

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Proyecto Nº: PFC 1805A

Autores: Lapalma, Guillermo.

Kautz, Diego.

Tutor: Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Resumen

Debido a la necesidad de mejorar el sistema de elevación de barcos que presenta el puerto de Colón, Entre Ríos, se da paso a la realización de este proyecto, el cual consiste en el diseño de un sistema de elevación modernizado, simplificado y seguro en el izaje y su manejo.

El sistema actual de izaje de barcos cuenta con una grúa móvil con una capacidad de veinte toneladas, la cual se encuentra en una zona frecuentemente inundable, haciendo necesario mover la grúa cada vez que esto ocurre, con todos los problemas que esto acarrea. El paso del tiempo sobre la grúa ha llevado a que el mecanismo de la misma sea totalmente obsoleto en la actualidad, cuenta con frenos mecánicos de cinta los cuales ya han presentado fallos, a su vez estructuralmente presenta corrosión, envejecimiento y desgaste en sus partes constructivas lo que puede llegar a acarrear en un futuro cercano problemas de gran costo económico para el puerto. Debido a la complejidad que presentan los mandos mecánicos, es necesario contar con un operario que se encuentre familiarizado con este tipo de grúa.

Para solucionar los problemas antes mencionados, se propuso un diseño de grúa tipo Derrick la cual presenta una capacidad de carga de seis toneladas (Más que suficiente para el tipo de embarcaciones que el puerto de Colón maneja). Constructivamente se ha simplificado el diseño lo más posible, generando una grúa simple en su montaje y desmontaje, fácil en su manejo, robusta estructuralmente y de simple mantenimiento. Se diseñó para que el sistema de elevación se encuentre aproximadamente a nueve metros de altura, junto con el sistema de comando y potencia estancos, lo cual asegura la protección de los mecanismos en juego frente a la inundación.

Abstract

To begin with, the existing lifting system for ships located at the port of Colón, Entre Ríos, needs many improvements and modernizations. It is in this frame, that this project takes place with the objective of designing a new, simplified and safe lifting system which complies with the necessities of the users of this port.

First of all, the system that is currently used has a mobile crane with a lifting capacity of twenty tons, which is located in an area that is frequently flooded. This makes the crane being able to be re-positioned a must, with all the issues that this carries with.

Secondly, the aging of the current crane has rendered its mechanisms completely useless. Furthermore, its band brakes have already shown flaws, while the structure has visible corrosion, aging and wear. Each of these malfunctions could lead to big economical costs in the near future. On top of all these issues, the complexity of the mechanical commands requires an experienced operator to operate it.

In order to have the previously mentioned issues solved, the design of a Derrick type crane was proposed. This kind of crane can handle loads of up to six tons, which is more than enough considering the weight of the ships that are going be using the crane.

One of the main objectives was to design a crane that had easy assembling and disassembling processes, a user-friendly command, simple maintenance and was structurally strong. The lifting system was calculated for it to be set up at around nine meters high from the ground, altogether with the waterproof command and power systems, assuring the protection and sturdiness of the mechanisms against floods and adverse weather conditions.

ÍNDICE GENERAL.

- 1. C-PFC-1805A -INTRODUCCION Y SITUACION PROBLEMÁTICA
- 2. D-PFC-1805A OBJETIVOS ALCANCES Y PLAN DE TRABAJOS
- 3. E-PFC-1805A INGENIERIA BASICA
- 4. F-PFC-1805A INGENIERIA DE DETALLE
- 5. G-PFC-1805A MEMORIAS DE CÁLCULO
- 6. H-PFC-1805A- ANEXOS COMPLEMENTARIO

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Introducción y situación problemática.

Proyecto Nº: PFC 1805A

Autores: Lapalma, Guillermo.

Kautz, Diego.

Tutor: Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

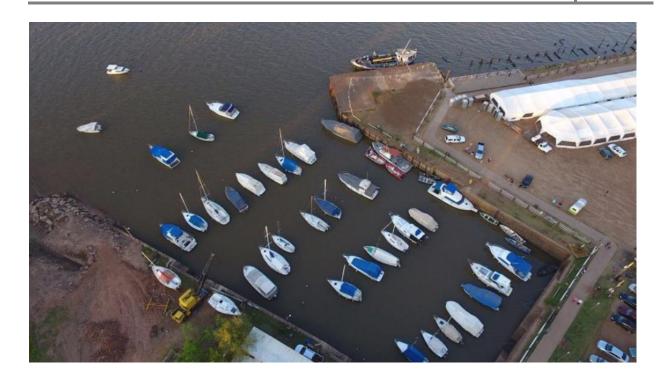
Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

oducción y situación problemática	1
co teórico y estado del arte	2
ecedentes	3
rúas pórtico	
rúa Luffing o de puerto	4
rúa giratoria de columna giratoria	5
rúa giratoria de columna fija	5
arros elevadores	6
rúa móvil	

Introducción y situación problemática.

Se plantea por parte de las autoridades del puerto de Colón la posibilidad de renovar el sistema actual de izaje de barcos. Dicho sistema con el paso de los años se ha vuelto inseguro tanto para los barcos que deben ser sacados del agua como también para el personal encargado de manejar la grúa, otro problema importante que posee el actual sistema es la necesidad de al menos un operario calificado para hacer funcionar y manejar la grúa, siendo este un costo económico que el puerto de Colón debe pagar.


La grúa en cuestión posee características constructivas sobredimensionadas (20000 kg) para las embarcaciones que serán sacadas (máximo 6000 kg), generando una ocupación de espacio el cual podría estar destinado a otros fines.

Finalmente la grúa se encuentra en una zona inundable, por lo que es necesario retirarla del lugar cada vez que el río crece generando gastos de combustible, necesidad de personal calificado y un lugar apropiado para el guardado.

Se calculará un sistema de izaje acorde a los requerimientos del personal del puerto de Colón, los cuales son los siguientes:

- Carga máxima a izar 6000 kg.
- Facilidad de operación.
- Resistente a las inundaciones.
- Facilidad en el desmontaje.
- Bajo costo.
- Seguridad en el izaje.

Preparó:	Revisó:	Aprobó:	Página 1 de 8
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

Marco teórico y estado del arte.

El marco normativo actual regula en general todo lo inherente al personal, su calificación y la seguridad del mismo.

En nuestro país las normas que rigen estos aspectos con las normas IRAM, las cuales no posee gran información de los aspectos constructivos que debe poseer el sistema de izaje, por lo que para el cálculo se utilizara la bibliografía nombrada en el apartado correspondiente.

Por ultimo existen normativas europeas las cuales hablan de la clasificación de los diferentes aparatos de elevación, como también de la importancia a la hora del cálculo de las cargas adicionales debido al viento tanto en la etapa de operación como también en la de reposo.

Las normas a utilizar se resumen a continuación:

UNE 58-112-91	Grúas y aparatos de elevación – Clasificación
UNE 58-113-85	Grúas – Acción del viento.
IRAM 3927	Seguridad en equipos de izaje. Grúas hidráulicas de pluma articulada
	montadas sobre vehículos o en superficie. Características
	constructivas, operación, inspecciones, ensayos y mantenimiento.
IRAM 3920	Seguridad en equipos de izaje. Condiciones generales para la
	operación y calificación del personal.

Preparó:	Revisó:	Aprobó:	Página 2 de 8
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Antecedentes

En la actualidad se pueden ver diferentes tipos de equipos para elevar embarcaciones, estos se clasifican de la siguiente manera:

Grúas pórtico

La grúa pórtico es un aparato de elevación compuesto por dos o cuatro postes que elevan una estructura puente por donde circula el mecanismo de elevación, el movimiento longitudinal se realiza a nivel del suelo a través de unos paquetes de rodadura situados en las partes inferiores de los postes. El movimiento transversal se lleva a cabo en la viga puente, elevada, sobre unos carriles metálicos dispuestos a tal efecto. El movimiento vertical se realiza a través del mecanismo de elevación situado en el carro móvil.

Preparó:	Revisó:	Aprobó:	Página 3 de 8
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

Grúa Luffing o de puerto

Las grúas de puerto presentan cuatro movimientos fundamentales

- Movimiento de cambio de alcance, normalmente este movimiento suele encontrarse en la misma pluma.
- Movimiento de giro de la grúa, se utilizan fundamentalmente rodillos o también rodamientos de bolas de gran tamaño los cuales trabajan bajo el movimiento de un sistema de tornillo sin fin y corona. Este sistema es accionado por motores eléctricos.
- Movimiento de elevación de la carga, por necesidades constructivas este está ubicado en el interior de la cabina, en la parte inferior de la estructura giratoria. A partir del tambor, el cable recorre diversas poleas, hasta llegar al gancho o aparejo.
- Movimiento de traslación del pórtico de sustento, el movimiento de traslación de estas estructuras, generalmente se da sobre rieles y es generado por motorreductores eléctricos acoplados a cada una de las ruedas de la grúa.

Si bien este tipo de grúas es común en puertos para el manejo de cargas de normalmente de hasta 30 toneladas, se suelen ver en los astilleros, donde su carga máxima se ve elevada hasta 50 toneladas y presentan un alcance máximo de 30 metros.

Preparó:	Revisó:	Aprobó:	Página 4 de 8
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Grúa giratoria de columna giratoria

Este tipo de aparatos de elevación consiste básicamente en una pluma giratoria, solidaria a una columna articulada verticalmente en sus extremos inferior y superior.

El movimiento de giro se realiza a través de dos cojinetes dispuestos en los soportes que articulan la columna. El movimiento de traslación del carro se lleva a cabo a lo largo de la parte superior de la pluma. El movimiento de elevación se realiza a través del carro o polipasto.

Este tipo de grúas se utilizan en naves de trasbordo, almacenes, puertos, talleres de máquinas, herramientas y transporte de piezas. Su capacidad máxima es alrededor de 6 toneladas. El máximo alcance alrededor de los 8 metros. Una limitación importante es la necesidad de ubicar el aparato próximo a una pared para el anclaje superior de la columna. Es echo imposibilita el giro completo de la pluma.

Grúa giratoria de columna fija

Este tipo de grúa consta de una estructura formada por una pluma y un soporte de contrapeso. La citada estructura está anclada a una columna fija en dos puntos situados a diferentes alturas. La columna esta fija al suelo debido a un rígido empotramiento a un macizo de anclaje.

ĺ	Preparó:	Revisó:	Aprobó:	Página 5 de 8
	Lanalma Guillermo Kautz Diego.	GP = 01/10/2018		

Se utiliza en el servicio ferroviario, patios de fábricas y puertos. Su capacidad máxima alcanza las 5 toneladas, su alcance máximo es de 5 metros. Presenta la ventaja de que su anclaje se realiza en el suelo, de manera que la pluma puede girar 360°.

El contrapeso se dispone con objeto a disminuir el momento de vuelco y mejorar, así, la estabilidad de la grúa.

Carros elevadores

Se trata de vehículos a 4 o más ruedas, que están equipados con un mecanismo elevador que lleva incorporadas dos barras metálicas orientadas hacia delante y el motor y contrapesos en la parte posterior, las dos barras sirven para sujetar la cama elevadora. Existe una gran variedad de modelos tanto de formas, como de capacidades de elevación, de 0,5 toneladas hasta aproximadamente 7 toneladas. Presentan dos variedades de motorización, eléctricos o de combustión interna, pero todos ellos tienen la dirección en el eje trasero.

Preparó:	Revisó:	Aprobó:	Página 6 de 8
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Grúa móvil.

En obras publicas de construcción y en operaciones de elevación y transporte donde se precisa un aparato por un corto espacio de tiempo es muy utilizado el vehículo grúa. Un vehículo, caracterizado por poseer un chasis especialmente resistente, aloja en su parte posterior un aparato constituido básicamente por una pluma, fija o extensible. En un vehículo grúa existen los siguientes movimientos:

- Movimiento de vehículo convencional por medio de neumáticos.
- Movimiento de extensión de la pluma.
- Movimiento de elevación de la pluma.
- Movimiento de giro de la estructura giratoria.
- Movimiento de elevación de la carga.
- Movimiento de extensión del contrapeso.
- Movimiento de extensión de las vigas estabilizadoras.
- Movimiento de extensión de cilindros verticales de apoyo.

Los motores que existen en el aparato son del tipo térmico alimentados por gasoil. Una bomba hidráulica genera presión en un circuito que alimenta los cilindros de extensión y verticales de apoyo, los cilindros de extensión del contrapeso, la junta giratoria de la estructura y el reductor de planetarios de giro del tambor de elevación de la carga.

Preparó:	Revisó:	Aprobó:	Página 7 de 8
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Luego de que la estructura está estabilizada pueden comenzar las operaciones de elevación por medio de la extensión y elevación de la pluma, giro de la estructura giratoria y elevación de la carga.

Preparó:	Revisó:	Aprobó:	Página 8 de 8	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Objetivos, alcances y plan de trabajo.

Proyecto Nº: PFC 1805A

Autores: Lapalma, Guillermo.

Kautz, Diego.

Tutor: Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

Objetivos	1
Alcances	1
mpacto	
·	
Plan de Trabajo	2

Objetivos

El objetivo de este proyecto final de carrera (PFC) es el de diseñar un sistema de elevación para barcos de hasta 6000 kg a ser instalado en el puerto de Colón, Entre Ríos, bajo los requisitos demandados por los encargados de dicho puerto, los cuales se mencionan en la introducción del PFC y cumpliendo con la normativa de higiene y seguridad actual para el manejo de equipos de izaje.

Alcances

Los alcances del PFC son los siguientes:

- Realizar la ingeniería de detalle del sistema de elevación de barcos.
- Realizar la ingeniería de detalle de la percha de izaje.
- Se evaluará el costo del sistema de elevación y la percha de izaje, tanto para la producción como para el montaje de los mismos.
- No se harán los cálculos de fundación que el sistema requiera ya que es incumbencia de ingeniería civil.
- No se diseñará el sistema de suministro eléctrico que el mecanismo requiera.

Impacto

El PFC generará en el puerto de Colón un impacto positivo tanto para los operarios de la grúa como para los usuarios del sistema de elevación de barcos, generando los siguientes beneficios.

Seguridad e Higiene Mejoramiento en el manejo de la maquinaria.

Disminución de riesgo en la elevación de barcos.

Económico Evitar daños y contratiempos operativos legales.

Mayor número de barcos fuera del agua simultáneamente.

Menor costo de operación. Flexibilidad del sistema.

Preparó:	Revisó:	Aprobó:	Página 1 de 2
Lanalma Guillermo Kautz Diego	GP - 01/10/2018		

D-PFC-1805A - Ingeniería y diseño de grúa para elevar barcos. OBJETIVOS, ALCANCES Y PLAN DE TRABAJO

Plan de Trabajo

- 1. Relevamiento de instalación actual.
- 2. Estudio de la Problemática.
- 3. Estudio de normativa vigente.
- 4. Propuesta de Ingeniería Básica.
- 5. Ingeniería de detalle de la instalación de acuerdo a alcances.

