

562 confirmed through the analysis reported in this work. 1) PLSR and

563 YX-PCA present similar capacity for fault detection, while PLSR shows

564 a better diagnosing capability, and hence the last one is recommended

565 for process monitoring. 2) PLSR is more reliable for adjusting a model

566 for output prediction, like in soft sensor development. 3) YX-PCA is

567 more precise for estimating latent variables, and hence it is recom-

568 mended for the analysis of latent patterns imbedded in datasets. In

569 fact, the last two points confirm the traditional usage in the specialized

570 literature.
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575 Appendix A. Proofs of the subsection 4.1

576 In order to find the αi
a coefficients in Eq. (18), let us assume that

577 eU ¼ 0 in Eq. (3), i.e. U = TB. Then, multiplying Eq. (6) by SB−1 and

578 recalling that Q′S = I, the following expression is obtained for each

579 a-th column (or each ra):

Ysab
−1
a ¼ Xra: ðA1Þ

580581

582 By substituting Eq. (17) into Eq. (A1) the αi
a's can be solved as

583 follows:

α
a
1…α

a
A

! "′
¼ V

′
X

′
X

& '−1
X

′
Ysa ba rak kð Þ

−1
¼ Λ

−1
x T

′

xua ba rak kð Þ
−1

: ðA2Þ

584585

586 Since in real cases eU≠0, a term−eua is added toua in Eq. (A2) reducing

587 the correlation coefficients between ua and the ti
x's (where i = 1…A).

588 However, for a good PLSR fit, the a-th internal regression error follows a

589Gaussian distribution with mean zero and variance much less than the

590variance of the a-th latent variable. In such case, eua does not significantly

591affect the coefficients (Eq. (A2)). In summary, for an acceptable fit,

592Eq. (A2) allows estimating the α i
a's with enough accuracy.

593In order to deduce Eq. (19), notice that pa = Xa′Xara/‖Xa′Xara‖, X
′

aXa

594ra ¼ X′Xra ¼ rak k∑
A

i¼1
λxi α

a
i vi [27] and ‖va‖ = ‖pa‖ = 1, then the angle

595∠ (va,pa) can be expressed as follows:

∠ va;pað Þ ¼ cos
−1

v
′

apa

h i

¼ cos
−1

v′

a

XA

i¼1

λ
x
i α

a
i vi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XA

i¼1

λ
x
i α

a
i v

′

i

 !
XA

i¼1

λ
x
i α

a
i vi

 !vuut

2
6666664

3
7777775

¼ cos
−1

λ
x
aα

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XA

i¼1

λ
x
i

, -2
α
a
i

, -2
vuut

2
6664

3
7775: ðA3Þ

596597

598Appendix B. PLSR-decomposition in relation to Y-PCA

599Let us represent the Y-PCA decomposition by:

Y ¼ UyW
′
; Uy ¼ u

y
1…u

y
A

! "
; W ¼ w1…wA½ #; A ¼ rank Yð Þ ≤ p; ðB1Þ

600601where wa (a = 1…A) are the loading vectors and ua
y the associated

602scores. Then, a loading vector sa of PLSR is written as linear combination

603of the Y-PCA vectorswa; i.e.,

sa ¼ sak k
XA

i¼1

β
a
i wi ¼ sak kW β

a
1…β

a
A

! "′
a ¼ 1…Að Þ; ðB2Þ

604605where βi
a are such that∑

A

i¼1
β
a
i

, -2
¼ 1; and hence∠ (wa,sa) = cos −1(βi

a).

606By substituting Eq. (B2) into Eq. (A1) the βi
a's are obtained as follows:

β
a
1…β

a
A

! "′
¼W

′
Y

′
Y

& '−1
Y

′
Xraba sak k

−1
¼ Λ

−1
y U

′

ytaba sak k
−1

: ðB3Þ

607608

609Therefore, the βi
a's determine the sa-direction and are given by:

β
a
i ¼ λ

y
i

, -−1
u
y
a
′
taba sak k

−1
i ¼ 1…Að Þ: ðB4Þ

610611where λi
y is the i-th eigenvalue nonzero of the covariance matrix

612Y′Y = WΛyW′, associated with eigenvector wi (see Eq. (B1)). Besides,

613the angles between the loading vectorswa and qa are given by:

∠ wa;qað Þ ¼ cos
−1

λ
y
aβ

a
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XA

i¼1

λ
y
i

, -2
β
a
i

, -2
vuut

2
6664

3
7775 a ¼ 1…Að Þ: ðB5Þ

614615

616The Eq. (B5) is deduced in a similar way to Eq. (A3). Note also that

617the Eqs. (B2), (B4) and (B5) are interpreted in similar manner to

618Eqs. (17)–(19).
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