
 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

New contributions to nonlinear process monitoring through Kernel Partial

Least Squares
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Abstract

The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for pre-

dicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its

application to nonlinear process monitoring are presented. To this effect, the measurement decomposition,

the development of new specific statistics acting on non-overlapped domains, and the contribution analysis

are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical in-

sights for synthesizing the models are also given, which are related to an appropriate order selection and the

adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of

an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods

is confirmed by using simulation examples.

Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear

Processes.

1. Introduction

The design of monitoring systems for supervising the operation of industrial processes has acquired

great relevance in the last decade. This fact is essentially due to the need of more demanding operating

conditions related to security for equipments and personnel, operating costs, and environmental restrictions.

Furthermore, the increasing complexity observed in the interactions between energy- and mass- transfer

processes, and their corresponding control policies, require more sophisticated monitoring systems in aspects

such as detection rate, robustness, user friendliness, easiness of understanding, modeling and data storage

requirements, and adaptability, among others [1, 2].
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The multivariate statistical process monitoring is a well-known research topic where several strategies

based on projection to latent structures have successfully been developed. Moreover, they are of great interest

in industrial applications because of their excellent properties for handling noisy and highly correlated

measurements, and large datasets [2–4]. Some of these approaches are summarized in [4–10] where the

principal component analysis (PCA), independent component analysis (ICA), and partial least squares

regression (PLSR) methodologies were addressed. There are also several modifications to these tools for

including issues such as dynamics, adaptation, and non-linearity [2, 8, 11–16].

In this work, a nonlinear version of the partial least squares (PLS) approach -called kernel PLS (KPLS)-

is addressed. KPLS is a powerful statistical tool for obtaining multivariate nonlinear relationships from

historical data. In fact, it is a nonlinear regression method that computes the regression coefficients in a

high-dimensional space; the input data are mapped via non-linear functions in this space and then they are

linearly related to the measured outputs. Hence, the KPLS approach represents a suitable methodology

for predicting online unmeasured quality variables in complex nonlinear processes. The overall procedure

relies on classic linear algebra, similar to the linear projection methods, and the non-linearity degree is

mainly given by the selected kernel function associated to the mapping functions [17]. Ever since the KPLS

approach appeared, some modifications as well as applications have been published in the process monitoring

area. For example, a kernel-based PLS system linked to orthogonal signal correction has been proposed for

data preprocessing and prediction purposes [12]; and a modified PLS method of independent component

regression has been used for complex processes monitoring [8]. An application of nonlinear multivariate

quality prediction based on KPLS has also been presented [14]. In this context, new publications addressing

the fault detection tasks based on KPLS have also appeared [18, 19]. In the last decade, KPLS or variants

thereof have been applied for composition analysis of agricultural materials [20] and foods [21], process

analysis [22], determination of structure activity relationships [23], studies on drug metabolism [24], and

quality-related monitoring [25], among others.

KPLS method, as well as other kernel based modelling methods [26], are often used as a black box

approach. However, in contrast to kernel PCA (KPCA) [11, 16], KPLS is able to properly determine the

predictive importance of each input variable onto the final regression model. This result can then be used

for reducing the number of inputs and therefore the complexity of the model. For instance, Posmat et

al. [27] propose a method based on the principle of pseudo-sampled trajectories (representing the original

variables) that help to visualizing and determining the most important variables for regression purposes. This

method is able to detect poor predictor variables, providing the chance for improving the KPLS structure

by eliminating interfering variables from the pre-selected inputs. The advantage of the KPLS modeling lays

in the fact that only the outputs of interest are chosen, while the inputs are determined by their predictive

importance, thus limiting the group of variables to be monitored.

The main objective of this article is to provide a deep analysis of the KPLS-based modeling technique

2
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and its application to nonlinear process monitoring. Initially, the classic KPLS modeling is here extended

by adding the projections of the outputs onto the latent space. The underlying structure of the KPLS

modeling is highlighted in order to describe the functional relationships between the spaces induced by

the KPLS procedure. Moreover, some practical insights are given for the proper selection of the number

of latent variables and for setting the kernel function parameter. In fact, the latent space dimension is

here defined by using a new balanced index designed to efficiently quantify the squared prediction error in

both the input and output spaces. This approach is compared with the standard output prediction error

via the Wold’s R criterion [7, 14]. To deal with nonlinear processes, the kernel method is first embedded

into the PLS algorithm. Then, new specific statistics (that act on non-overlapped domains) are combined

into a single index able to detect process anomalies. Finally, the statistics pattern is used for diagnosing

faults or process anomalies. In this regard, the present monitoring technique of nonlinear processes is an

extension of our PLS-based strategy originally developed for monitoring linear processes [28]. Besides,

contribution plots are frequently used to isolate the detected faulty variables without using historical fault

patterns [26, 29]. However, it is difficult to build a contribution plot for a kernel based model [29]. In this

paper, a new contribution plot based on the KPLS model is proposed for identifying faulty variables. The

proposed supervision approach puts together the abnormal event detection, the diagnosis, and the isolation

in a single method. Besides, a risk assessment index is also developed for online quantifying the predictive

capabilities of the KPLS inferential model. The effectiveness of the proposed method is tested through

simulated examples taken from the literature.

The article is organized as follows: Section 2 presents the basic background of the KPLS regression. Some

details about the KPLS-based modeling approach are given in Section 3. The main contributions of this work

are presented in Sections 4 and 5, where we analyze the KPLS model calibration (Section 4), the process

monitoring and the statistics for fault detection (Section 5.1), the diagnosis method through the pattern of

statistics (Section 5.2), the fault isolation via a contribution analysis (Section 5.3), and the prediction risk

assessment (Section 5.4). Section 6 summarizes the simulation results and the overall conclusions are given

in Section 7.

2. Basic concepts on KPLS

Consider a process with m measured input variables plus p measured output variables which are arranged

in the vectors x = [x1 . . . xm]′ and y = [y1 . . . yp]
′, respectively. Assume that N measurements of each

variable are collected while the process is operating under normal conditions. In order to build a KPLS

regression model, let us consider the calibration data set consisting of N centered and scaled samples for

the input vector (predictor), i.e., {xj ∈ R
m}

N
j=1, and the corresponding centered and scaled samples for the

response vector, {yj ∈ R
p}

N
j=1.

3
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The KPLS theory utilizes a nonlinear function ϕ(·) : Rm → R
c to map the vectors xj ∈ R

m onto a

high-dimensional space R
c, with c ≫ m (or even c = ∞). The classic PLS regression approach [6] is first

applied to decompose the high-dimensional space into a low-dimension latent space plus a residual space;

and then a linear regression model is developed to relate the data in the latent space with the original output

data in R
p [17]. The nonlinear mapping is not implemented through an explicit function, ϕ(·), instead a

kernel function k(·, ·) is proposed for computing the following inner products,

k(xj ,xr) = ϕ(xj)
′
ϕ(xr), with j = 1, . . . , N r = 1, . . . , N. (1)

Thus, by replacing each inner product ϕ(xj)
′
ϕ(xr) with k(xj ,xr), both the explicit nonlinear mapping and

the inner product computation can be avoided [17]. The KPLS approach only uses the inner product values

for performing the nonlinear regression.