UNIVERSIDAD TECNÓLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Ingeniería Básica.

Proyecto Nº: PFC 1805A

Autores:

Lapalma, Guillermo.

Kautz, Diego.

Tutor:

Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido

Adopción de tipo constructivo de grúa a utilizar	1
Diseños propuestos	1
Diseño de grúa soportada por puntales rígidos	1
PM1 – Pluma de izaje	4
PM2 – Puntal	
PM3 – Puntales rígidos	4
PM4 – Tensor.	5
SE1 – Sistema de elevación de carga.	5
Diseño de grúa soportada por cables	7
PM3 – Vientos de sustento.	9
SE2 – Sistema de movimiento de la pluma sobre el eje vertical	10
Elección final de diseño	10

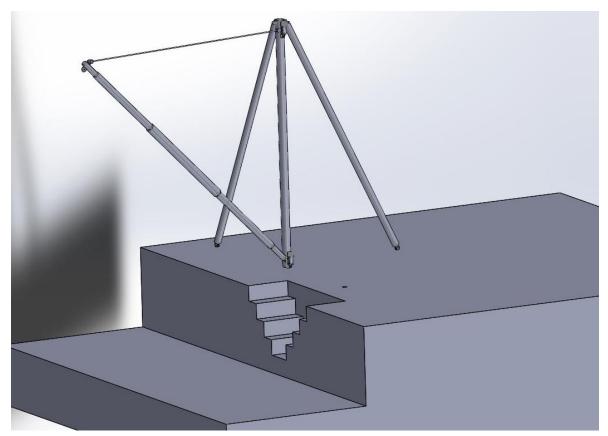
Adopción de tipo constructivo de grúa a utilizar.

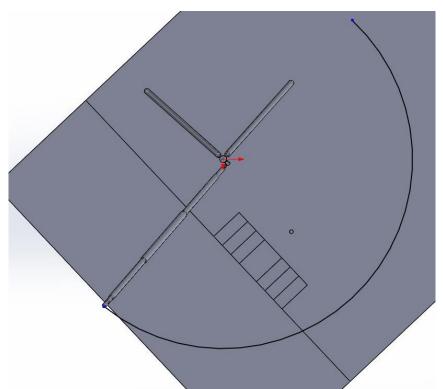
Analizando los requerimientos de las autoridades del puerto de Colón se optó por el sistema de grúa tipo Derrick, la cual cumple con una gran cantidad de los requerimientos antes mencionados, por ejemplo:

- Alcance en carga de izaje entre 5000 y 7000 kg.
- Fácil montaje desmontaje.
- Muy bajo costo comparado con las demás alternativas.
- Simple y robusta.
- No posee sistemas electromecánicos complejos haciéndolo resistente a inundaciones y facilitando su desmontaje.
- Es muy utilizada como sistema para izar embarcaciones en los puertos de la zona.

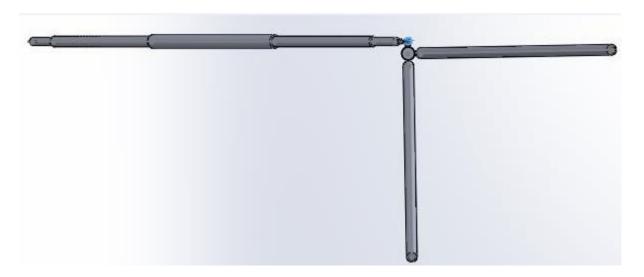
Diseños propuestos.

Para cumplir con dichos requisitos se plantearon dos posibles alternativas las cuales fueron enviadas a las autoridades del puerto de Colón para la elección del diseño que mejor se ajuste a sus requerimientos.

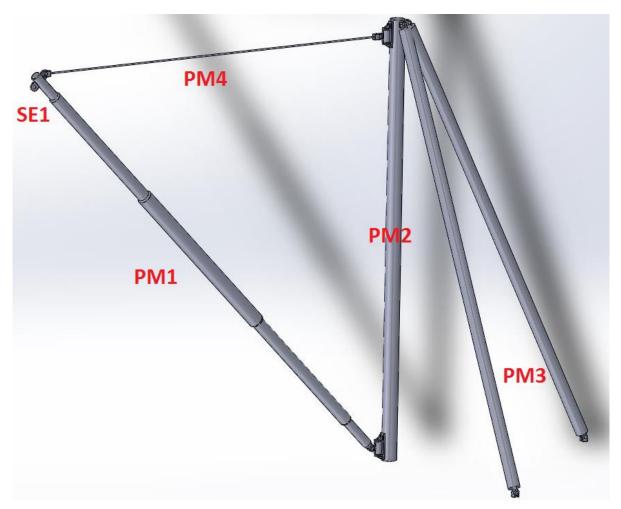

Diseño de grúa soportada por puntales rígidos.


Este diseño se propone colocar uno de los lados del espacio disponible, habilitando el espacio al costado y hacia atrás como lugar de trabajo para las reparaciones que sean necesarias realizar a los barcos fuera del agua. Hay que destacar que este diseño posee un ángulo de giro de 180°, permitiendo maniobras. Cabe aclarar que este diseño es más costoso que el que se propondrá más adelante.

El diseño es el siguiente:

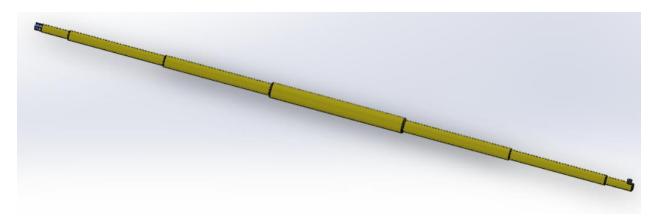

Preparó:	Revisó:	Aprobó:	Página 1 de 10
Lapalma, Guillermo: Kautz, Diego,	GP - 01/10/2018		

E-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA BÁSICA



Preparó:	Revisó:	Aprobó:	Página 2 de 10
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

A continuación se muestra un bosquejo de la grúa en la que se mencionan las partes constructivas principales de la misma.



Preparó:	Revisó:	Aprobó:	Página 3 de 10
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

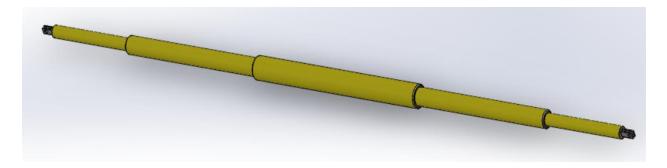
Donde:

PM1 - Pluma de izaje.

Este elemento constructivo se encuentra construido en tramos de diferentes secciones de caños, con el fin de disminuir el peso de la estructura, sin disminuir sus características mecánicas. Sobre esta pieza irá montado el sistema de elevación de carga SE 1. En su parte inferior se encontrará un sistema de rotulas que le permite tomar movimientos verticales y desplazarse horizontalmente.

PM2 - Puntal.

Esta es la pieza estructural principal de la grúa ya que es la encargada de soportar gran parte de los esfuerzos producidos en el momento del izaje y transmitir dichos esfuerzos hacia el macizo de la base y los vientos de sustento.



PM3 - Puntales rígidos.

Son los encargados de transmitir los esfuerzos tanto de tracción como de compresión desde la parte superior del puntal hacia sus macizos de anclaje correspondientes, su construcción es de caños Mannesmann y se encuentran separados uno de otro en un ángulo de 90.

Preparó:	Revisó:	Aprobó:	Página 4 de 10
Lanalma Guillermo Kautz Diego	GP = 01/10/2018		

E-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA BÁSICA

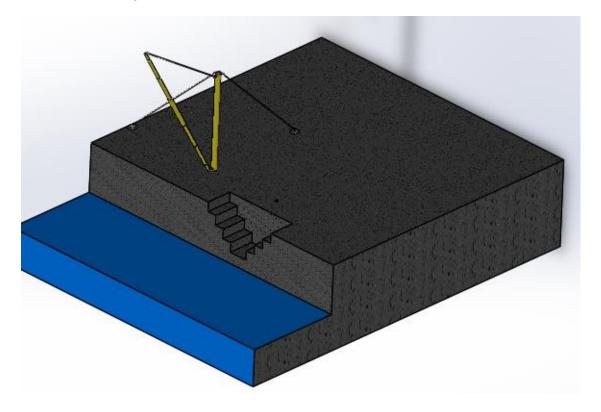
PM4 - Tensor.

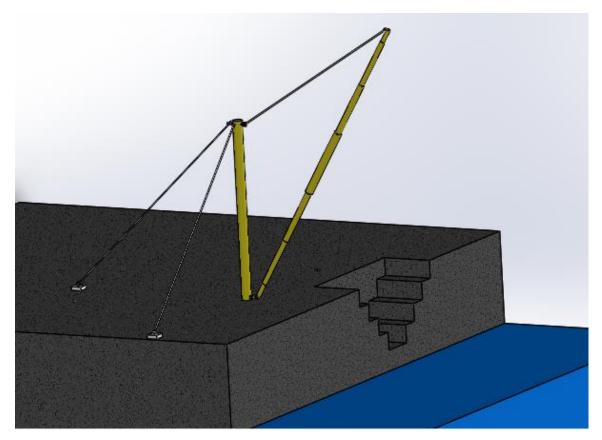
Este elemento constructivo es el encargado de variar el ángulo vertical que posee la pluma de izaje y a su vez transmitir esfuerzos desde la pluma de izaje hacia el puntal. Se encuentra construido de cables de acero.

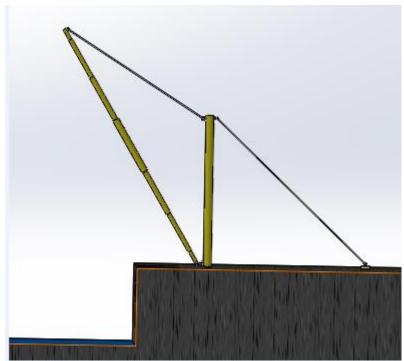
SE1 - Sistema de elevación de carga.

Es el encargado de elevar las embarcaciones desde el agua hasta la altura deseada. Cumple con los requerimientos de seguridad e higiene en el izaje de cargas, se seleccionará de un fabricante nacional para asegurar servicio postventa, mantenimiento y disponibilidad de repuestos.

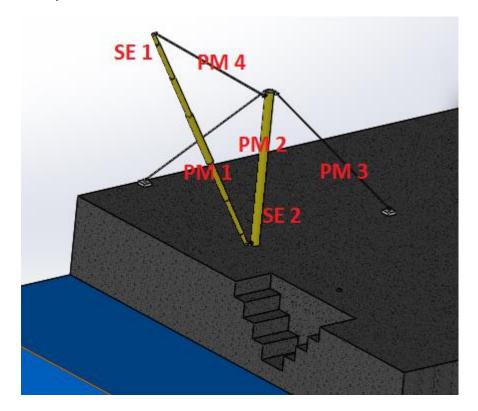
Preparó:	Revisó:	Aprobó:	Página 5 de 10
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		


E-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA BÁSICA


Diseño de grúa soportada por cables.


Este diseño se propone colocar a un lado del espacio libre disponible, habilitando el resto del espacio como playa de maniobras y lugar de trabajo para las reparaciones que sean necesarias realizar a los barcos fuera del agua. Hay que destacar que este diseño posee un ángulo de giro de 90°.

El diseño es el siguiente:


Preparó:	Revisó:	Aprobó:	Página 7 de 10
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

Preparó:	Revisó:	Aprobó:	Página 8 de 10
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

A continuación se muestra un bosquejo de la grúa en la que se mencionan las partes constructivas principales de la misma, son todas puy parecidas a las del diseño anterior salvo por las partes PM3 y SE2.

Donde:

PM3 - Vientos de sustento.

Son los encargados de transmitir el esfuerzo de la parte superior del puntal hacia sus macizos de anclaje correspondientes, su construcción es de cables de acero y se encuentran separados uno de otro en un ángulo de 90° para posibilitar el movimiento de la pluma de izaje en dicho ángulo.

Preparó:	Revisó:	Aprobó:	Página 9 de 10
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

SE2 - Sistema de movimiento de la pluma sobre el eje vertical.

Es el encargado de posicionar la pluma de izaje en cualquier punto de su recorrido vertical. Cumple con los requerimientos de seguridad e higiene en el izaje de cargas, se seleccionará de un fabricante nacional para asegurar servicio postventa, mantenimiento y disponibilidad de repuestos.

Elección final de diseño.

Luego de explicar cada uno de los diseños y las partes constructivas de los mismos como también de las ventajas y desventajas que cada uno posee, las autoridades del puerto de Colón optaron por el diseño que está soportado por puntales rígidos, por lo que en los apartados siguientes se procederá con el cálculo en detalle del mismo.

Preparó:		Revisó:	Aprobó:	Página 10 de 10
Lanalma Guille	armo: Kautz Diego	GP = 01/10/2018		

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Ingeniería en Detalle.

Proyecto Nº: PFC 1805A

Autores:

Lapalma, Guillermo.

Kautz, Diego.

Tutor:

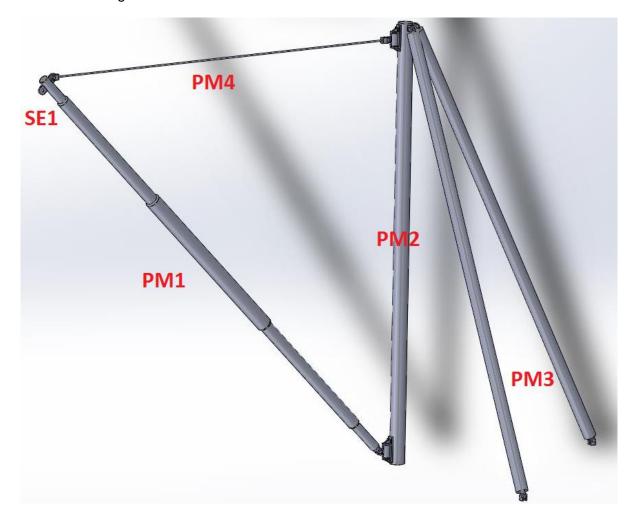
Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Contenido


Diseño de grúa soportada por puntales rígidos	1
PM1 – Pluma de izaje	1
PM1	2
ER1	3
ER5	4
PM2 – Puntal	5
PM2	6
ER4	7
ER5	8
ER5 – 1	8
ER5 – 2	9
ER5 – 3	10
ER5 – 4 y ER5 - 5	12
ER5 – 6	14
PM3 – Vientos rígidos	15
PM3	16
ER3	17
Rigidizadores (Rig)	18
PM4 – Tensor	19
Pernos	21
PE1	21
PE2	22
SE1 – Sistema de elevación de carga	22
PM5	
PM6 – Cables tensor	26
ER7	29
ER8	30
Pernos	30
PE3	
PF4	31

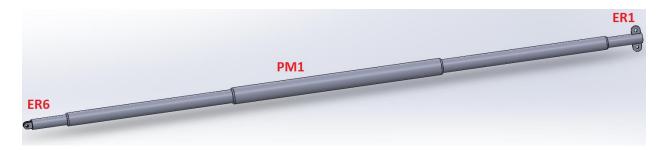
Eslingas	31
Instalación eléctrica	32
Cable	32
Caja estanca.	34
Protecciones	34
Llave termomagnetica	34
Llave termomagnetica del polipasto	35
Llave termomagnetica de las luminarias.	36
Llave disyuntora.	37
Pintura	38
Resumen cargas actuantes sobre la estructura	39

Diseño de grúa soportada por puntales rígidos.

Este diseño se propone colocar uno de los lados del espacio disponible, habilitando el espacio al costado y hacia atrás como lugar de trabajo para las reparaciones que sean necesarias realizar a los barcos fuera del agua. Hay que destacar que este diseño posee un ángulo de giro de 180°, permitiendo maniobras.

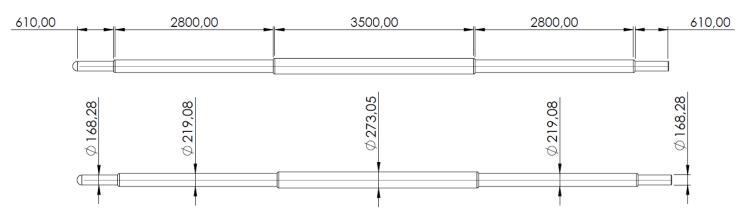
El diseño es el siguiente:

Donde:


PM1 - Pluma de izaje.

Este elemento constructivo se encuentra construido en tramos de diferentes secciones de caños, con el fin de disminuir el peso de la estructura, sin disminuir sus características mecánicas. Sobre esta pieza irá montado el sistema de elevación de carga SE 1 a un lado del herraje ER1 y en su

Preparó:	Revisó:	Aprobó:	Página 1 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		


F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

otro extremo se fijará el cable tensor PM4. En su parte inferior se encuentra un par de planchuelas ER6 que le permite tomar movimientos verticales y su unión con el puntal PM2.

PM1.

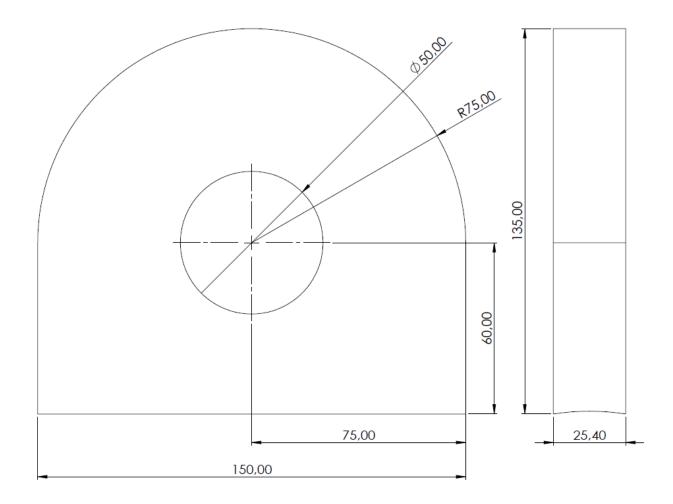
Está construido de caños con costura ASTM A53 Grado A Schedule 40 de 10", 8" y 6" con la siguiente distribución:

Los datos de espesor y de peso por metro del material se pueden ver en la siguiente tabla:

Preparó:	Revisó:	Aprobó:	Página 2 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

CAÍ	vos (COI	N Y SI	N CO	STUR	A									
						S	C F	I E	D	U	L E	S			
	IETRO IINAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73 0.37	2.41 0.47					1.73 0.37		2.41				
1/4	13.7	ESP KG/M	2.24 0.63	3.03					2.24 0.63		3.03 0.80				
3/8	17.1	ESP KG/M	2.31 0.84	3.20 1.10					2.31 0.84		3.20 1.10				
1/2	21.3	ESP KG/M	2.77	3.73 1.62	7.47				2.77		3.73 1.62				4.78 1.95
3/4	26.7	ESP KG/M	2.87 1.69		7.82 3.64				2.87 1.69		3.91				5.56 2.90
1	33.4	ESP KG/M	3.38 2.50	4.55 3.24	9.09 5.45	2.77			3.38 2.50		4.55 3.24				6.35 4.24
1 1/4	42.2	ESP KG/M	3.56 3.39	4.85	9.70	2.77			3.56 3.39		4.85 4.47				6.35 5.61
1 1/2	48.3	ESP KG/M	3.68 4.05	5.08	10.16	2.77 3.11			3.68 4.05		5.08 5.41				7.14 7.25
2	60.3	ESP KG/M	3.91	5.54 7.48	11.07	2.77			3.91 5.44		5.54 7.48				8.74 11.11
2 1/2	73.0	ESP KG/M	5.16	7.01	14.02	3.05			5.16 8.63		7.01				9.53
3	88.9	ESP KG/M	5.49	7.62	15.24 27.68	3.05 6.46			5.49 11.29		7.62				11.13
3 1/2	101.6	ESP KG/M	5.74	8.08	27.00	3.05			5.74		8.08				21.33
4	114.3	ESP KG/M	6.02	8.56	17.12 41.03	3.05			6.02		8.56		11.13		13.49
5	141.3	ESP KG/M	6.55	9.53	19.05	3.40			6.55		9.53		12.70 40.28		15.88 49.12
6	168.3	ESP KG/M	7.11 28.26	10.97	21.95	3.40			7.11		10.97		14.27 54.21		18.26 67.57
8	219.1	ESP KG/M	8.18 42.55	12.70	22.23 107.93	4.78	6.35	7.04 36.82	8.18 42.55	10.31 53.09	12.70	15.09 75.92	18.26 90.44	20.62	23.01
10	273.0	ESP KG/M	9.27	12.70	25.40 155.10	4.19	6.35	7.80 51.01	9.53	12.70 81.53	15.09	18.26 114.71	21.44 159.87	25.40 155.10	28.58
12	323.8	ESP KG/M	9.52 73.79	12.70 97.44	25.40 186.92	4.57	6.35	8.38 65.19	10.31	14.27 108.93	17.48 132.05	21.44	25.40 186.92	28.58 159.87	33.32 238.69
14	355.6	ESP KG/M	9.52 81.25	12.70	180.92	6.35	7.92 67.91	9.52 81.25	11.10 94.30	15.09	19.05	23.83	27.79 224.66	31.75	35.71 281.72

Se deben soldar tapas a ambos lados del mástil.

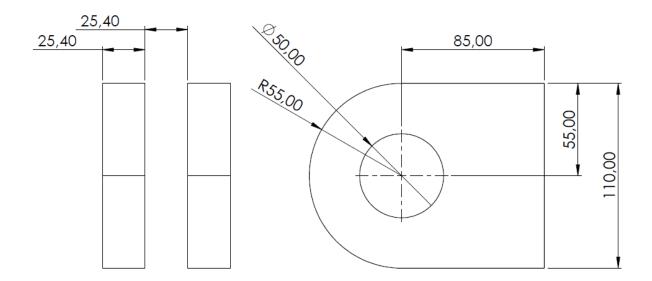

El soldado debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	5 mm.		
Longitud mínima del cordón:	325 mm.		
Longitud recomendada del cordón:	Todo el perímetro disponible.		

ER1

La grúa posee dos de estos herrajes, uno para la sujeción del cable tensor al mástil y otro para sostener el polipasto de elevación de carga. Están construidos de acero S.A.E 1020 y poseen la siguiente geometría:

Preparó:	Revisó:	Aprobó:	Página 3 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		


El soldado entre el herraje y el mástil debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

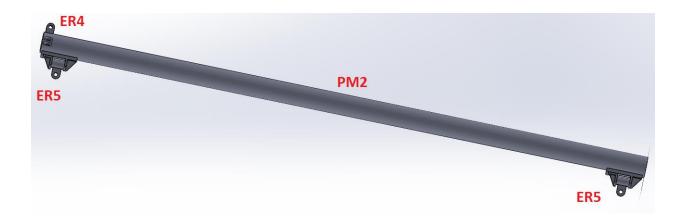
Espesor de soldadura mínimo:	5 mm.		
Longitud mínima del cordón:	262 mm.		
Longitud recomendada del cordón:	Todo el perímetro disponible.		

ER5

Este herraje es el encargado de vincular el mástil con la base giratoria que está unida al puntal. Está construido por dos planchuelas de acero S.A.E 1020 y poseen la siguiente geometría:

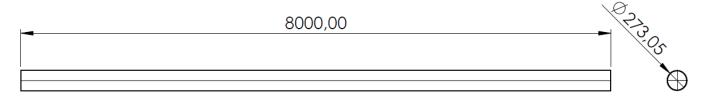
Preparó:	Revisó:	Aprobó:	Página 4 de 40
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

El soldado entre el herraje y el mástil debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:


Espesor de soldadura mínimo:	6,7 mm.		
Longitud mínima del cordón:	383 mm.		
Longitud recomendada del cordón:	Todo el perímetro disponible.		

PM2 - Puntal.

Esta pieza es la encargada de vincular el mástil con los vientos rígidos, a su vez soportar parte de la carga a izar. Está construida de caños de 10" acero ASTM A53 en su parte inferior y superior se encuentran los herrajes ER5 que son los encargados de guiar los movimientos del mástil y vincularlo con el puntal, en la parte superior, a 90 y 180 grados del herraje ER5 se encuentran los anclajes de los vientos rígidos al puntal, estos herrajes son los ER4.


Preparó:	Revisó:	Aprobó:	Página 5 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

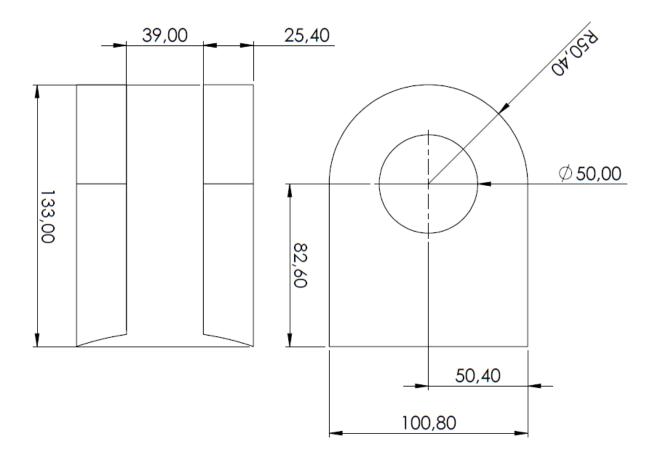
PM2.

Está construido de caños con costura ASTM A53 Grado A Schedule 40 de 10" con la siguiente distribución:

Los datos de espesor y de peso por metro del material se pueden ver en la siguiente tabla:

						S	C	H E	D	U	L E	S			
	METRO MINAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
5	141.3	15P 160/M	6.55	9.53	19.05 57.43	3.40			6.55		9.53		12.70 40.28		15.88
6	168.3	ESP HG/M	7.11 28.26	10.97	21.95	3.40			7.11 28.26		10.97		14.27		18.26
8	219.1	ESP HG/M	8.18	12.70	22.23	4.78 25.26	6.35	7.04	8.18	10.31	12.70	15.09	18.26	20.62	23.01
10	273.0	ESP. HG/M	9.27	12.70 81.53	25.40	4.19	6.35	7.80	9.53 61.92	12.70 81.53	15.09	18.26	21.44	25.40 155.10	28.58
12	323.8	ESP HQ/M	9.52	12.70 97.44	25.40 186.92	4.57 35.98	6.35	8.38 65.19	10.31 79.71	14.27	17.48	21.44	25.40 186.92	28.58	33.32
14	355.6	ESP HIS/M	9.52	12.70		6.35	7.92	9.52	11.10	15.09	19.05	23.83	27.79	31.75	35.7
16	406.4	ESP.	9.52	12.70		6.35	7.92	9.52 93.18	12.70	16.66	21.44	26.19	30.96	36.53	40.49
18	457.2	ESP HEAM	9.52	12.70		6.35	7.92	11.13	14.27	19.05	23.83	29.36	34.93	39.67	45.24
20	508.0	ESP HG/M	9.52	12.70		6.35	9.52	12.70	15.09 183.43	20.62	26.19	32.54	38.10	44.45 508.15	50.01
24	609.6	ESP HS/M	9.52	12.70 186.95		6.35	9.52	14.27	17.48	24.61 355.04	30.96 441.80	38.89	46.02 639.62	52.37 719.68	59.54 807.6
30	762.0	ESP HIGAN	9.52	12.70		7.92	12.70	-	19.05						

Preparó:	Revisó:	Aprobó:	Página 6 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

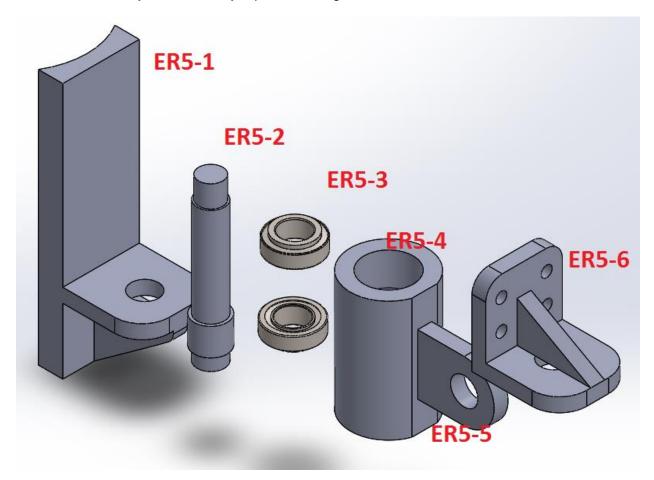

El soldado debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros para soldar tramos del mismo caño de 10" son los siguientes:

Espesor de soldadura mínimo:	6,7 mm.			
Longitud mínima del cordón:	353 mm.			
Longitud recomendada del cordón:	Todo el perímetro disponible.			

También se debe soldar una tapa en la parte superior del mástil.