From Eq. (1) the so-called Gram Kernel matrix, K ∈ R
N×N , can be obtained:

K = ΦΦ′, with Φ = [ϕ(x1), . . . ,ϕ(xN )]′ ∈ R
N×c. (2)

Similarly to PLSR, the nonlinear KPLS model includes zero-mean variables. The mapped input vectors

ϕ(xj) are centered as follows:

ϕ̄(xj) = ϕ(xj)−Φ′e (3)

where e is a column vector with all its entries equal to 1/N [17]. In this way, Φ̄ = [ϕ̄(x1), . . . , ϕ̄(xN )]′ is

the centered version of Φ. Now the centered Gram Kernel matrix is given by

K̄ = Φ̄ Φ̄′ = (I−E)K(I−E) (4)

where E is a (N × N) matrix with all its entries equal to 1/N [17] and k̄(xj ,xr) = ϕ̄(xj)
′
ϕ̄(xr) is the

element (j, r) of K̄.

From the centered data matrices K̄ and Y = [y1, . . . ,yN ]′, a KPLS calibration algorithm can be devel-

oped by modifying the steps of the NIPALS algorithm [17] as shown in Algorithm 1. Specific details about

the parameter setting for the kernel function and the optimal selection of the number of latent variables, A,

are given in Section 4.

The prediction of the response variables by using the calibration data are given by [17]:

Ŷ = Φ̄BPLS = Φ̄Φ̄′U(T′K̄U)−1T′Y = K̄U(T′K̄U)−1T′Y = TT′Y = TC′ (5)

where the matrices T = [t1, . . . , tA] and U = [u1, . . . ,uA] are orthonormal by columns. Note that, although

the regression coefficients matrix BPLS might exist (for ϕ̄(.) ∈ R
c when c 6= ∞), the KPLS algorithm does

not calculate this values explicitly, i.e. the kernel substitution avoids this evaluation.

4
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Equation (5) shows that the response variables (outputs) can be obtained from the inner products of the

mapped vectors. Hence, for a new observation x of the predictor vector, the outputs are estimated by

ŷ = B′PLSϕ̄(x) = Y′T
[

U(T′K̄U)−1
]′
k̄(x) = CV′k̄(x) (6)

where k̄(x) = [k̄(x1,x), . . . , k̄(xN ,x)]′ is the vector of centered kernel functions evaluated in the pairs (xj ,x)

for j = 1, . . . , N . Note that matrices U, T, C, and V are outputs of the KPLS algorithm.

From Eqs. (4) and (3) the following relationships can be defined,

k̄(x) = Φ̄ϕ̄(x) = (I−E)(k(x)−Ke) = k(x)−Ke−Ek(x) +EKe (7)

where k(x) is the vector of non-centered kernel functions and is defined analogously to k̄(x).

Let us consider the latent vector structure. From Eqs. (5) and (6), it is obtained,

t′ = [t1, . . . , tA]
′ = ϕ̄(x)′R = k̄′(x)V, with V = [v1, . . . ,vA] (8)

where R = Φ̄′U(T′K̄U)−1 = [r1, . . . , rA] is the PLS weight matrix (see Eq. 5) with its components given by

ra =
∑N

j=1 αjϕ̄(xj), with αj ∈ R. Each latent variable can be estimated independently (i.e. ta = k̄′(x)va

in Eq. (8)), thus the prediction is computed as,

ŷ = Ct, with C = [c1, . . . , cA]. (9)

Note that, given a new observation x with absolute units the prediction also can be written as,

ŷ = DyCV′k̄
(

D−1
x (x− x̄)

)

+ ȳ (10)

where Dx = diag(σ̂x1
, . . . , σ̂xm

) and Dy = diag(σ̂y1
, . . . , σ̂yp

) are the estimated standard deviations for

predictor and response variables, respectively. On the other hand, x̄ and ȳ are the corresponding mean

values.

3. Modeling based on KPLS

This section presents a KPLS-based extension of the PLSR modeling described in Godoy et al. [28],

where three different residues are defined. The first residue Ỹ1 represents the internal model error and the

other two ( ˜̄Φ and Ỹ2) are associated to the external model error as detailed below. The KPLS algorithm

induces both an internal and an external model. By analogy of KPLS with PLSR [28], it is assumed here

that there is an internal linear relationship between ta and ua. Furthermore, since the KPLS algorithm

scales these score-vectors to unit norm, the following internal model can be obtained,

U = T+ Ũ (11)

5
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Algorithm 1: KPLS training via NIPALS steps

Data: Centered matrices K̄, Y = [y1, . . . ,yN ]′

Result: T, U, C, V = U(T′K̄U)−1

1 Set a = 1, K̄1 = K̄, Y1 = Y

2 Initialize the score-vector ua (N × 1) of the latent variable ua of Ya, as the maximum-variance column of Ya;

3 Compute the score-vector ta (N × 1) of the latent variable ta of Φ̄a, as: ta = K̄aua/
∣

∣

∣

∣K̄aua

∣

∣

∣

∣ , ||ta|| = 1;

4 Regress the columns of Ya on ta: ca = Y′
ata, where ca is a weighting vector;

5 Calculate the new score-vector: ua = Yaca/ ||Yaca|| , ||ua|| = 1 ;

6 Repeat the steps 2 to 4 until the convergence of ta ;

7 Deflate the matrices: K̄a+1 = (I− tat
′
a)K̄a(I− tat

′
a) andYa+1 = Ya − tat

′
aYa;

8 Save data in matrices: T← ta, U← ua, C← ca;

9 Set a = a+ 1 and return to step 2. Stop when a > A, being A the selected number of latent variables.

where the a-th column of Ũ represents the ta − ua regression residuals.

The induced external model decomposes Φ̄ and Y into latent variables and residuals matrices ( ˜̄Φ and

Ỹ2), via the following expressions:

Φ̄ = TP′ + ˜̄Φ, (12)

Y = UC′ + Ỹ2, (13)

where P = Φ̄′T = Φ̄′K̄V and C = Y′K̄V. For new Φ̄ and Y matrices, by means of R = (P′)− and

D = (C′)− where (·)− denote the pseudo inverse operator (i.e. P′R = I and C′D = I), the predictions of

T and U can be represented as follows,

T = Φ̄R, (14)

U = YD, (15)

since the row space of ˜̄Φ (Ỹ2) belongs to the null space of R (D), then ˜̄ΦR = 0 (Ỹ2D = 0). By means of

kernel substitution in Eq. (14), the prediction of T also is given by T = K̄V. Note that, the external model

in Eqs. (12) and (13) relates latent variables with responses and mapped inputs. On the other hand, the

internal model in Eq. (11) links latent variables only. By combining both models, a prediction model based

on kernel is obtained as shown in Eq. (16).

Y = K̄VC′ + ŨC′ + Ỹ2 = Ŷ + Ỹ1 + Ỹ2, (16)

where Ỹ2 = Y − YDC′ and Ỹ1 = YDC′ − Ŷ are the projection and transformation error matrices,

respectively. It is particularly noteworthy that the KPLS algorithm does not compute the matrices R and

P, which would be computationally troublesome for typically high-values of c. Summarizing, the internal

6
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model is represented by Eq. (11), the external relationships are displayed in Eqs. (12) and (13), and finally

the nonlinear regression model is shown in Eq. (16).

3.1. Underlying decompositions

After synthesizing an in-control KPLS model, the measured vectors ϕ̄(x) and y can implicitly be decom-

posed in their projections (following the PLSR decomposition presented in [28]), as described bellow. Note

that given a new mapped vector ϕ̄(x) the following theoretical decompositions would be valid:

ϕ̄(x) = ˇ̄ϕ(x) + ˜̄ϕ(x), ∈ R
c

ˇ̄ϕ(x) = PR′ϕ̄(x) = Pt, ∈WM ≡ Span{P} ⊆ R
c

˜̄ϕ(x) = (I−PR′)ϕ̄(x), ∈WR ≡ Span{R}⊥ ⊆ R
c

(17)

where PR′ (I − PR′) is the projector on the model subspace WM (WR) along the residual subspace WR

(WM ). Here, (·)⊥ represents the orthogonal complement. The oblique projections in Eq. (17) decompose

the high-dimensional space R
c in two complementary subspaces WM and WR [28].

On the other hand, generalizing the results presented in [28], the response space can be decomposed (via

KPLS) in two complementary oblique subspaces as shown in Eq. (18),

y = y̌ + ỹ2, ∈ R
p

y̌ = CD′y, ∈ SMY ≡ Span{C} ⊆ R
p

ỹ2 = (I−CD′)y, ∈ SRY ≡ Span{D}⊥ ⊆ R
p

(18)

where SMY and SRY denote the model subspace and residual subspace of Rp, respectively.

The model subspaces, WM and SMY , are related via Eq. (19) as follows,

y̌ = ŷ + ỹ1, ∈ SMY

ŷ = CR′ϕ̄(x) = CV′k̄(x), ∈ SMY

ỹ1 = CD′y −CV′k̄(x), ∈ SMY

(19)

where ỹ1 is the linear transformation error ˇ̄ϕ(x)→ y̌ and ŷ represents the predictable part of y̌ from ˇ̄ϕ(x).

Figure 1 shows the underlying decomposition in the KPLS procedure. The gray areas represent the

so-called “in-control” or “normal operating” zones. The functional relationships among several spaces are

shown in this figure, i.e., the links among input, high-dimensional, model, residual, and output spaces.

4. Calibration of the KPLS model

There are two main issues in any kernel-based latent structure approach: 1) the selection of the kernel

function and its parameters, and 2) the determination of the latent space dimension (number of latent

variables). Both decisions play a significant influence in the KPLS model performance for prediction as well

as monitoring purposes.

7
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Figure 1: Underlying KPLS-decomposition of the input space and its relation to output subspace together with control zones.

A specific kernel function implicitly defines the mapping ϕ and features the high-dimensional space.

Moreover, the monitoring characteristics are strongly influenced by the parameter settings of the selected

kernel function, as shown in [15] for KPCA. Similarly, in KPLS these parameters determine the ability for

detecting and identifying abnormal situations from the measurements [30]. How to select the proper kernel

function for a specific application is still an open problem, however the most used kernel function is the

Gaussian k(xj ,x) = exp(−||xj − x||2/h) [26]. This suitable choice is driven by the observation that most

functions can be approximated fairly well by a sum of Gaussians. Indeed, mixture models and Radial Basis

Function (RBF) neural nets [31] are based on this observation, and they are testimony of the power of

Gaussians in fitting data too. However, a poorly chosen h will lead to a poor KPLS model [26]. A critical

drawback of the KPLS model is the difficulty for selecting the parameter h.

The occurrence of an abnormal event in the process will alter the statistical behavior of the measurement

vector: x = [x1 . . . xi . . . xm]′. Such event will significantly be propagated to the high-dimensional space (see

Fig. 1), provided that the expected value of k(x) (see Eq. 7) exhibits a meaningful change. Additionally,

the expected value of the j-th element of k(x), k(xj ,x), will be sensitive to the presence of an abnormal

event when a relevant change is observed in the expected value of its argument, ||xj − x||2/h. Therefore,

an appropriate selection of h becomes important because: i) a high value of h could turn the argument

too low, with the risk that an actual event is not detected when measuring the projections norms in Eqs.

(17) and (19); and ii) a low value of h could excessively increase the argument, with the risk of producing

a false alarm during a normal process operation. To circumvent this problem, we here propose to adopt

h = 2
∑m

i=1 V ar(xi). Since xi is a standardized variable, V ar(xi) = 1 and consequently h = 2m. In what

follows, we will prove that such selection of h provides us with a robust decision criterion for detecting the

8
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presence of a process fault. In fact, note that:

E

{

||xj − x||2

h

}

=

∑m
i=1 E

{

(xj,i − xi)
2
}

2m
=

∑m
i=1 V ar(xi) +

∑m
i=1 Bias2j (xi)

2m

=







= 1/2, if xj and x belong to the same in-control process

> 1/2, if at least one xi is a (fixed) disturbed variable

(20)

where xj is the j-th sample of the calibration data set, xj,i is the i-th element of xj , and xi is considered

an estimate of xj,i. To interpret the use of Eq. (20) in some practical cases, assume first a normal process

operation (i.e., with null bias and unit variance in all variables xi). Then, Eq. (20) yields E {.} = 1/2, thus

indicating no evidence of process fault. On the other hand, consider the presence of an offset in the i-th

sensor. Such fault will induce on the variable xi a meaningful bias ∆xi with respect to its normal value.

Then, Eq. (20) predicts: E {.} = 1/2(1 + ∆x2
i /m) > 1/2, thus alerting on the presence of a fault in the

process.

On the other hand, the number of latent variables retained (A) is an important parameter in any

approach based on latent structures. In the KPLS methodology this parameter can be determined by

considering monitoring as well as prediction purposes. In fact, the KPLS approach models both, the “x−y”

relationship and the correlations within x and y. Hence, the ultimate number of latent variables to be

retained should be determined by the simultaneous adjustment of the prediction- and correlation models.

Therefore, the modeling error is evaluated through the following total mean square error:

MSET , E
{

∣

∣

∣

∣ ˜̄ϕ(x)
∣

∣

∣

∣

2
}

+ E
{

||y − ŷ||
2
}

= MSEx +MSEy. (21)

In the present work, we use a generalization of the adjusted Wold’s R criterion [7], which is given by

R(a+1) = MSET (a+1)/MSET (a), where MSET (a) is the criterion in Eq. (21) parameterized by the first

“a” latent variables. The inclusion of new latent variables into the model finishes when the ratio R(a + 1)

exceeds a predefined threshold (e.g. 0.9) and hence A = a. In other words, an additional latent variable will

not be included in the KPLS model unless this variable significantly improves the predictions (or explicated

variability). Generally, the inclusion of an excessive number of latent variables produces an over-fitted (or

overtrained) nonlinear model with poor predictive ability. Hence, to reliably determine the number A, the

historical data set is divided in two subsets called calibration and validation data, respectively. Thus, the

MSET (a) criterion is tested on both subsets.

5. Process monitoring based on KPLS

Once an “in-control” KPLS model is developed using process data under normal operating conditions,

the process state can be supervised by using the proper statistics on the current measurements. Similarly

to the KPCA approach [16], the main idea behind the KPLS methodology is mapping and projecting the

9
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input and the response measurements respectively, into the R
A latent space to get a linear distribution of

the modeled data. These transformations are useful to perform the detection of abnormal events and the

diagnosis by inspecting appropriate statistics. In this work, a combined index is proposed for monitoring

both, the model and the residual subspaces. The diagnostic is performed by inspecting the pattern defined

by the statistics once the anomaly is detected. Furthermore, a variable contribution analysis completes the

diagnostic tasks allowing the isolation of disturbed variables.