ER4

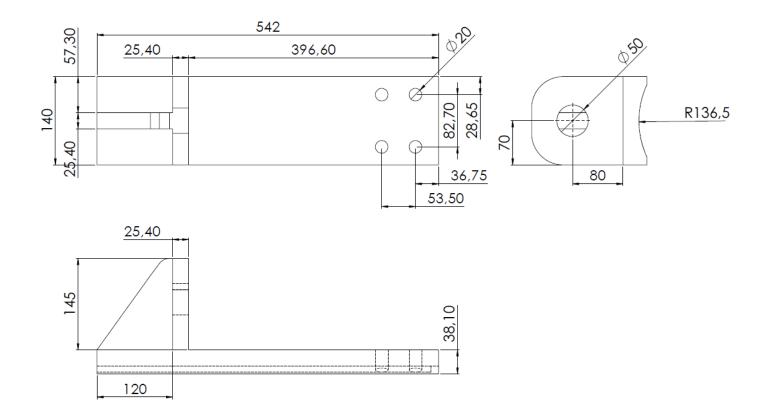
El puntal posee dos de estos herrajes, ubicados a 90 grados uno del otro, los cuales cumplen la función de vincular los vientos rígidos con el puntal. Están construidos de acero S.A.E 1020 y poseen la siguiente geometría:


Preparó:	Revisó:	Aprobó:	Página 7 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

El soldado entre el herraje y el puntal debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	6,7 mm.		
Longitud mínima del cordón:	383 mm.		
Longitud recomendada del cordón:	Todo el perímetro disponible.		

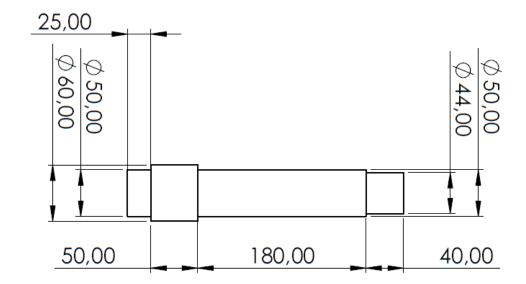
ER5


El puntal posee dos de estos herrajes, ubicados uno arriba y otro abajo. Son los encargados de posibilitar el giro del mástil. Están construidos de acero S.A.E 1020 en las planchuelas y de acero S.A.E 1045 en el eje, estos herrajes poseen la siguiente construcción:

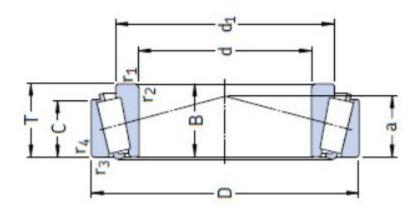
ER5 - 1

Esta pieza es la encargada de unir todos los demás elementos al puntal, está construida de acero S.A.E 1020 y posee la siguiente geometría:

Preparó:	Revisó:	Aprobó:	Página 8 de 40
Lanalma Guillermo Kautz Diego	GP = 01/10/2018		


El soldado del ala de la pieza debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	18 mm.			
Longitud mínima del cordón:	100 mm.			
Longitud recomendada del cordón:	Todo el perímetro disponible.			


ER5 - 2

Este eje, está construida de acero S.A.E 1045, las tolerancias se mostrarán en los planos de la pieza. La geometría es la siguiente:

Preparó:	Revisó:	Aprobó:	Página 9 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

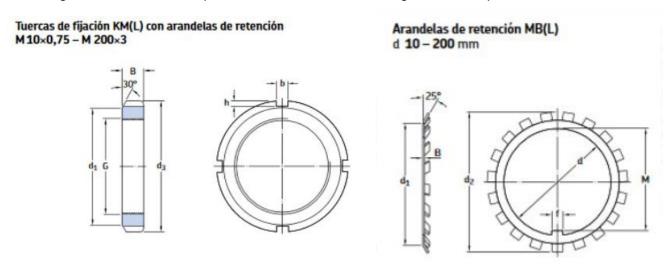
ER5 – 3 Los rodamientos cónicos de rodillos seleccionados para este herraje son de la marca SKF, el cual se muestra a continuación:

					Dimensiones principales		básica	d de carga	límite	Velocidad Velocidad	Velocidad	Masa	Designación	Serie de dimensiones
d	D	Т	dinámica C	estática C ₀	de fatiga P _u	de refe- rencia	límite			según la ISO 355 (ABMA)				
mm			kN		kN	rpm		kg	2	Lin .				
50	80 80 80	20 20 24	60,5 60,5 69,3	88 88 102	9,65 9,65 11,4	6 000 6 000 6 000	8 000 8 000 8 000	0,37 0,37 0,45	32010 X/Q 32010 X/QCL7CVB026 33010/Q	3CC 3CC 2CE				
	82 85	21,5 26	72,1 85,8	100 122	11 13,4	6 000 5 600	8500 7500	0,43 0,59	JLM 104948 AA/910 AA/Q 33110/Q	(LM 104900) 3CE				
	90 90 90	21,75 24,75 28 28	76,5 82,5 106	91,5 100 140	10,4 11,4 16	5 600 5 600 5 300 5 300	7 500 7 500 8 000	0,54 0,61 0,75	30210 J2/Q 32210 J2/Q JM 205149/110/Q JM 205149/110 A/O	3DB 3DC (M 205100)				
	90	32	114	160	18.3	5 000	7 0 0 0	0.90	33210/Q	3DE				

Preparó:	Revisó:	Aprobó:	Página 10 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

d	d ₁	В	C	r _{1,2} min	r _{3,4} min	a	d _a máx	d _b mín	D _a min	D _{a,} máx	D _b	C _a mír	C _b	r _a máx	r _b máx	е	Y	Yo
mn	1						mm	(-		
50	65,6 65,6 64,9	20 20 24	15,5 15,5 19	1 3 1	1 1 1	18 18 17	57 57 56	56 62 56	72 72 72	74 74 74	77 77 76	4 4 4	4,5 4,5 5	1 2,5 1	1 1 1	0,43 0,43 0,31	1,4 1,4 1,9	0,8 0,8 1,1
	65,1 67,9	21,5 26	17 20	3,6 1,5	1,2 1,5	16 20	57 57	62 57	74 74	76 78	78 82	4	4,5 6	3,4 1,5	1,2 1,5	0,3 0,4	2 1,5	1,1 0,8
	67,9 68,5 68,7 68,7	20 23 28 28	17 19 23 23	1,5 1,5 3	1,5 1,5 2,5 0.8	19 21 20 20	58 58 58 58	57 57 64 64	79 78 78 78	83 83 78 85	85 85 85	3 5 5	4,5 5,5 5		1,5 1,5 2 0.6	0,43 0,43 0,33 0.33	1,4 1,4 1,8 1,8	0,8 0,8 1
ſ	70,7	32	24,5	1,5	1,5	23	57	57	77	83	87	5	7,5	1,5	1,5	0,4	1,5	0,8

Junto con esto se seleccionaron retenes para impedir el ingreso de agua del exterior hacia los rodamientos y también cumplen la función de impedir que la grasa de lubricación interna se escape, los retenes seleccionados son de la marca DBH.

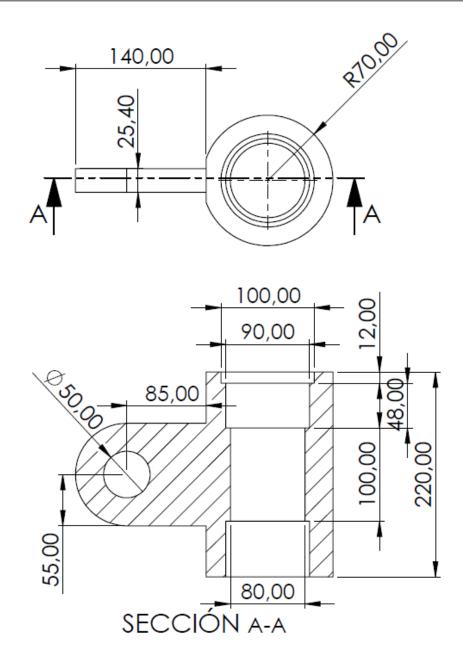

En la parte superior de la caja porta rodamientos irá alojado un retén LX 9961 y en la parte inferior el retén LX 5278.

				Catálogo	general	de med	lidas DBH
	EJE	DIMENSIONE ALOJ.	S ALTURA	Nº DBH	TIPO	GIRO	COMPUESTO
ULS C	45.00	60.00	8.00	9294	Lx	L	NBR
Kz		60.00	8.00	9905	Lx	Bidi	ACM
C-I		60.00	9.00	8709	Lx-R	Н	ACM / FPM
9		60.00	10.00	5588	Lx	L	NBR / ACM
U.S.S.		60.00	10.00	8032	Lx-R	Н	ACM
Kx		61.00	10.00	5540	Mz	L	NBR
		63.00	7.50	9882	Lx-R	Н	FPM
a m		64.00	9.00	8048	Lx	L	NBR
97		65.00	5.00	8656	Mx	L	NBR
		65.00	8.00	5231	Lx	L	NER/MVQ/ACM/FPM
Lx		65.00	8.00	9287	Lx-R	AH	ACM
		85.00	12.00	6767	Lx	L	NBR
		100.00	10.00	9961	Lx	L	FPM

Preparó:	Revisó:	Aprobó:	Página 11 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

60.00	70.00	9.10	8084	A 155	L	NBR
-	72.00	8.00	9444	Lx	L	NBR
	73.00	10.50	9684	A 156	Bidi	FPM
	74.00	8.00	9930	Mx	Bidi	ACM
	75.00	7.00	1185	Lx-R	Н	FPM
	75.00	8.00	5356	Lz	L	NBR / MVQ / FPM
	75.00	8.00	8154	Lx	L	NBR
	77.00	7,5/14	1141	A 373	L	NBR
	78.00	10.00	5358	Lz	L	NBR
	85.10	12.70	8700	Lz	L	NBR
	90.00	9.20	6649	A 099	L	NBR
	90.00	10.00	5278	Lx	L	NBR / MVQ
	90.00	10.00	5724	Lz	L	NBR
	90.00	12.00	8952	Lx	L	NBR

El rodamiento superior del pivote debe asegurarse mediante una tuerca de fijación con una arandela de retención para que el mismo no posea ningún tipo de holgura y se mantenga rígidamente en su sitio, para esto se seleccionan los siguientes componentes del fabricante SKF.

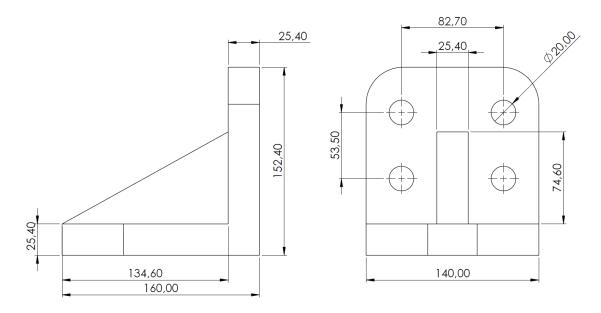


Componente	Cantidad	Diámetro	Denominación
Tuerca de fijación	2	50 x 1,5 mm	KM 10
Arandela de retención	2	50 mm	MB 10

ER5 - 4 y ER5 - 5

Esta pieza es la encargada de unir el mástil, está construida de acero S.A.E 1020 y posee la siguiente geometría:

Preparó:	Revisó:	Aprobó:	Página 12 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

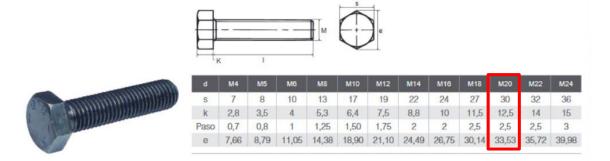

El soldado del ala de la pieza debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	18 mm.
Longitud mínima del cordón:	100 mm.
Longitud recomendada del cordón:	Todo el perímetro disponible.

Preparó:	Revisó:	Aprobó:	Página 13 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

ER5 - 6

Esta pieza es la encargada de unir todos elementos de este herraje, está fijada a la base por medio de tornillos lo que posibilita la extracción de la pieza y el recambio o acondicionamiento de los retenes y rodamientos. Está construida de acero S.A.E 1020 y posee la siguiente geometría:



El soldado del ala de la pieza debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	18 mm.
Longitud mínima del cordón:	100 mm.
Longitud recomendada del cordón:	Todo el perímetro disponible.

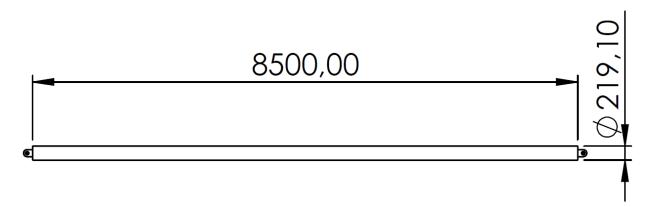
Los cuatro tornillos que se le colocarán a la pieza fueron seleccionados del proveedor Echebarria Suministros y sus especificaciones son las siguientes:

Preparó:	Revisó:	Aprobó:	Página 14 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Calidad 6.8 Ref. Catálogo	Calidad 8.8 Ref . Catálogo	Calidad Inox. Ref. Catálogo	Medidas d x L
13010127	13010288	13010449	M18x80
13010128	13010289	13010450	M18x90
13010129	13010290	13010451	M18x100
13010130	13010291	13010452	M20x30
13010131	13010292	13010453	M20x35
13010132	13010293	13010454	M20x40
13010133	13010294	13010455	M20x45
13010134	13010295	13010456	M20x50
13010135	13010296	13010457	M20x55
13010136	13010297	13010458	M20x60
13010137	13010298	13010459	M20x65
13010138	13010299	13010460	M20x70
13010139	13010300	13010461	M20x80
13010140	13010301	13010462	M20x90
13010141	13010302	13010463	M20x100
13010142	13010303	13010464	M22x40
13010143	13010304	13010465	M22x45
13010144	13010305	13010466	M22x50

PM3 - Vientos rígidos.

Son los encargados de transmitir los esfuerzos tanto de tracción como de compresión desde la parte superior del puntal hacia sus macizos de anclaje correspondientes, su construcción es de caños de acero ASTM A53 Grado A de 8" Schedule 80 y se encuentran separados uno de otro en un ángulo de 90.


1	Preparó:	Revisó:	Aprobó:	Página 15 de 40
	Lanalma Guillermo Kautz Diego	GP = 01/10/2018		

F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

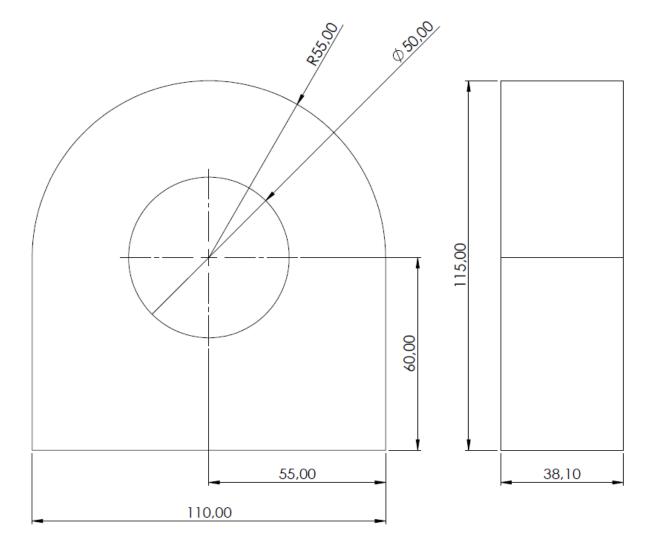
PM3.