5.1. KPLS-based fault detection

The “in-control” KPLS model is used for analyzing the current state of the process. By mapping

and projecting the current measurements, ϕ̄(x) and y, on the subspaces WM , WR, SMY , and SRY , the

corresponding deviations are quantified and compared with their appropriate control limits. However, there

are no explicit expressions for the projections ˇ̄ϕ and ˜̄ϕ in Eq. (17). This trouble promotes the development

of new statistics based on kernel substitution for estimating the measures needed for the monitoring task.

For detecting a significative change in the WM subspace, the following Hotelling’s statistic can be used:

T 2
t = t′Λ−1t = (N − 1)k̄′(x)VV′k̄(x) (22)

where Λ = (N − 1)−1T′T = (N − 1)−1I. Recall that this measure (Eq. 22) accounts for the process

correlations.

When new events occur (not considered for the in-control model), the new mapped observation ϕ̄(x)

will move out from WM towards WR. In this case, the square prediction error (SPE) is used for quantifying

the distance from the model in WM ,

SPE ˜̄ϕ =
∣

∣

∣

∣ ˜̄ϕ(x)
∣

∣

∣

∣

2
= ||ϕ̄(x)− ˇ̄ϕ(x)||

2

= ϕ̄(x)′ϕ̄(x)− 2ϕ̄(x)′ ˇ̄ϕ(x) + ˇ̄ϕ(x)′ ˇ̄ϕ(x)

= k̄(x,x)− 2k̄′(x)K̄Vt+ t′T′K̄Tt

(23)

Thus, the SPE ˜̄ϕ statistic can be used for detecting changes in WR. When the process is under normal

operation, the SPE ˜̄ϕ index represents the fluctuations that can not be explained by the KPLS model. On

the other hand, the distance from the regression model in SMY is defined as

SPEy1
= ||ỹ1||

2
=

∣

∣

∣

∣CD′y −CV′k̄(x)
∣

∣

∣

∣

2

=y′DC′CD′y − 2y′DC′CV′k̄(x) + k̄′(x)VC′CV′k̄(x)
(24)

Similarly, the distance from the model in SMY for detecting changes in SRY is

SPEy2
= ||ỹ2||

2
= ||(I−CD′)y||

2
. (25)

Furthermore, the correlation matrices R ˇ̄ϕ and Rŷ are singular because ˇ̄ϕ and ŷ typically have collinear

variables, as can be inferred from Eqs. (17) and (9). In this context, the generalized Mahalanobis distance

10
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is considered for measuring these projections as follows:

D ˇ̄ϕ = ˇ̄ϕ′(x)R−ˇ̄ϕ
ˇ̄ϕ(x), (26)

Dŷ = ŷ′R−
ŷ
ŷ, (27)

where the correlation matrices are given by,

Rŷ = (N − 1)−1Ŷ′Ŷ = (N − 1)−1CT′TC′ = (N − 1)−1CC′, (28)

R ˇ̄ϕ = (N − 1)−1 ˇ̄Φ′ ˇ̄Φ = (N − 1)−1PT′TP′ = (N − 1)−1PP′. (29)

The following statement shows that not all these statistics are independent. More specifically, the

statistics on ˇ̄ϕ(x), ŷ, and t are equivalents (see Proof in Appendix A), i.e.,

Dŷ = T 2
t = D ˇ̄ϕ. (30)

The above identity suggests that the behavior of the response variables y can be monitored by a KPLS-based

statistic applied to the input variables x. Therefore, the monitoring of the complete measurement space can

be implemented by four independent KPLS statistics: T 2
t , SPE ˜̄ϕ, SPEy1

, and SPEy2
, each of them acting

on different subspaces WM , WR, SMY , and SRY , respectively. Consequently, these statistics normalized by

their control limits are combined together into a unified index called IKPLS as shown in Eq. (31). The

scalars τ2α, δ
2
x, δ

2
y1
, and δ2y2

are the corresponding control (confidence) limits.

IKPLS(x,y) =
T 2
t

τ2α
+

SPE ˜̄ϕ

δ2x
+

SPEy1

δ2y1

+
SPEy2

δ2y2

= IWM (x) + IWR(x) + IRY 1(x,y) + IRY 2(y). (31)

The four statistics in Eq. (31) probably have non-Gaussian distributions due to the process nonlinearities.

Hence, their control limits are estimated via a kernel density estimation (KDE) approach [32–34]. This

methodology is based on the approximation of the probability density function (PDF) of an index, e.g. T 2
t ,

by the sum of Gaussian basis functions. In this way, the 100(1 − α)% confidence limit for T 2
t is given by

τ2α = G−1(1− α), where G−1 is the inverse of the cumulative density function G(T 2
t ). The KDE strategy is

a well-known procedure for estimating the PDF when applied to univariate random processes [34].

In case that IKPLS belong to a multidimensional elliptic region, it would be compatible with the assump-

tion of multi-normal data. Therefore, the number of false alarms and undetected faults for this combined

index is significantly reduced with respect to the performance typically given by the separated statistics

[2, 4, 9].

5.2. Anomaly class diagnosis through its statistics pattern

The IKPLS index (Eq. 31) is useful for simultaneous monitoring of product quality, process changes, and

sensor problems. An anomaly is detected when a meaningful change in the measurements triggers the alarm

11



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

condition given by: IKPLS ≥ Iα, where Iα denotes the 100(1− α)% confidence limit obtained through the

KDE approach. Once an anomaly is detected, the diagnosis is made by comparing the patterns produced

by the normalized statistics composing the combined index. Note that these statistics actuate on different

domains and are affected by different scaling factors. In this way the significance level of each normalized

statistic is 1. In summary, it is assumed here that each class of anomaly is characterized by a specific pattern

of significant statistics.

Let us consider 6 different classes of anomalies: 1) faults in sensors associated to x; 2) faults in sensors

associated to y; 3) changes in the nonlinear correlation structure of x; 4) changes in the internal latent

relationships; 5) changes in the correlation structure of y; and 6) changes in the process population param-

eters. Ideally, each anomaly will produce an independent pattern of the statistics that compose IKPLS ; and

therefore, a proper analysis of the measured statistics would allow the unambiguous identification of the

anomaly. These anomalies can qualitatively be grouped into 3 categories: sensor fault (classes 1 and 2),

change in the process correlations (classes 3, 4, and 5), and change in the process population parameters

(class 6).

An artificial process was created to determine the characteristic patterns (see Appendix B). This process

models the generation of ideal data obeying to a predetermined correlation/functional structure, in absence

of anomalies. Then, each of the 6 anomalies were independently analyzed by assuming localized pure

disturbances and then observing the mismatch with the available model. Figure 2 indicates how a disturbed

measurement (in x or y) goes through the KPLS model and generates a warning signal (in ˜̄ϕ(x), ỹ1, ỹ2 or

t).

Table 1 summarizes the main results obtained in Appendix B, and can be seen as a generalization of

the results in [28]. The symbols “−” and “+” respectively represent a “negligible” or a “high” value of

the corresponding statistic. More specifically, the symbols “+” indicate the statistics that are activated

as soon as the measurements (x,y) bring information about a localized model mismatch. The patterns in

Table 1 can facilitate the fault diagnosis tasks. Furthermore, when some statistic is above its control limit a

contribution analysis can be performed to identify the disturbed variables in x or y [29]. Unfortunately, the

statistic patterns for classes 1 and 3 are coincident (see Table 1). However, a further contribution analysis

can be used to determine the proper class, bearing in mind that, unlike Class 3, Class 1 leads a significant

contribution in the faulty variable.

5.3. Isolation of disturbed variables

In order to localize a faulty sensor, the identification of the involved variables becomes helpful. A

preliminary classification of the anomalous event according to Table 1 enables us to restrict the searching

problem to one or two statistics. To isolate the abnormal events, the corresponding statistics can then be

analyzed in their variable contributions, as typically proposed by several authors [29].

12



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Figure 2: Measurements decomposition based on mapping and projections onto the subspaces created by a KPLS model

Table 1: Patterns of significant statistics to be used for diagnosis purposes

Normalized statistic

Event type IWM IWR IRY 1 IRY 2

Class 1 − + + −

Class 2 − − − +

Class 3 − + + −

Class 4 − − + −

Class 5 − − + +

Class 6 + − − −

Associated subspace WM WR SMY SRY

A generic strategy for decomposing a quadratic index as a sum of variable contributions is given by [28]

IS(x) =

m
∑

i=1

(

xi

2

∂IS(x)

∂xi

)

=

m
∑

i=1

cIS(xi), (32)

where xi represents the i-th variable of the current vector x and IS can be IWM , IWR, IRY 1 or IRY 2. Since

each normalized statistic has a significance level of 1, then the significance level of their contributions is also

adopted equal to 1 [28]. This decomposition is exact for IRY 2 because it is a quadratic function of y. On

the other hand, IWM , IWR and IRY 1 are quadratic expressions of the non-linear functions vector k̄(x), but

not of x. However, around a given point x, its second order Taylor approximation has a quadratic form on

x. Consequently, even in case that the decomposition in Eq. (32) is an approximation, we can define the

contribution of the variable xi to a normalized statistic as

cIS(xi) =
xi

2

∂IS(x)

∂xi
, (33)

where IS = IWM , IWR, IRY 1, IRY 2. The contributions of the variable yi to the component statistics IRY 1

and IRY 2 are also defined by Eq. (33), but replacing yi with xi. The partial derivatives of IWM , IWR, IRY 1,

and IRY 2, are detailed in Appendix C.
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In summary, when an alarm in IKPLS is detected, the significant statistics that compose IKPLS (IWM ,

IWR, IRY 1, or IRY 2) are used for classifying the abnormality through Table 1. Then, depending on the

classification, the variable contributions of any particular statistic with significant signal are analyzed for

determining the fault source.

5.4. Risk assessment about the prediction accuracy

When the process outputs can not be measured online, we can still use Eq. (10) to predict quality

variables y from the measurements x. The prediction reliability depends on the accuracy of both, the

inferential model (Eq. 10) and the measurements x. Hence, it is convenient to validate online the prediction

accuracy. An index based on an in-control KPLS model that depends only on x, can be used for supervising

the prediction reliability. In this case, the normalized statistics IWM and IWR depend on the x information

only. Hence, recalling Eq. (31) the following combined inferential index is suggested,

Ic(x) = IWM (x) + IWR(x), (34)

and the risk assessment metric for the predictions can be stated as

Irisk =
Ic(x)

Iα
, (35)

where Iα is the confidence limit for Ic in Eq. (34). Thus, when Irisk ≥ 1 the KPLS predictions are no longer

reliable. Faults of class-1, class-3 and class-6 (see Table 1) trigger an alarm when Irisk ≥ 1. The risk index

depends on the KPLS model and therefore it is not reliable when the model is over-fitted or improperly

calibrated.

In this work the KPLS-based online prediction is complemented with an additional control chart of Irisk

to guarantee the reliability.

6. Simulation results

6.1. Case study no. 1. Soft-sensor with prediction risk assessment

A non-linear numerical simulation example is presented here for evaluating the proposed calibration and

supervised prediction approach under several abnormal events. In fact, the multivariate simulation case

used in Zhao et al. [13] and Zhang et al. [14] is reproduced here for the sake of comparison. The system is

defined as follows,










































x =



















x1 = t2 − t+ 1 + ε1 ≡ f1(t) + ε1

x2 = sin(t) + ε2 ≡ f2(t) + ε2

x3 = t3 + t+ ε3 ≡ f3(t) + ε3

y = x2
1 + x1x2 + 3 cos(x3) + ε4 ≡ f4(t) + ε4

(36)
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Figure 3: In-control input zone and output-input correlations.

(a) (b)

Figure 4: Selection of the KPLS model order - Case study no. 1. (a) MSET -based approach with h = 2m = 6. (b) MSEy-based

approach with h = 0.06.

where t and εi (i = 1, 2, 3, 4) are uniformly distributed variables between [−1, 1] and [−0.1, 0.1], respectively.

The variables εi are the noise components. The data set generated from 300 samples is divided in two

subsets for calibration (the first 200 samples) and validation (the latest 100 samples) purposes. Equation

(36) shows that inputs and output are functions of the internal variable t (f1(t) to f4(t)). Figure 3 shows

the in-control input zone, which depends on data and is related to the output range 0 − 6. Figure 3 also

shows that the output is non-linearly correlated with the inputs.

Figure 4 displays the procedure for calibrating the KPLS model based on the Wold’s R criterion by using

both, validation and calibration data. In this case, two scenarios for obtaining the optimal number of the

15
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Table 2: Simulated abnormal events - Case study no. 1

Fault type Location Low magnitude High magnitude

Offset in x1-sensor k = 20...30 ∆x1 = −0.34‡ ∆x1 = −10

Offset in x2-sensor k = 50...60 ∆x2 = 0.27‡ ∆x2 = 10

Offset in x3-sensor k = 80...90 ∆x3 = 0.49‡ ∆x3 = 10

Correlation change k = 110...120 x1 = 1.5t3 − t+ 1 + ε1 x1 = 3t2 − t+ 1 + ε1

Process upset k = 140...150 t = 1.1 (fixed) t = 1.5 (fixed)

‡ Equivalent to 0.5 in standardized units, hence E {·} = 1/2(1 + 0.52/3) > 1/2 .

latent variables (model order) are compared. In fact, Figs. 4(a) and 4(b) summarize the mentioned criterion

computed based on the MSET and MSEy indexes, respectively. The first one, is the combined input and

output prediction error suggested here in Eq. (21), and the second metric is the classical output prediction

error MSEy proposed by Zhang et al. [14], where the standard error is given by %RMSEy = 100
√

MSEy.

For the sake of comparison, the same settings as suggested in [14] are used here for the MSEy-based

approach: a Gaussian kernel function with h = 0.06 and a threshold of 0.9 for the Wold’s criterion. The

MSET -based methodology with h = 2m = 6 is shown in Fig. 4(a) which clearly gives the most parsimonious

model with a + 1 = 8, hence the number of latent variables retained in the KPLS model is A = 7. On the

other hand, the MSEy-based approach in Fig. 4(b) suggests A = 11 as the best model order [14]. The

over-fitting during the order selection is evaluated by using the validation data set (lines with “▽” in Fig.

4).

The Fig. 4(b) (top) displays some evidence that the predictive ability of the model may be quite poor.