Está construido de caños con costura ASTM A53 Grado A Schedule 80 de 8"con la siguiente distribución:

Los datos de espesor y de peso por metro del material se pueden ver en la siguiente tabla:

						S	C	H E	D	U	L E	S			
	METRO MINAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
4	114.3	15P 85/M	6.02 16.08	8.56 22.32	17.12	3.05 8.37			6.02		8.56 22.32		11.13 28.32		13.49
5	141.3	ESP HG/M	6.55	9.53	19.05 57.43	3.40			6.55		9.53		12.70		15.88
6	168.3	ESP EG/M	7.11	10.97 42.56	21.95	3.40	200		7.11		10.97 42.56		14.27 54.21		18.26
8	219.1	ESP HG/M	8.18 42.55	12.70	22.23	4.78	6.35	7.04	8.18 42.55	10.31	12.70	15.09 75.92	18.26 90.44	20.62	23.01
10	273.0	ISP HG/M	9.27	12.70	25.40	4.19	6.35	7.80	9.53	12.70 81.53	15.09 95.98	18.26	21.44	25.40 155.10	28.58
12	323.8	ESP EG/M	9.52	12.70	25.40	4.57	6.35	8.38	10.31	14.27	17.48	21.44	25.40	28.58	33.32
14	355.6	132	9.52	12.70		6.35	7.92	9.52	11.10	15.09	19.05	23.83	27.79	31.75	35.71
16	406.4	ESP HG/M	9.52	12.70		6.35	7.92	9.52	12.70	16.66	21.44	26.19	30.96	36.53	40.45
18	457.2	13P HQ/M	9.52	12.70		6.35	7.92	11.13	14.27	19.05	23.83	29.36	34.93	39.67	45.24
20	508.0	SSP.	9.52	12.70		6.35	9.52	12.70	15.09	20.62	26.19	32.54	38.10	44.45	50.01
24	609.6	13P HG/M	9.52	12.70		6.35	9.52	14.27	17.48	24.61	30.96	38.89 547.36	46.02	52.37 719.68	59.54
30	762.0	ESP HG/M	9.52	12.70		7.92	12.70	15.88	19.05		-17100	347.36		- 23.00	

Preparó:	Revisó:	Aprobó:	Página 16 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

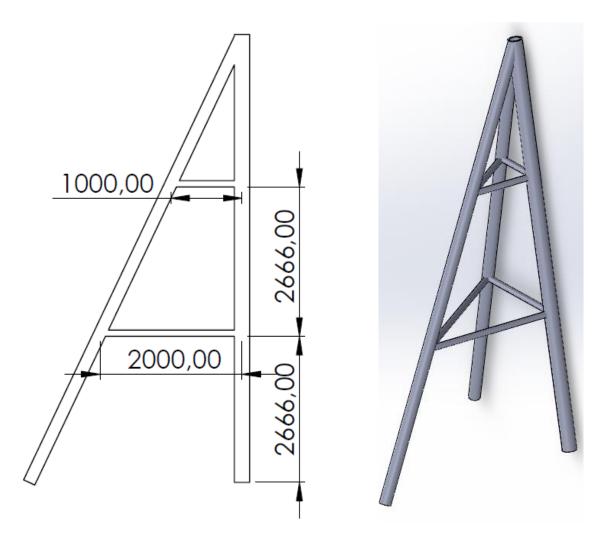

El soldado debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros para soldar tramos del mismo caño de 8" son los siguientes:

Espesor de soldadura mínimo:	9 mm.		
Longitud mínima del cordón:	298 mm.		
Longitud recomendada del cordón:	Todo el perímetro disponible.		

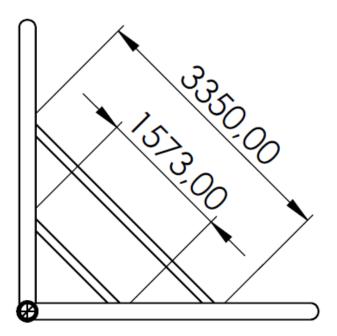
También se debe soldar una tapa en la parte superior e inferior de los vientos rígidos.

ER3

Cada viento rígido posee dos de estos herrajes, estos son los encargados de vincular dichos vientos con el puntal. Están construidos de acero S.A.E 1020 y poseen la siguiente geometría:


Preparó:	Revisó:	Aprobó:	Página 17 de 40
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018	•	_

El soldado entre el herraje y el viento rígido debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:


Espesor de soldadura mínimo:	9 mm.
Longitud mínima del cordón:	294 mm.
Longitud recomendada del cordón:	Todo el perímetro disponible.

Rigidizadores (Rig).

Se colocarán dos rigidizadores entre el puntal y cada viento rígido que tiene la estructura y también uniendo los vientos rígidos entre sí. Se construirán de caño de acero ASTM A53 de 4" Sch 40 y se colocarán según la siguiente distribución.

Preparó:	Revisó:	Aprobó:	Página 18 de 40	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

PM4 - Tensor

Este elemento constructivo es el encargado de transmitir esfuerzos desde la pluma de izaje hacia el puntal. Se encuentra construido de cables de acero el cual se selecciona del fabricante IPH.

Preparó:	Revisó:	Aprobó:	Página 19 de 40
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

AFS

Carga mínima de rotura

Diámetro	Masa aprox.	Grado 1770		Grado 1960	
[mm]	[kg/m]	[kN]	[t]	[kN]	[t]
3,00	0,032	4,9	0,5	5,8	0,6
5,00	0,087	13,6	1,4	16,2	1,7
8,00	0,230	37,4	3,8	41,2	4,2
9,50	0,320	52,7	5,4	58,8	6,0
11,00	0,433	70,7	7,2	78,4	8,0
13,00	0,607	98,7	10,1	109	11,1
14,00	0,704	114	11,6	127	13,0
16,00	0,919	150	15,3	166	16,9
19,00	1,300	211	21,5	233	23,8
22,00	1,740	283	28,9	313	31,9
26,00	2,430	395	40,3	437	44,6
28,00	2,810	458	46,7	507	51,7
32,00	3,680	598	61,0	662	67,6
35,00	4,400	716	73,1	792	80,8
38,00	5,180	843	86,0	934	95,3
44,00	6,950	1130	115	1250	128
51,00	9,340	1520	155	168	171

Los herrajes de sujeción del cable de acero se seleccionan del catálogo Crosby y estos son:

G-450 Grapas Crosby[®], Clip

Todas las grapas Crosby de tamaño 1/4" y mayores cumplen con la Especificacion Federal FF-C-450 TYPE 1 CLASE 1, excepto por aquellas provisiones exigidas por el contratista. Para mayores informaciones ver página 452.

- Cada base lleva forjada el código de identificación del producto (PIC) para rastrear el material, el nombre Crosby o "CG" y el tamaño.
- Basado en la carga de ruptura del cable de acero indicado en el catálogo, las grapas Crosby tienen una eficiencia del 80% para tamaños de 1/8" a 7/8", y 90% para tamaños de 1" hasta 3 ½".
- · La grapa en su totalidad es galvanizada para resistir la acción corrosiva y oxidante.
- Las grapas de 1/8" a 2½" y 3" (3mm a 65mm y 75-78mm) tienen bases forjadas.
- Todas las grapas se empaquetan y etiquetan individualmente con las instrucciones de aplicación y las advertencias apropiadas.
- Las grapas hasta 1½" tienen rosca rolada.
- Crosby Cumple o excede todos los requerimientos de ASME B30.26 incluyendo identificación, ductilidad, factor de diseño, carga de prueba y requisitos de temperatura. Además, estas grapas para cable cumplen con otros requisitos críticos de rendimiento que incluyen índices de fatiga, propiedades de impacto, y capacidad de rastrear el material que no han sido abordados por ASME B30.26.
- Busque la marca Red-U-Bolt[®], su garantía de Auténticas Grapas Crosby.

Preparó:	Revisó:	Aprobó:	Página 20 de 40
Lapalma, Guillermo: Kautz, Diego,	GP - 01/10/2018		

Cuando se requieran tres o más grapas, coloque las grapas adicionales espaciadas a la misma distancia entre las dos primeras –tense el cable flojo – y apriete

Figura 3

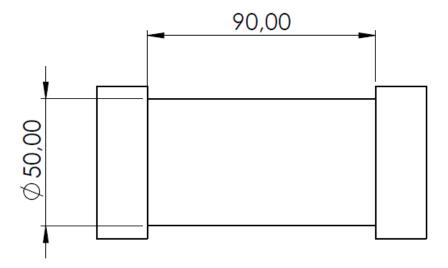
uniformemente las tuercas en cada perno en U con torquímetro, alternando de una tuerca a la otra hasta lograr el valor de torque recomendado. (Ver Figura 3).

Tabla 1					
Tamaño grapa (pulg.)	Tamaño cable (pulg.)	No. mínimo de grapas	Cantidad de cable a doblar en pulgadas	*Torque en pies-lb	
1/8	1/8	2	3-1/4	4.5	
3/16	3/16	2	3-3/4	7.5	
1/4	1/4	2	4-3/4	15	
5/16	5/16	2	5-1/4	30	
3/8	3/8	2	6-1/2	45	
7/16	7/16	2	7	65	
1/2	1/2	3	11-1/2	65	
9/16	9/16	3	12	95	
5/8	5/8	3	12	95	
3/4	3/4	4	18	130	
7/8	7/8	4	19	225	
1	1	5	26	225	
1-1/8	1-1/8	6	34	225	
1-1/4	1-1/4	7	44	360	
1-3/8	1-3/8	7	44	360	
1-1/2	1-1/2	8	54	360	
1-5/8	1-5/8	8	58	430	
1-3/4	1-3/4	8	61	590	
2	2	8	71	750	
2-1/4	2-1/4	8	73	750	
2-1/2	2-1/2	9	84	750	
2-3/4	2-3/4	10	100	750	
3	3	10	106	1200	
3-1/2	3-1/2	12	149	1200	

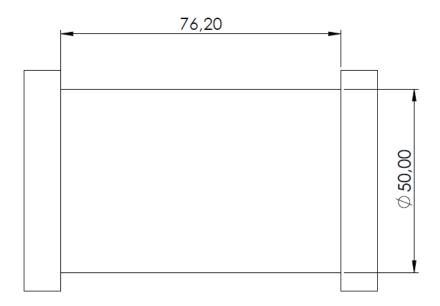
Si se utiliza una polea para doblar el cable, adicionar una grapa más. Ver figura 4.

Pernos.

En la grúa existen dos tipos de pernos diferentes, uno es el que vincula los vientos rígidos con el puntal PE1 y otro el que vincula el mástil con el puntal PE2. Ambos pernos se muestran a continuación:


PE₁

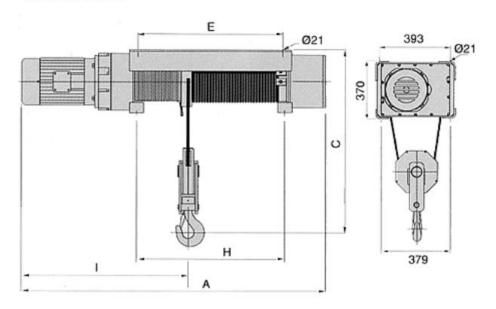
Este perno está construido de acero S.A.E 1045 laminado en frio y su geometría es la siguiente:


Preparó:	Revisó:	Aprobó:	Página 21 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Si se utiliza un mayor número de grapas que las indicadas en las tablas, se debe incrementar proporcionalmente la longitud del cable que se dobla.

^{*}Los valores de torque se indican para cables limpios, secos y sin lubricación.

PE2
Este perno está construido de acero S.A.E 1045 laminado en frio y su geometría es la siguiente:



SE1 - Sistema de elevación de carga.

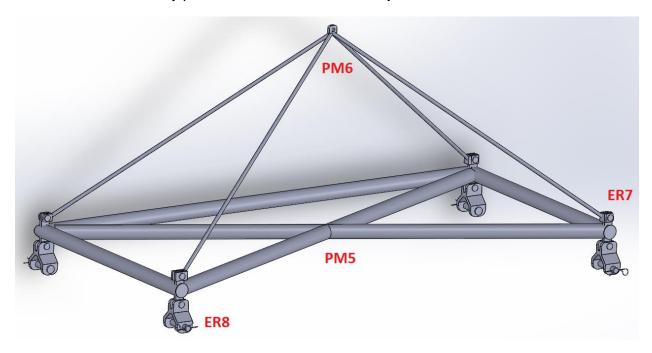
Es el encargado de elevar las embarcaciones desde el agua hasta la altura deseada. Cumple con los requerimientos de seguridad e higiene en el izaje de cargas, se seleccionó de un fabricante nacional para asegurar servicio postventa, mantenimiento y disponibilidad de repuestos, en este caso es un polipasto del fabricante Forvis.

Preparó:	Revisó:	Aprobó:	Página 22 de 40
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018	·	J

POLIPASTO ELECTRICO MODELO FV. 4 FIJO SIN CARRO

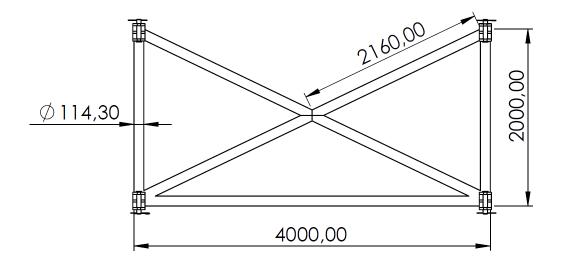
Capacidad	Altura de	Velocidad	Velocidad Motor		Motor	Motor		Peso en kg	
de carga	elevación	de elevación	Grupo FEM	Modelo	Ramales de cable	eléctrico	-	Con como eléctrico	
(kg)	(m)	(m/min)	LEW		oe cobie	(HP)	Sin carro	Monorriel	Birriel
3200	20	8	2m	FV4 3220	2/1	7.5	422	511	702
3200	20	6/1,5	2m	FV4 3220M	2/1	6/1,5	435	524	715
4000	20	6	1Am	FV4 4020	2/1	7.5	469	558	749
4000	20	4,4/1,1	1Am	FV4 4020M	2/1	6/1,5	482	571	762
5000	20	6	1Bm	FV4 5020	2/1	7.5	469	558	749
5000	20	4,4/1,1	18m	FV4 5020M	2/1	6/1,5	482	571	762
6400	10	4	2m	FV4 6410	4/1	7.5	495	584	775
6400	10	3/0,75	2m	FV4 6410M	4/1	6/1,5	508	597	788
8000	10	3	1Am	FV4 8010	4/1	7.5	542	713	942
8000	10	2,2/0,5	,1Am	FV4 8010M	4/1	6/1,5	555	726	955
10000	10	3	18m	FV4 10010	4/1	7.5	542	713	942
10000	10	2,2/0,5	18m	FV4 10010M	4/1	6/1,5	555	726	955
15000	8	2	1Bm	FV4 15008	6/1	7.5	654	•	1154
15000	8	1,5/0,4	18m	FV4 15008M	6/1	6/1,5	667	•	1167
20000	6	1.5	18m	FV4 20006	8/1	7.5	741		1241
20000	6	1,2/0,3	18m	FV4 20006M	8/1	6/1,5	754	•	1254

Preparó:	Revisó:	Aprobó:	Página 23 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		


F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

Capacidad de carga	Dimensiones Principales (en mm)									
(kg)	Α	В	C	D	E	F	G	Н	1	J
3200	1855	500	850	1060	826	393	47	808	840	550
3200	1895	500	850	1060	826	393	47	808	879	550
4000	2100	500	850	1060	1026	393	47	1008	882	550
4000	2140	500	850	1060	1026	393	47	1008	921	550
5000	2100	500	850	1060	1026	393	47	1008	882	550
5000	2140	500	850	1060	1026	393	47	1008	921	550
6400	1855	590	870	1080	826	393	47	808	932	570
6400	1895	590	870	1080	826	393	47	808	971	570
8000	2100	590	870	1170	1026	482	84	1008	974	270
8000	2140	590	870	1170	1026	482	84	1008	1013	270
10000	2100	590	870	1170	1026	482	84	1008	974	270
10000	2140	590	870	1170	1026	482	84	1008	1013	270
15000	2300	500	1200 (1)		1226		•	1208	1109	600
15000	2340	500	1200 [1]	•	1226		•	1208	1148	600
20000	2300	500	1350 [1]		1226			1208	1244	750
20000	2340	500	1350 [1]		1226		•	1208	1283	750

Preparó:	Revisó:	Aprobó:	Página 24 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		


Percha de izaje.

Este elemento se encuentra construido en caños de 4" Sch 40. Sobre esta pieza irá montado el sistema de elevación de carga SE 1 a un lado de la percha y en su otro extremo se fijará el barco por medio de eslingas. En su parte inferior se encuentran planchuelas ER7 que le posibilitan la unión con el cable PM6 y por el otro extremo con el herraje ER8.

PM5.

Está construido de caños con costura ASTM A53 Grado A Schedule 40 de 4" con la siguiente distribución:

Preparó:	Revisó:	Aprobó:	Página 25 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Los datos de espesor y de peso por metro del material se pueden ver en la siguiente tabla:

CAÍ	vos (100	N Y SI	N CO	STUR	A									
						s	СН	E	D	U	L E	S			
DIAM	IETRO IINAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73 0.37	2.41 0.47					1.73 0.37		2.41 0.47				
1/4	13.7	ESP KG/M	2.24	3.03					2.24		3.03				
3/8	17.1	ESP KG/M	2.31	3.20					2.31		3.20				
1/2	21.3	ESP KG/M	2.77	3.73	7.47				2.77		3.73				4.78
3/4	26.7	ESP KG/M	2.87	1.02	7.82				2.87		3.91				5.56
1	33.4	ESP KG/M	3.38	4.55	9.09	2.77			3.38		4.55				6.35
1 1/4	42.2	ESP	3.56	3.24 4.85	9.70	2.09			3.56		3.24 4.85				6.35
1 1/2	48.3	KG/M ESP	3.39	5.08	7.70	2.69			3.39		5.08				7.14
		KG/M ESP	4.05 3.91	5.41	9.56 11.07	3.11 2.77			4.05 3.91		5.41				7.25 8.74
2	60.3	KG/M	5.44	7.48	13.44	3.93			5.44		7.48				11.11
2 1/2	73.0	ESP KG/M	5.16 8.63	7.01	14.02 20.39	3.05 5.26			5.16 8.63		7.01				9.53 14.92
-	88.9	ESP	5.49	7.62	15.24	3.05			5.49		7.62				11.13
3	88.9	KG/M	11.29	15.27	27.68	6.46			11.29		15.27				21.35
3 1/2	101.6	ESP KG/M	5.74 13.57	8.08		3.05 7.41			5.74 13.57		8.08				
	114.3	ESP	6.02	8.56	17.12	3.05			6.02		8.56		11.13		13.49
4	114.3	KG/M	16.08	22.32	41.03	8.37			16.08		22.32		28.32		33.54
5	141.3	ESP KG/M	6.55 21.77	9.53	19.05 57.43	3.40			6.55 21.77		9.53		12.70 40.28		15.88 49.12
	160.3	ESP	7.11	10.97	21.95	3.40			7.11		10.97		14.27		18.26
6	168.3	KG/M	28.26	42.56	79.22	13.83			28.26		42.56		54.21		67.57
8	219.1	ESP KG/M	8.18 42.55	12.70 64.64	22.23	4.78 25.26	6.35	7.04 36.82	8.18 42.55	10.31 53.09	12.70 64.64	15.09 75.92	18.26 90.44	20.62	23.01
10	272.0	ESP	9.27	12.70	25.40	4.19	6.35	7.80	9.53	12.70	15.09	18.26	21.44	25.40	28.58
10	273.0	KG/M	60.29	81.53	155.10	27.78	41.76	51.01	61.92	81.53	95.98	114.71	159.87	155.10	172.27
12	323.8	ESP KG/M	9.52 73.79	12.70 97.44	25.40 186.92	4.57 35.98	6.35 49.71	8.38 65.19	10.31 79.71	14.27	17.48 132.05	21.44	25.40 186.92	28.58 159.87	33.32 238.69
14	355.6	ESP KG/M	9.52 81.25	12.70 107.40	180.92	6.35	7.92 67.91	9.52 81.25	11.10	15.09 126.72	19.05	23.83	27.79 224.66	31.75	35.71

El soldado debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:

Espesor de soldadura mínimo:	4,2 mm.
Longitud mínima del cordón:	125 mm.
Longitud recomendada del cordón:	Todo el perímetro disponible.

PM6 - Cables tensor.

Este elemento constructivo es el encargado de transmitir esfuerzos desde la percha de izaje hasta el polipasto. Se encuentra construido de cables de acero el cual se selecciona del fabricante IPH.

Preparó:	Revisó:	Aprobó:	Página 26 de 40
Lanalma Guillermo: Kautz Diego.	GP = 01/10/2018	•	J

AFS Carga mínima de rotura

Diámetro	Masa aprox.	Grado 1770		Grad 196	
[mm]	[kg/m]	[kN]	[t]	[kN]	[t]
3,00	0,032	4,9	0,5	5,8	0,6
5,00	0,087	13,6	1,4	16,2	1,7
8,00	0,230	37,4	3,8	41,2	4,2
9,50	0,320	52,7	5,4	58,8	6,0
11,00	0,433	70,7	7,2	78,4	8,0
13,00	0,607	98,7	10,1	109	11,1
14,00	0,704	114	11,6	127	13,0
16,00	0,919	150	15,3	166	16,9
19,00	1,300	211	21,5	233	23,8
22,00	1,740	283	28,9	313	31,9
26,00	2,430	395	40,3	437	44,6
28,00	2,810	458	46,7	507	51,7
32,00	3,680	598	61,0	662	67,6
35,00	4,400	716	73,1	792	80,8
38,00	5,180	843	86,0	934	95,3
44,00	6,950	1130	115	1250	128
51,00	9,340	1520	155	168	171

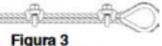
Los herrajes de sujeción del cable de acero se seleccionan del catálogo Crosby y estos son:

Preparó:	Revisó:	Aprobó:	Página 27 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

G-450 Grapas Crosby®, Clip

Todas las grapas Crosby de tamaño 1/4" y mayores cumplen con la Especificacion Federal FF-C-450 TYPE 1 CLASE 1, excepto por aquellas provisiones exigidas por el contratista. Para mayores informaciones ver página 452.


- · Cada base lleva forjada el código de identificación del producto (PIC) para rastrear el material, el nombre Crosby o "CG" y el tamaño.
- Basado en la carga de ruptura del cable de acero indicado en el catálogo, las grapas Crosby tienen una eficiencia del 80% para tamaños de 1/8" a 7/8", y 90% para tamaños de 1" hasta 3 1/2".
- La grapa en su totalidad es galvanizada para resistir la acción corrosiva y oxidante.
- Las grapas de 1/8" a 2½" y 3" (3mm a 65mm y 75-78mm) tienen bases forjadas.
- Todas las grapas se empaquetan y etiquetan individualmente con las instrucciones de aplicación y las advertencias apropiadas.
- Las grapas hasta 1½" tienen rosca rolada.
- Crosby Cumple o excede todos los requerimientos de ASME B30.26 incluyendo identificación, ductilidad, factor de diseño, carga de prueba y requisitos de temperatura. Además, estas grapas para cable cumplen con otros requisitos críticos de rendimiento que incluyen índices de fatiga, propiedades de impacto, y capacidad de rastrear el material que no han sido abordados por ASME B30.26.
- Busque la marca Red-U-Bolt[®], su garantía de Auténticas Grapas Crosby.

3. Cuando se requieran tres o más grapas, coloque las grapas adicionales espaciadas

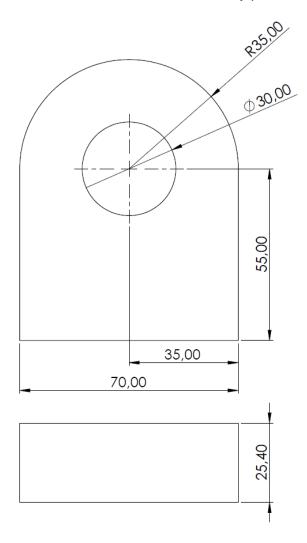
a la misma distancia entre las dos primeras -tense el cable flojo- y apriete

dado. (Ver Figura 3).

uniformemente las tuercas en cada perno en U con torquímetro, alternando de una tuerca a la otra hasta lograr el valor de torque recomen-

Tabla 1										
Tamaño	Tamaño		Cantidad de							
grapa	cable	No. mínimo	cable a doblar	*Torque						
(pulg.)	(pulg.)	de grapas	en pulgadas	en pies-lb						
1/8	1/8	2	3-1/4	4.5						
3/16 3/16		2	3-3/4	7.5						
1/4	1/4	2	4-3/4	15						
5/16	5/16	2	5-1/4	30						
3/8	3/8	2	6-1/2	45						
7/16	7/16	2	7	65						
1/2	1/2	3	11-1/2	65						
9/16	9/16	3	12	95						
5/8	5/8	3	12	95						
3/4	3/4	4	18	130						
7/8	7/8	4	19	225						
1	1	5	26	225						
1-1/8	1-1/8	6	34	225						
1-1/4	1-1/4	7	44	360						
1-3/8	1-3/8	7	44	360						
1-1/2	1-1/2	8	54	360						
1-5/8	1-5/8	8	58	430						
1-3/4	1-3/4	8	61	590						
2	2	8	71	750						
2-1/4	2-1/4	8	73	750						
2-1/2	2-1/2	9	84	750						
2-3/4	2-3/4	10	100	750						
3	3	10	106	1200						
3-1/2	3-1/2	12	149	1200						

Si se utiliza una polea para doblar el cable, adicionar una grapa más. Ver figura 4.

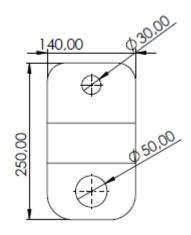

Si se utiliza un mayor número de grapas que las indicadas en las tablas, se debe incrementar proporcionalmente la longitud del cable que se dobla.

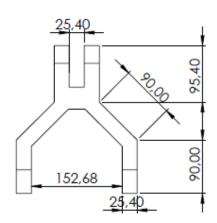
Los valores de torque se indican para cables limpios, secos y sin lubricación.

Preparó:	Revisó:	Aprobó:	Página 28 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

ER7

La percha posee ocho de estos herrajes, unos para la sujeción del cable de sujeción y otros para sostener la manopla. Están construidos de acero S.A.E 1020 y poseen la siguiente geometría:

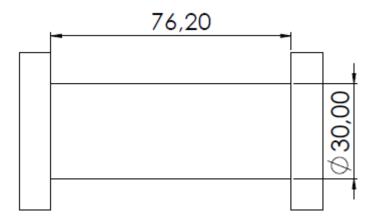

El soldado entre el herraje y la percha debe de ser realizado con atmosfera controlada utilizando electrodos E6010, los parámetros de soldadura son los siguientes:


Espesor de soldadura mínimo:	4,2 mm.	
Longitud mínima del cordón:	92 mm.	
Longitud recomendada del cordón:	Todo el perímetro disponible.	

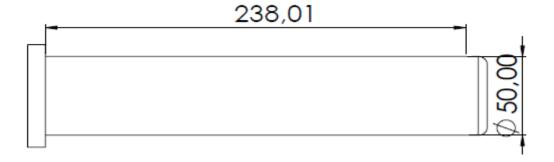
Preparó:	Revisó:	Aprobó:	Página 29 de 40
Lanalma Guillermo: Kautz Diego.	GP = 01/10/2018	•	

ER8

La percha posee cuatro de estos herrajes, estos son los encargados de unir la percha de izaje con las eslingas. Están construidos de acero S.A.E 1020 y poseen la siguiente geometría:


Pernos.

En la percha existen dos tipos de pernos diferentes, uno es el que vincula los herrajes inferiores con las manoplas (PE3), y el otro vincula las eslingas con la manopla (PE4), cabe destacar que este último posee un seguro de acople rápido para la fácil remoción.