In fact, the calibration and validation %RMSEy deviate from each other, thus displaying the so-called

over-fitting of the KPLS model. This fact is basically given by two simultaneous effects in the Zhang’s

procedure [14]: 1- they adopted h = 0.06, implicitly assuming a very low average variability in the data set,

and 2- the MSEy criterion does not consider the input modeling, nor the validation data for supervising

the fitting reliability. Notice that the existence of over-fitting is observed by contrasting the Wold’s criterion

using the calibration data with the one based on validation data (see Fig. 4(b)). This result shows that the

methodology proposed in section 4 improves the KPLS model calibration producing more reliable models

as observed in Fig. 4(a).

Different faults affecting the normal process are simulated to test the ability of the risk index for warning

a loss of prediction reliability. In this case, five types of abnormal events are considered as shown in Table

2 with low and high magnitudes in each case. In fact, this table summarizes three types of offset faults for

the variables x1, x2, and x3. The fourth abnormal event considers a nonlinear correlation change for the

variable x1 in the time period [110-120]. Finally, the uniformly distributed variable t is considered to be

fixed at a given value between samples 140 and 150, representing a process upset. The in-control input zone

16
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(a) (b)

Figure 5: Squared prediction error and prediction risk assessment during low and high magnitude faults for KPLS model

calibration based on: (a) MSET , and (b) MSEy

in Fig. 3 is related to an ellipsoidal zone in the latent space R
7 which determines the control volume of T 2

t .

The output squared prediction error SPEy = ||y − ŷ||
2
and the risk assessment index Irisk are displayed

in Fig. 5 during the simulation of the anomalies listed in Table 2. Figures 5(a) and 5(b) summarize the

risk assessment performance of the KPLS models calibrated via the MSET and the MSEy methodologies,

respectively. Note that, an alarm condition is triggered when the index Irisk exceeds the unitary threshold,

i.e. Irisk ≥ 1. Figure 5(a) show that the Irisk index timely alerts on intervals where the process is affected

by abnormal events. In such intervals the predictions given by the model are unreliable and should not be

considered. Hence the MSET criterion produces reliable KPLS models. On the other hand, the MSEy

criterion provides models that are unable to detect anomalies in the process (Fig. 5(b)). In fact, the Irisk

index remains below the threshold along the simulation time, erroneously indicating a normal operation

and reliable predictions. Figure 5(b) shows the insensitivity of Irisk to the abnormal events. In such cases

k(x) ∼= 0, causing a constant low value in Irisk due to the wrong selection of h and the model over-fitting.

However, in our approach the index saturation occurs for the high magnitude faults, but above the threshold

efficiently indicating the presence of the faults (see Fig. 5(a)).

6.2. Case study no. 2. Fault detection and diagnosis

An additional example is simulated for better understanding of the proposed methodology as a monitoring

tool. The normal operation of the chosen non-linear process includes a uniform distribution in the intrinsic

variables. The “measurements” of the external variables, x and y, are generated by adding zero-mean

17
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Gaussian random noises to the KPLS correlation structure characterized by the arbitrarily-selected process

parameters and functions as follows:











































































































x = f(t) + ε ≡



















































x1 = 2t21 + t22 + ε1

x2 = t21 + 2t22 + ε2

x3 = 3t1 + t2 + ε3

x4 = −t31 + 3t21 − t2 + ε4

x5 = −t32 + 3t22 − t1 + ε5

y = Ct+ η ≡ t1c1 + t2c1 + η with ci = c∗i /||c
∗

i ||

c∗1 = [1.5, 0.01,−0.1, 0.01, 0.05, 0.01, 2, 0.01, 0.5]′

c∗2 = [0.1,−1.5, 0.01, 0.01,−0.05, 2.5, 0.01,−0.5, 0.01]′

(37)

where ε = [ε1, . . . , ε5]
′ with εi ∼ N(0, 0.0052) and η = [η1, . . . , η9]

′ with ηi ∼ N(0, 0.0052) are independent

noises, and t = [t1, t2]
′ are the internal variables every one distributed uniformly in the range [0.01, 4].

This model was used to simulate multivariate observations under normal conditions, and the generated

(100 samples) data set was used to fit the KPLS model and calculate the control limits. Figure 6 shows the

linear or nonlinear correlations between the predictor variables (xi) and the responses (yi). For example,

the correlations between x3 and y1,...,y9 are linear, while most of the remaining correlations xi − yi are

clearly nonlinear. Figure 6 illustrates the high level of non-linearity present in the data. Figure 7 shows the

calibration technique proposed in Section 4, where a model order A = 4 is selected.

The abnormal data set (250 samples) is also generated by using Eq. (37) and considering the six fault

scenarios displayed sequentially in Table 3. This Table shows the six anomalies (one for each class in Table

1) simulated as follows: a) the bias faults of classes 1 and 2 are simulated by disturbing the measurements

x and y; b) the anomalies of classes 3, 4, and 5 are implemented by modifying the process parameters or

functions; and c) the anomaly 6 consists in adding up a mean change ∆t1 = 1 to t1. Each fault is simulated

during 20 consecutive samples and immediately cancelled thereafter.

Figure 8 shows the time evolution of the detection index IKPLS normalized by its control limit Iα

determined by the KDE approach, and the statistics composing the index IKPLS in order to interpret

the anomaly class. In Fig. 8, the alarm condition is triggered at a given sample k, when the normalized

global index overpasses the limit, i.e. when IKPLS(k)/Iα ≥ 1. The inspection of such a figure leads to

conclude that monitoring based on IKPLS(k) proved to be effective for detecting all simulated anomalies.

The patterns presented by the contributing statistics in Fig. 8 along with the information given in Table

1 allow an unambiguous diagnosis of each kind of anomaly, except for the first two cases (see Table 3).
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Figure 6: Scatter plots of the responses vs predictor variables using calibration data set - Case study no. 2

Figure 7: Calibration based on proposed methodology - Case study no. 2

As it was anticipated, faults of class-1 and class-3 produce the same pattern, hindering the discrimination

between them. However, the x3-sensor fault causes a unique significant contribution to IWR due to the

variable x3 (Fig. 9). By contrast, a correlation change in x causes several significant contributions to

IWR, allowing discrimination from the previous case. Table 3 summarizes the classification of each detected

abnormal event according to pattern of alarms in the statistics showed in Fig. 8. Figure 9 shows the variable
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Table 3: Simulated fault scenarios - Case study no. 2

Fault type (Class) Samples Magnitude Alarmed Diagnosed

Statistics Class

Offset in x3-sensor (1) 20 to 40 ∆x3 = 5 IWR and IRY 1 1/3

Correlation change in x (3) 60 to 80 xnew
3 = (x3)

1.2 + ε3 IWR and IRY 1 1/3

Process upset (6) 100 to 120 tnew
1 = t1 + 1 IWM and IWR 6

Offset in y3-sensor (2) 140 to 160 ∆y3 = 0.03 IRY 2 2

Correlation change in y (5) 180 to 200 ∆c1 = 0.01[−1, 1, 0,−1, 1, 0,−1, 0, 1]′ IRY 1 and IRY 2 5

Intrinsic gain change (4) 220 to 240 ∆I1,1 = 0.7, unew
1 = 1.7t1 IRY 1 4

Figure 8: Time evolution of the index IKPLS normalized and of its component statistics

contributions to the statistics IWR and IRY 2, at the alarm locations k = 31 and k = 151. Figure 9 identifies

the perturbed variables (x3 and y3) from the major (positive) contributions that more significantly affect

the statistic showing alarm (cIWR and cIRY 2, respectively), thus correctly reporting the faulty sensors.