PE3

Este perno está construido de acero S.A.E 1045 laminado en frio y su geometría es la siguiente:

Preparó:	Revisó:	Aprobó:	Página 30 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

PE4
Este perno está construido de acero S.A.E 1045 laminado en frio y su geometría es la siguiente:

Eslingas

Para las eslingas se seleccionarán las siguientes, estas son de un ancho de 100 mm, color gris y de dos capas, que cada una de las eslingas puede soportar 11,2 toneladas en posición de U:

Preparó:	Revisó:	Aprobó:	Página 31 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

Anc	ho		Large			Carga L	ímite Tral	oajo	m ton											
mm	Inch	Color	Ojo Cm	Nº Capas	Axial	Lazo	Ü	60⁰	45º	30º										
				1	1	1	1	1	1	1										
25	1	eta	20	2	1,4	1,1	2,8	2,5	2,0	1,4										
23	1	Violeta	30	3	2,1	1,7	4,2	3,8	2,9	2,1										
		^		4	2,8	2,2	5,6	5,0	3,9	2,8										
				1	1,4	1,1	2,8	2,5	2,0	1,4										
FO	3	age		2	2,8	2,2	5,6	5,0	3,9	2,8										
50	2	Verde	30	3	4,2	3,4	8,4	7,6	5,9	4,2										
				4	5,6	4,5	11,2	10,1	7,8	5,6										
		_		1	2,1	1,7	4,2	3,8	2,9	2,1										
7.	2	l ≝		2	4,2	3,4	8,4	7,6	5,9	4,2										
75	3	ma	Amarillo	ma	ma	ma	ma	ma	ma	ma	ma	30	g 30	3	6,3	5,0	12,6	11,3	8,8	6,3
		Ā		4	8,4	6,7	16,8	15,1	11,8	8,4										
				1	2,8	2,2	5,6	5,0	3,9	2,8										
100	4	S		2	5,6	4,5	11,2	10,1	7,8	5,6										
100	4	Gris	40	3	8,4	6,7	16,8	15,1	11,8	8,4										
				4	11,2	9,0	22,4	20,2	15,7	11,2										
				1	3,5	2,8	7,0	6,3	4,9	3,5										
125	E	0	40	2	7,0	5,6	14,0	12,6	9,8	7,0										
125	5	Rojo	40	3	10,5	8,4	21,0	18,9	14,7	10,5										
				4	14,0	11,2	28,0	25,2	19,6	14,0										

Instalación eléctrica.

Cable.

Como la instalación eléctrica se encuentra expuesta a las inundaciones se decidió colocar cables subterráneos. El cable seleccionado es de la marca Prysmian el cual se muestra a continuación.

Preparó:	Revisó:	Aprobó:	Página 32 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

A continuación se detalla la cantidad de metros de cable necesario junto con el tipo de cable.

Tipo de conductor	Metros necesarios
Sintenax Valio 2 x 2,5 mm ²	8 m
Sintenax Valio 3 x 6 mm ²	15 m

Preparó:	Revisó:	Aprobó:	Página 33 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Caja estanca.

Como el sistema estará sometido a inundaciones, es necesario colocar cajas estancas que resistan al ingreso de agua, para esto se selecciona la siguiente caja.

Descripción	Proveedor	Dimensiones	Grado
Gabinete Polipropileno	Electrocity	207 x 284 x 120 mm	IP 67

Protecciones.

Para la protección de los artefactos colocados y la seguridad de los operarios se colocan los siguientes sistemas de protección.

L<u>l</u>ave termomagnetica.

Se colocarán 2 llaves Termomagneticas, una dedicada a la protección del polipasto y otra destinada a las luminarias, las llaves seleccionadas se muestran a continuación.

Preparó:	Revisó:	Aprobó:	Página 34 de 40
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

Llave termomagnetica del polipasto.

Principal

Distribución
Acti 9
C60
Disyuntor en miniatura
3P
3
10 A
CA
Térmico-magnético
D
6 kA - 440 V CA 50/60 Hz 10 kA - 415 V CA 50/60 Hz 20 kA - 240 V CA 50/60 Hz 30 kA - <= 125 V CC 6000 A conforme a IEC 60898-1 - 400 V CA 50/60 Hz

Preparó:	Revisó:	Aprobó:	Página 35 de 40
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Llave termomagnetica de las luminarias.

Principal

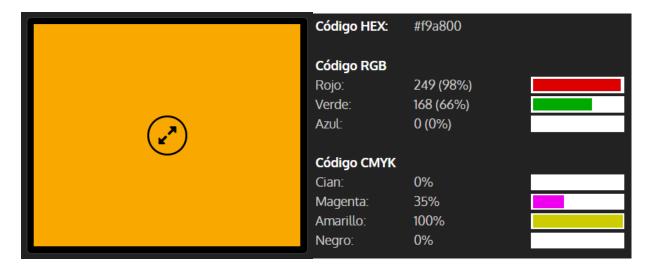
Aplicación del dispositivo	Distribución Acti 9		
Distancia			
Nombre del producto	C60		
Tipo de producto o componente	Disyuntor en miniatura		
Número de polos	2P		
Número de polos protegidos	2		
Corriente nominal	2 A		
Tipo de red	CA		
Tipo de unidad de control			
Código de curva de disparo ins			
Poder de corte	6 kA - 440 V CA 50/60 Hz 10 kA - 415 V CA 50/60 Hz 20 kA - 240 V CA 50/60 Hz 20 kA - <= 125 V CC 6000 A conforme a IEC 60898-1 - 400 V CA 50/60 Hz		

Preparó:	Revisó:	Aprobó:	Página 36 de 40
Lapalma, Guillermo: Kautz, Diego,	GP - 01/10/2018		

Llave disyuntora.

Se colocará una llave disyuntora para la protección de los operarios, la llave seleccionada se muestra a continuación.

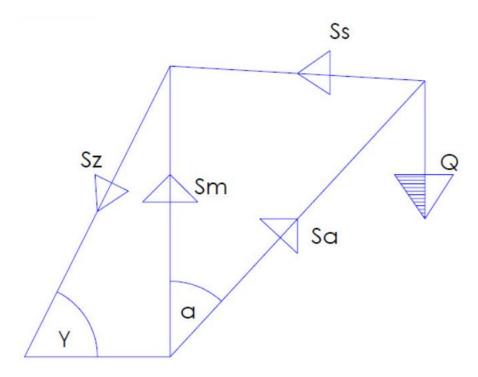
Principal


Tillopai	
Distancia	Acti 9
Nombre del producto	Acti 9 iID
Tipo de producto o componente	Disyuntor de corriente residual (RCCB)
Modelo de dispositivo	IID
Número de polos	4P
Posición de polo de neutro	Izquierda
Corriente nominal	25 A
Tipo de red	CA
Sensibilidad a la fuga a tierra	30 mA
Retraso tiempo protec. pérdida a tierra	Instantáneo
Prot. c. fuga a tier.(tabular)	Tipo A-SI

Preparó:	Revisó:	Aprobó:	Página 37 de 40
Lapalma, Guillermo: Kautz, Diego,	GP - 01/10/2018		

Pintura.

Para lograr una buena protección de la estructura es necesario seguir los siguientes pasos para su pintado.


- <u>Limpieza de superficie</u>: Método de limpieza con chorro abrasivo grado metal blanco (NACE 1/SSPC – SP5).
- Primera capa: Debe ser aplicado un imprimante anticorrosivo o también conocido como base anticorrosiva.
- Segunda capa: Sello epóxico aducto amina trietilen tetra amina.
- <u>Capa final</u>: Para esta capa se debe aplicar un esmalte de alto brillo como por ejemplo un poliéster hidroxilado de color Amarillo señal. Y en color negro grande y visible la capacidad de elevación de la grúa (6 ton).

Preparó:	Revisó:	Aprobó:	Página 38 de 40	i
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

Resumen cargas actuantes sobre la estructura.

Como el proyecto no involucra la parte de cimentaciones ni obras civiles se muestra a continuación una tabla con el valor de fuerzas actuantes en la estructura.

Grados	Fuerza	Valor [kg]	Dirección de la fuerza
	Sa	13882,76	Compresión
0°	Sm	19015,17	Compresión
	Sz	20672	Tracción
	Sa	13882,76	Compresión
90°	Sm	19015,17	Compresión
	Sz	20672	Tracción
	Sa	13882,76	Compresión
180°	Sm	19015,17	Compresión
	Sz	20672	Compresión

Preparó:	Revisó:	Aprobó:	Página 39 de 40	i
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

F-PFC-1805 - Ingeniería y diseño de grúa para elevar barcos. INGENIERÍA EN DETALLE

Ángulos	Valor
α	47,35°
Υ	63,43°

Preparó:	Revisó:	Aprobó:	Página 40 de 40	1
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

UNIVERSIDAD TECNOLÓGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERÍA ELECTROMECÁNICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Memoria de cálculo.

Proyecto	Nº:	PFC	1805A
-----------------	-----	------------	-------

Autores:

Lapalma, Guillermo.

Kautz, Diego.

Tutor:

Reynoso, Guillermo

Dirección de Proyectos:

Ing. Puente, Gustavo

Ing. De Carli, Carlos Aníbal

AÑO 2018

Contenido

Dimensiones principales de la grúa	1
Cálculo geométrico del mástil	1
Dimensionamiento de la longitud horizontal del mástil	1
Dimensionamiento de la longitud vertical del mástil.	1
Longitud total del mástil	1
Adopción de longitud de tramos	2
Adopción de diámetros y espesores de tramos	2
Cálculo geométrico del puntal	6
Adopción de longitud del tramo.	6
Adopción de diámetro y espesor del tramo	6
Dimensionamiento de la longitud del cable de izaje	8
Mecanismo de elevación	8
Clase de utilización	8
Estado de carga del mecanismo	9
Selección del polipasto	10
Cálculo estructural del mástil	12
Cálculo del momento de inercia del tramo central.	12
Cálculo del módulo resistente del tramo central	12
Cálculo del momento de inercia de los tramos externos	12
Cálculo del módulo resistente de los tramos exteriores	13
Cálculo del momento de inercia ideal	13
Cálculo del radio de giro ideal	14
Cálculo del coeficiente de esbeltez.	14
Coeficiente de pandeo	15
Cálculo de las excentricidades.	15
Peso del mástil	16
Cálculo del momento flector máximo debido al peso propio del mástil	16
Esfuerzos actuantes sobre el mástil.	17
Cálculo del esfuerzo axial sobre el mástil.	17
Cálculo del esfuerzo axial debido al peso propio del mástil.	17
Cálculo de la fuerza debido al viento sobre el mástil	18
Cálculo del esfuerzo debido al viento sobre el mástil	19
Cálculo del esfuerzo axial total del mástil	20

Cálculo de la tensión máxima sobre el mástil.	20
Cálculo de tenciones admisibles para el acero ASTM A53 Gr A	21
Verificación de tenciones para el mástil de acero ASTM A53 Gr A	21
Cálculo estructural del mástil corregido.	23
Cálculo del momento de inercia del tramo central.	23
Cálculo del módulo resistente del tramo central	23
Cálculo del momento de inercia de los tramos externos	23
Cálculo del módulo resistente de los tramos exteriores	24
Cálculo del momento de inercia ideal	24
Cálculo del radio de giro ideal	25
Cálculo del coeficiente de esbeltez	25
Coeficiente de pandeo	26
Cálculo de las excentricidades.	26
Peso del mástil	27
Cálculo del momento flector máximo debido al peso propio del mástil	27
Esfuerzos actuantes sobre el mástil	28
Cálculo del esfuerzo axial sobre el mástil	28
Cálculo del esfuerzo axial debido al peso propio del mástil	28
Cálculo de la fuerza debido al viento sobre el mástil	29
Cálculo del esfuerzo debido al viento sobre el mástil	30
Cálculo del esfuerzo axial total del mástil	31
Cálculo de la tensión máxima sobre el mástil	31
Cálculo de pandeo según fórmula de Euler para el mástil	32
Cálculo de aplastamiento para el mástil	32
Cálculo de tenciones admisibles para el acero ASTM A53 Gr A	
Verificación de tenciones para el mástil de acero ASTM A53 Gr A	34
Cálculo estructural del puntal.	35
Cálculo del momento de inercia del puntal.	35
Cálculo del módulo resistente del puntal.	35
Cálculo del radio de giro del puntal	35
Cálculo del coeficiente de esbeltez.	36
Coeficiente de pandeo.	
Cálculo de las excentricidades	
Esfuerzos actuantes sobre el puntal.	
Cálculo del esfuerzo axial sobre el puntal	
Cálculo de la fuerza debido al viento sobre el puntal	

Cálculo del esfuerzo debido al viento sobre el puntal.	40
Cálculo del esfuerzo axial total del puntal.	40
Cálculo de la tensión máxima sobre el puntal.	40
Cálculo de pandeo según fórmula de Euler para el puntal	41
Cálculo de aplastamiento para el puntal	41
Cálculo de tenciones admisibles para el acero ASTM A53 Gr A	42
Verificación de tenciones para el puntal de acero ASTM A53 Gr A	42
Esfuerzos actuantes sobre los vientos rígidos	44
Cálculo del esfuerzo en los vientos rígidos.	45
Cálculo estructural de los vientos rígidos.	45
Cálculo del momento de inercia de los vientos rígidos	45
Cálculo del módulo resistente de los vientos rígidos	46
Cálculo del radio de giro de los vientos rígidos	46
Cálculo del coeficiente de esbeltez.	47
Coeficiente de pandeo.	47
Cálculo de las excentricidades.	47
Cálculo del esfuerzo debido al viento en los vientos rígidos	48
Cálculo del esfuerzo total en los vientos rígidos	49
Cálculo del momento flector debido al peso propio de los vientos rígidos	49
Cálculo de la tensión máxima sobre el viento rígido.	49
Cálculo de pandeo según fórmula de Euler para los vientos rígidos	50
Cálculo de aplastamiento para el viento rígido.	50
Cálculo de tenciones admisibles para el acero ASTM A53 Gr A	51
Verificación de tenciones para el mástil de acero ASTM A53 Gr A	51
Esfuerzos actuantes sobre el tensor.	52
Selección de cable y componentes del tensor	53
Dimensionamiento de los herrajes.	56
Calculo de soldaduras en la estructura	57
Electrodo.	57
Soldadura en el mástil	58
Soldadura en el puntal.	60
Soldadura en los vientos rígidos	61
Herraje ER1 - Sujeción tensor y polipasto SE1	63
Verificaciones.	64
Herraje ER2 - Perno viento rígido	66
Herraje ER3 - Sujeción viento rígido a perno	67

Verificaciones	69
Herraje ER4 - Mástil a perno de viento rígido	71
Verificaciones	72
Herraje ER5 - Sujeción puntal – mástil y puntal - tensor	74
Perno de unión	74
Planchuela de unión	75
Verificaciones	76
Eje de pivote	78
Rodamientos	79
Camisa porta rodamientos	81
Selección de los retenes.	83
Tuerca de retención de rodamiento	84
Soporte de pivote	85
Verificaciones	87
Soporte de pivote desmontable	89
Verificaciones	91
Instalación eléctrica	93
Llave termomagnetica	93
Llave termomagnetica del polipasto	93
Llave termomagnetica de las luminarias	94
Llave disyuntora	95
Cable	96
Caja estanca	98
Cálculo estructural de la percha de izaje.	98
Cálculo del momento de la percha.	99
Cálculo del módulo resistente de la percha	99
Cálculo del radio de giro de la percha.	99
Cálculo del coeficiente de esbeltez.	100
Coeficiente de pandeo.	100
Cálculo de las excentricidades.	101
Esfuerzos actuantes sobre la percha	102
Cálculo del esfuerzo axial sobre la percha.	102
Cálculo de la tensión máxima sobre la percha	103
Cálculo de pandeo según fórmula de Euler para la percha	103
Cálculo de tenciones admisibles para el acero ASTM A53 Gr A	104
Verificación de tenciones para el puntal de acero ASTM A53 Gr A	104

Soldadura en la percha	104
Herraje ER7 – Sujeciones en la percha	106
Verificaciones.	107
Selección de cable y componentes de la percha	109
Cables.	109
Grampas	111
Eslingas	112
Pintura	113
Presupuesto	115

Dimensiones principales de la grúa.