The analysis of the contributions to each statistic (at alarmed locations) allows the identification of broken

relationships between the process variables. Consequently, the main contributions in cIWR and cIRY 2

characterize the correlation changes in x and y, respectively, thus indicating major changes in the original

external correlations.
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Figure 9: Contribution analysis at two alarmed locations (significance level = 1)

In these simulations, small deviations with respect to the normal behavior were adopted only, in order

to evaluate the ability of the data-driven control volume associated to IKPLS for detecting the simulated

faults.

In summary, the proposed KPLS-technique for fault detection and diagnosis in strongly nonlinear pro-

cesses has proven capable of: i) detecting an anomaly through a single combined index, ii) diagnosing the

anomaly class from pattern presented by the four contributing statistics as compared to their respective

confidence levels, and iii) identifying the disturbed variables based on the analysis of the main variable

contributions to each significant statistic.

It is worth noting that if the normal operating range of t in Eq. (37) decreases, the nonlinearity of

the system is less meaningful. Indeed, for the case study no. 2, when [t1, t2]
′-operating zone is reduced to

[0.01, 2] × [0.01, 2], the previous suggested methodology for selecting the KPLS model order gives A = 2.

Moreover, if the same data set is used for developing a PLSR model [10, 28] the order is A = 2 once

again, i.e., both methods converge to the same order (or number of latent variables). In summary, when

the nonlinearity of the process is rather weak, we conclude the following: i) the linear PLSR approach

is preferable when the model would mainly be used for monitoring purposes; and ii) the nonlinear KPLS

approach is preferable when the model would mainly be used for prediction purposes. The reason for i)

is that we would only need to know when the process moves out from the model; and in such case, the

PLSR technique unambiguously differentiate classes 1 and 3. In contrast, the reason for ii) is the greater

generalization ability of the KPLS method.
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7. Conclusions

Monitoring techniques based on KPLS models designed under in-control conditions are especially useful

for supervising strong nonlinear processes. In general, the results obtained in this work suggest that the

proposed calibration strategy provides a comprehensive methodology for the systematic development of

nonlinear KPLS models.

Meaningful deviations of the measurements from their expected behaviors are useful for detecting and

diagnosing process anomalies. The proposed detection index IKPLS combines several statistics of properly

scaled metrics. This index represents a statistical distance that considers the linear/nonlinear correlation

structure of the process as well as three Euclidean distances to the model. Unlike other existing data-driven

techniques, the here proposed IKPLS index allows a simultaneous monitoring of the process and the quality

variables.

When an anomaly occurs in a process, the combination of alarm signals in the statistics composing IKPLS

is efficiently used for classifying the perturbation source. Such preliminary diagnosis is then completed

through an analysis of contributions that allows the identification of the disturbed variables. Besides, the

risk assessment index Irisk proved to be effective for validating the reliability of the KPLS predictions.

The numerical simulations included in this study verify the effectiveness of the presented methodology and

suggests the potential application of the presented monitoring techniques to real production systems.
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AppendixA. Proof of Eq. (30)

By substitution of Eqs. (9) and (28) into Eq. (27), we have Dŷ = (N − 1)t′C′ (CC′)
−
Ct. Then, using

the singular value decomposition of the matrix C(p×A) (with full-column rank) given by: C′ = V [Σ 0]W′,

where Σ(A×A) is a non-singular diagonal matrix, and the matrices W(p×p) and V(p×A) are orthonormal,

we have

C′ (CC′)
−
C = V [Σ 0]W′



W





Σ

0



V′V [Σ 0]W′





−

W





Σ

0



V′ = VΣΣ−2ΣV′ = I(A×A). (A.1)

Therefore, Dŷ = (N − 1)t′t = T 2
t . Furthermore, by replacing ˇ̄ϕ = Pt (Eq. 17) and Eq. (29) into Eq. (26),

it results: D ˇ̄ϕ = (N − 1)t′P′ (PP′)
−
Pt. Similarly, given that P is full-column rank can also be proved that

P′ (PP′)
−
P = I(A×A), hence D ˇ̄ϕ = (N − 1)t′t = T 2

t . The above relationships indicate that

Dŷ = T 2
t = D ˇ̄ϕ, (A.2)
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i.e., the statistics on ˇ̄ϕ(x), ŷ, and t are equivalents.

AppendixB. Determination of statistics pattern

In order to characterize the anomaly from the pattern of statistics composing IKPLS , an artificial process

system (identified with the subscript 0) is created for generating ideal data obeying to a predetermined

correlation/functional structure. This artificial process is defined via the KPLS parameters such as Λ0,

C0, and f0(·), which represent a nonlinear model of the system under operating normal conditions. In this

procedure, a random score vector t0 ∈ R
A ∼ N(0,Λ0) is taken as an independent variable that models the

associated input and output vectors through,

x0 = f0(t0) ∈ R
m,

y0 = C0t0 ∈ R
p ∼ N(0, (C0Λ0C

′

0))
(B.1)

where y0 ∈ SMY ≡ span{C0} ⊆ R
p and f0(·) is associated to ϕ̄ (which is the inverse function of f0 in

the in-control domain), such that ϕ̄(x0) = ϕ̄(f0(t0)) = P0t0 ∈ WM ≡ span{P0} ⊆ R
c. Hence, Eq.

(B.1) considers the common-cause variations only. Since these data stand for an ideal perfect model, the

residuals ˜̄ϕ(x0), ỹ1, and ỹ2 are null, and there are no differences between model predictions and the data,

i.e. ˇ̄ϕ(x0) = P0R
′
0ϕ̄(x0) = ϕ̄(x0), y̌ = C0D

′
0y0 = y0 and ŷ = C0R

′
0ϕ̄(x0) = y0.

Then, several alternatives to the normal condition are analyzed by assuming localized pure disturbances

and observing the mismatch with the available model (Λ0, C0, and f0(·)). The sketch in Fig. 2 helps to

visualize how a warning signal (at ˜̄ϕ(x), ỹ1, ỹ2 or t) is generated as the disturbed measurements (x or y)

go through the KPLS model. In this context, the following classes of anomalies can be discriminated:

• Class 1 (Sensor faults associated to x): These faults are represented by a shift signal ∆x producing

x-vector readings out of the pattern identified by the KPLS model. In this case, the input vector can

be written as,

x = x0 +∆x (disturbed measurements) (B.2)

where x0 is the fault-free part of the input measurements. More specifically, let us assume that ∆x is

such that ϕ̄(x) is moved out of WM and towards WR. Then, using the first order Taylor approximation

of ϕ̄(x) we have:

ˇ̄ϕ(x) =P0R
′

0ϕ̄(x)
∼= P0R

′

0(ϕ̄(x0) + ∆x′∇ϕ̄(x0)) = ϕ̄(x0)

˜̄ϕ(x) =ϕ̄(x)− ˇ̄ϕ(x) ∼= ∆x′∇ϕ̄(x0) 6= 0 ∈WR (disturbance detection)

ỹ1 =y̌ − ŷ = C0D
′

0y0 −C0R
′

0
ˇ̄ϕ(x) = 0

ỹ2 =y − y̌ = y0 −C0D
′

0y0 = 0

(B.3)
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On the other hand, if assuming that ∆x is such that ∆x′∇ϕ̄(x0) ∈ WM then ˇ̄ϕ(x) ∼= P0R
′
0(ϕ̄(x0) +

∆x′∇ϕ̄(x0)) 6= ϕ̄(x0) affecting a different residue as follows:

˜̄ϕ(x) = (I−P0R
′

0) ϕ̄(x)
∼= (I−P0R

′

0) (ϕ̄(x0) + ∆x′∇ϕ̄(x0)) = 0

ỹ1 = C0D
′

0y0 −C0R
′

0ϕ̄(x)
∼= −C0R

′

0∆x′∇ϕ̄(x0) 6= 0 ∈ SMY (disturbance detection)
(B.4)

Furthermore, since τ2α ≫ δ2x then D ˇ̄ϕ/τ
2
α ≪ || ˜̄ϕ(x)||2/δ2x when || ˇ̄ϕ(x)||2 = || ˜̄ϕ(x)||2, hence the statistic

IWM is not affected. Therefore, the residues ˜̄ϕ(x) and ỹ1 are used to detect this disturbance.

• Class 2 (Sensor faults associated to y)

y = y0 +∆y (disturbed measurements) (B.5)

where y0 is the fault-free part that follows the normal correlation structure. The disturbance is

analyzed by assuming that ∆y ∈ SRY [28]. Hence, the disturbance track from generation to detection

is as follows:

y̌ =C0D
′

0y = C0D
′

0y0 +C0D
′

0∆y = y0

ỹ2 =y − y̌ = y0 +∆y − y0 = ∆y 6= 0 ∈ SRY (disturbance detection)
(B.6)

thus, a measurement disturbance is sent to the residual space SRY . Note that, t = R′0ϕ̄(x) = t0 then

˜̄ϕ(x) = 0 and ỹ1 = y̌ −C0t = 0.

• Class 3 (Changes in the nonlinear correlation structure of x) A change in the correlations of x can be

thought as an unknown functional change ∆f(·) = f(·)− f0(·), i.e.

x = f(t0) = f0(t0) + ∆f(t0) = x0 +∆f(t0) (disturbed measurements) (B.7)

Now the Taylor approximation of the mapped measurements is given by

ϕ̄(x) = ϕ̄(x0 +∆f(t0)) ∼= ϕ̄(x0) + ∆f(t0)
′∇ϕ̄(x0) (B.8)

The changes in ϕ̄(x) shown in Eq. (B.8) can belong to both subspaces WM and WR, thus generating

the following no-null residual values

˜̄ϕ(x) ∼= (I−P0R
′

0) (ϕ̄(x0) + ∆f(t0)
′∇ϕ̄(x0)) = (I−P0R

′

0)∆f(t0)
′∇ϕ̄(x0)) 6= 0 ∈WR

ỹ1
∼= y̌ −C0R

′

0 (ϕ̄(x0) + ∆f(t0)
′∇ϕ̄(x0)) = −C0R

′

0∆f(t0)
′∇ϕ̄(x0) 6= 0 ∈ SMY

(B.9)

Since τ2α ≫ δ2x then D ˇ̄ϕ/τ
2
α ≪ || ˜̄ϕ(x)||2/δ2x when || ˇ̄ϕ(x)||2 = || ˜̄ϕ(x)||2, hence the statistic IWM is not

affected. Then, the residues ˜̄ϕ(x) and ỹ1 are used to detect the disturbance.
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• Class 4 (Changes in the intrinsic relations) The identity matrix I at Fig. 2 is the core place where

the KPLS model ties up input with output internal variables. Let us assume that an unknown change

occurs in this relationship, i.e.

y̌ = C0(I+∆I)t0 = y0 +C0∆It0 (disturbed measurements). (B.10)

whilst x = f0(t0) = x0. Analyzing the effects on the statistics

ỹ1 = y̌ − ŷ = (y0 +C0∆It0)−C0R
′

0ϕ̄(x) = C0∆It0 6= 0 ∈ SMY (disturbance detection), (B.11)

while the remaining statistics are not affected.

• Class 5 (Changes in the correlation structure of y) Let us assume an unknown change in the matrix

C0, i.e.

y = (C0 +∆C)t0 = y0 +∆Ct0 (disturbed measurements). (B.12)

Hence, the disturbance detection is characterized by

y̌ = C0D
′

0(y0 +∆Ct0) = y0 +C0D
′

0∆Ct0

ỹ2 = (y0 +∆Ct0)− (y0 +C0D
′

0∆Ct0) = (I−C0D
′

0)∆Ct0 6= 0 ∈ SRY

ỹ1 = (y0 +C0D
′

0∆Ct0)−C0R
′

0ϕ̄(x) = C0D
′

0∆Ct0 6= 0 ∈ SMY .

(B.13)

• Class 6 (Significant change in the process population parameters) This anomaly produces measurements

that follow the correlation structure captured by the KPLS model, and can be represented by changes

in the original process parameters t0 ∼ N(0,Λ0). Let us assume a displacement of E{t0} from 0 to

µt 6= 0, or a significant change in the variability from Λ0 to Λt, thus producing an arbitrary distribution

N(µt,Λt). Hence, the abnormal event produces,

t = t0 +∆t ∼ N(µt,Λt) (disturbed measurements), (B.14)

with a magnitude such that the T 2
t = ||Λ

−1/2
0 t||2 = ||Λ

−1/2
0 (t0 +∆t)||2 ≥ τ2α (disturbance detection).

The previous analysis is summarized in Table 1, where the highlighted discrimination patterns indicate

the statistics that are activated as soon as the measurements (x,y) bring information about a localized

model mismatch.

AppendixC. Partial derivatives of the contributions

The partial derivatives of IWM , IWR, and IRY 1, are the following:

∂IWM

∂xi
=

(N − 1)2

τ2α
k̄′(x)VV′

∂k̄(x)

∂xi
, (C.1)

∂IWR

∂xi
=

1

δ2x
(−2e′

∂k̄(x)

∂xi
− 4k̄′(x)K̄VV′

∂k̄(x)

∂xi
+ 2k̄′(x)VT′K̄TV′

∂k̄(x)

∂xi
), (C.2)

∂IRY 1

∂xi
=

1

δ2y1

(−2y′DC′CV′
∂k̄(x)

∂xi
+ k̄′(x)VC′CV′

∂k̄(x)

∂xi
), (C.3)
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where ∂k̄(x)/∂xi = [∂k̄(x1,x)/∂xi, . . . , ∂k̄(xN ,x)/∂xi]
′. Given that k̄(xj ,x) = k(xj ,x)−k′(xj)e−k′(x)e+

e′Ke (see Eq. (7)), the elements of this vector are given by,

∂k̄(xj ,x)

∂xi
=

∂k(xj ,x)

∂xi
−

1

N

N
∑

r=1

∂k(xr,x)

∂xi
. (C.4)

where ∂k(xj ,x)/∂xi = (−2/h)(xj,i − xi) exp
(

−||xj − x||2/h
)

for a Gaussian kernel function. The partial

derivatives of IRY 1 and IRY 2 respect to yi are given by,

∂IRY 1

∂yi
=

1

δ2y1

(2ξ′iDC′CD′y − 2ξ′iDC′CV′k̄(x)), (C.5)

∂IRY 2

∂yi
=

2

δ2y2

ξ′i (I−CD′)
′
(I−CD′)y, (C.6)

where ξ′i = [0, . . . , 1, . . . , 0] is a vector with zeros entries except for the location i, which takes an unitary

value. Then, the contributions of any variable xi or yi to the component statistics are computed via Eq.

(33) and are denoted by cIWM , cIWR, cIRY 1, and cIRY 2; respectively.
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