Para determinar las dimensiones principales que tendrá la grúa es necesario conocer la ubicación física en la que se instalará junto con las dimensiones de la mayor embarcación a elevar. Dichas medidas son las siguientes:

Altura máxima de cota: 4 m

Distancia al agua: 2,4 m (Esta medida incluye la distancia de la columna al borde)

Distancia horizontal total que se dispone: 12 m

Las dimensiones del barco que se considerarán serán las de barco más grande que se tiene previsto izar, estas son:

Manga: 3,5 m

Eslora: 10 m

Altura borda: 1,5 m

Altura quilla y borda: 3,2 m

Cálculo geométrico del mástil.

En esta sección se determinaran las dimensiones preliminares que tendrá el mástil, posteriormente se procederá a la verificación de las medidas adoptadas bajo todos los tipos de esfuerzos a la cual se encuentra solicitado.

Dimensionamiento de la longitud horizontal del mástil.

Esta distancia está compuesta por los siguientes componentes:

$$d_h = Distancia\ al\ agua + \frac{Manga}{2} + Margen$$

$$d_h = 4.4\ m + \frac{3.5\ m}{2} + 0.8\ m$$

$$d_h = 6.95\ m \approx 7\ m$$

<u>Dimensionamiento de la longitud vertical del mástil.</u>

Esta distancia está compuesta por los siguientes componentes:

$$d_v=Altura\ polipasto+Altura\ percha+Altura\ quilla\ y\ borda+Margen$$

$$d_v=0.87\ m+2.2\ m+3.2\ m+1.3\ m$$

$$d_v=7.57\ m\ pprox 7.6\ m$$

Longitud total del mástil.

Con las longitudes horizontales y verticales calculadas anteriormente, se calcula la longitud del mástil de izaje.

$$lm = \sqrt{d_h^2 + d_v^2}$$

$$lm = \sqrt{(7 m)^2 + (7.6 m)^2}$$

Preparó:	Revisó:	Aprobó:	Página 1 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$lm = 10,33$$

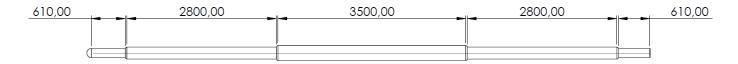
Adopción de longitud de tramos.

Debido a que el mástil estará principalmente solicitada en compresión, tenderá a sufrir de pandeo, por lo que es necesario dimensionar principalmente el tramo central el cual se encuentra en el punto más crítico de este fenómeno. Por lo tanto se decidió que el mástil sea construido de distintos diámetros (telescópico) para principalmente eliminar peso a la estructura. Para la adopción de longitud de tramos se basaran los cálculos en el libro "Trasporti Meccanici" de Vittorio Zignoli el cual propone lo siguiente.

Para el mástil se adoptan los siguientes coeficientes:

- Tramo central (Tr₁) de 2 a 4 metros de longitud.
- Tramo adyacente (Tr₂) al central, 0,8 de la longitud del tramo central.
- Para los tramos subsiguientes (Tr_{3, 4, 5...}), 0,9 de la longitud del tramo anterior.
- Tramos extremos (Tr_{ex}) entre 0,5 a 1 metro de longitud.

Considerando estos coeficientes se procede al cálculo de los tramos del mástil:


Para el tramo central se adoptará 3,5 metros de longitud, por tanto el tramo adyacente se calcula con la siguiente expresión:

$$Tr_1 = 3.5 m$$

$$Tr_2 = 0.8 * Tr_1 = 0.8 * 3.5 m$$

 $Tr_2 = 2.8 m$

$$Tr_{ex} = \frac{10,33 m - Tr_1 - (2 * Tr_2)}{2}$$
 $Tr_{ex} = \frac{10,33 m - 3,5m - (2 * 2,8 m)}{2}$
 $Tr_{ex} = 0,61 m$

Las medidas tentativas de longitud del mástil se resumen en el esquema que se muestra a continuación:

Adopción de diámetros y espesores de tramos.

Como ya se explicó en el apartado anterior, para reducir el peso del mástil, esta se realizará telescópica. Para la determinación de los diámetros en cada una de las

Preparó:	Revisó:	Aprobó:	Página 2 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

secciones se utilizaran nuevamente los criterios propuestos por el libro "Trasporti Meccanici" de Vittorio Zignoli, los cuales son los siguientes.

Para el diámetro del mástil se adoptan los siguientes coeficientes:

- Diámetro central (Di₁), 0,021 de la longitud total del mástil.
- Diámetro de los extremos (Di_{ex}), 0,64 a 0,75 del diámetro central.
- Espesor de caños (Es_{1, 2, 3...)}, 0,022 a 0,023 del diámetro del caño.

Por lo tanto los diámetros preliminares son los siguientes:

$$Di_1 = 0.021 * lm$$

 $Di_1 = 0.021 * 10.33 m$
 $Di_1 = 0.2169 m$

Para la selección de caños normalizados según ASTM A53 utilizaremos el fabricante nacional Cardalda S.A, con el diámetro obtenido anteriormente se busca el que mejor se ajuste a este.

DIAMETRO NOMINAL STD XS XXS 10 20 30 40 60 80 100 120 140 160	CAÍ	ÑOS (01	N Y SI	N CO	STUR	A									
1/8 10.3 1.73 2.41 1.73 0.37 0.47 1.73 0.47 1.74 13.7 1.75 0.80 0.80 0.80 0.80 0.80 1.73 0.47 1.74 13.7 1.75 0.80 0							s	C F	I E	D	U	L E	s			
1/8				STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/4	1/8	10.3														
1/2 21.3 3.6 2.31 3.20 0.84 1.10 0.84 1.10 1.95 1.	1/4	13.7		2.24	3.03					2.24		3.03				
1/2 21.3 6.02 2.77 3.73 7.47 3.73 7.47 3.73 3.73 3.73 3.73 3.73 3.73 3.73 3.74 3.75 3.74 3.75 3.74 3.75 3			ESP	2.31	3.20					2.31		3.20				
1/2 2.1.3 1.62 2.55 3.64 3.64 1.69 2.20 2.29						7.47										4.78
1 33.4	1/2	21.3	KG/M	1.27		2.55		-		1.27		1.62				1.95
1 1 35.4	3/4	26.7														
11/4 42.2	1	33.4														
1 1/2 48.3	1 1/4	42.2	ESP	3.56	4.85	9.70	2.77			3.56		4.85				6.35
2 60.3			_													_
2 1/2 73.0	1 1/2	48.3	KG/M	4.05	5.41	9.56	3.11			4.05		5.41				7.25
3 88.9 6.55 5.49 7.62 11.41 20.39 5.26 8.63 11.41 14.92 15.27 21.35 3 1/2 101.6 6.55 5.74 8.08 3.05 5.74 8.08 11.29 15.27 21.35 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64 7.41 15.88 7.62	2	60.3														
3 88.9 SF 5.49 7.62 15.24 3.05 5.49 7.62 11.13 11.29 15.27 27.68 6.46 11.29 15.27 21.35 3 1/2 101.6 10.57 18.64 7.41 13.57 18.64 13.57 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 33.54 16.08 22.32 28.32 28.32 33.54 16.08 22.32 28.32 28.32 33.54 16.08 22.32 28.32 28.32 33.54 16.08 22.32 28.32 28.32 33.54 16.08 22.32 28.32 28.32 33.54 16.08 22.32 28.32	2 1/2	73.0														
3 1/2 101.6 SP 5.74 8.08 3.05 5.74 8.08 13.57 18.64 7.41 13.57 18.64 11.13 13.57 18.64 11.43 13.57 18.64 11.43 13.57 18.64 11.13 13.57 18.64 11.13 13.49 16.08 22.32 41.03 8.37 16.08 22.32 28.32 33.54 16.08 22.32 28		88 9	ESP	5.49	7.62	15.24	3.05			5.49		7.62				11.13
114.3 13.57 18.64 7.41 13.57 18.64 7.41 13.57 18.64						27.68										21.35
14.3 16.08 22.32 41.03 8.37 16.08 22.32 28.32 33.54	3 1/2	101.6	KG/M	13.57	18.64		7.41	1		13.57		18.64				40.40
5 141.3 Mo/No 21.77 30.97 57.43 11.56 21.77 30.97 40.28 49.12 6 168.3 ESP (Mo/No) 7.11 10.97 14.27 18.26 8 219.1 ESP (Mo/No) 8.18 12.70 22.23 4.78 6.35 7.04 8.18 10.31 12.70 15.09 18.26 20.62 23.01 10 273.0 ESP (Mo/No) 9.27 12.70 25.26 33.32 36.82 42.55 53.09 64.64 75.92 90.44 100.93 111.27 10 273.0 ESP (Mo/No) 9.27 12.70 25.40 4.19 6.35 7.80 9.53 12.70 15.09 18.26 21.44 25.40 28.58 12 323.8 ESP (SP) 9.52 12.70 25.40 4.57 6.35 7.81 14.76 51.01 61.92 81.53 95.98 114.71 159.87 159.87 159.87 159	4	114.3														
6 168.3 16.97 16.27 18.26 19.27 18.26 19.27 18.26 19.27 18.26 19.27 18.26 19.27 18.26 19.27 18.26 19.27 18.26 19.27 19.2	5	141.3														
8 219.1	6	168.3	ESP	7.11	10.97	21.95	3.40			7.11		10.97		14.27		18.26
8 219.1 μα/ν 42.55 64.64 107.93 25.26 33.32 36.82 42.55 53.09 64.64 75.92 90.44 100.93 111.27 10 273.0 μα/ν 60.29 81.53 155.10 27.78 41.76 51.01 61.92 81.53 95.98 114.71 159.87 155.10 172.27 12 323.8 μα/ν 73.79 97.44 186.92 35.98 49.71 65.19 79.71 108.93 132.05 159.87 186.92 25.40 28.58 33.32 14 355.6 μα/ν 73.79 97.44 186.92 35.98 49.71 65.19 79.71 108.93 132.05 159.87 186.92 159.87 238.69 14.72 17.48 12.44 25.40 28.58 33.32 14 355.6 μα/ν 73.79 97.44 186.92 35.98 49.71 65.19 79.71 108.93 132.05 159.87 186.92 159.87 358.69 159.87 35.71 108.93 132.05 159.87 186.92 25.86 253.58 281.72 16 406.4 μα/ν 18.25 107.40 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 35.71 16 406.4 μα/ν 18.25 μα/ν 18.31 162.65 77.83 93.18 123.31 160.3 20.55 245.57 266.6 333.21 365.38 18 457.2 μα/ν 19.51 139.22 70.60 87.75 122.44 155.88 205.84 254.69 309.78 363.76 408.48 459.62 20 508.0 μα/ν 117.03 155.13 78.56 117.03 155.13 158.43 247.84 311.19 381.55 442.52 508.15 564.85 117.03 155.13 155.15 138.43 247.84 311.19 381.55 442.52 508.15 564.85 12.03 155.15 138.43 247.84 311.19 381.55 442.52 508.15 564.85 12.03 160.89 186.95 94.47 140.89 20.95 155.25 355.04 441.80 547.36 639.62 719.68 807.68 19.05 15.88 19.05			_					6.35	7.04		10.31		15.09		20.62	
10 273.0 kg/m 60.29 81.53 155.10 27.78 41.76 51.01 61.92 81.53 95.98 114.71 159.87 155.10 172.27 12 323.8 kg/m 73.79 97.44 186.92 35.98 49.71 65.19 79.71 108.93 132.05 159.87 186.92 159.87 238.69 14.71 17.08 159.87 155.10 172.27 14.8 12.54 165.19 17.11 108.93 132.05 159.87 186.92 159.87 238.69 159.87 186.92 1	8	219.1	KG/M	42.55	64.64	107.93	25.26	33.32	36.82	42.55	53.09	64.64	75.92	90.44	100.93	111.27
14 355.6 SSP 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 35.71 16.40 1	10	273.0														
14 355.6 ESP 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 35.71 16.64 25.85 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.55 24.65 253.58 281.72 24.66 25.65 26.	12	323.8														
16 406.4	14	355.6	ESP	9.52	12.70		6.35	7.92	9.52	11.10	15.09	19.05	23.83	27.79	31.75	35.71
18 457.2 SEP 9.52 12.70 6.35 7.92 11.13 14.27 19.05 23.83 29.36 34.93 39.67 45.24																
18 457.2 Ms/h 105.11 139.22 70.60 87.75 122.44 155.88 205.84 254.69 309.78 363.76 408.48 459.62 20 508.0				93.18	123.31			77.83	93.18	123.31	160.13	203.55	245.57	286.66	333.21	365.38
20 506.0 MG/M 117.03 155.13 78.56 117.03 155.13 183.43 247.84 311.19 381.55 442.52 508.15 564.85 24 609.6 KSP 9.52 12.70 6.35 9.52 14.27 17.48 24.61 30.96 38.89 46.02 52.37 59.54 MG/M 140.89 186.95 94.47 140.89 209.51 255.25 355.04 441.80 547.36 639.62 719.68 807.68 30 762 0 KSP 9.52 12.70 7.92 12.70 15.88 19.05	18	457.2		105.11	139.22		70.60	87.75	122.44	155.88	205.84	254.69	309.78			459.62
24 609.6 SP 9.52 12.70 6.35 9.52 14.27 17.48 24.61 30.96 38.89 46.02 52.37 59.54 140.89 140.89 140.89 209.51 255.25 355.04 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 30.96 38.89 46.02 52.37 59.54 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 547.36 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 639.62 719.68 807.68 441.80 719.62 807.62 807.62 807.62 8	20	508.0														
30 762 0 ESP 9.52 12.70 7.92 12.70 15.88 19.05	24	609.6		9.52	12.70		6.35	9.52	14.27	17.48	24.61	30.96	38.89	46.02	52.37	59.54
											355.04	441.80	547.36	639.62	/19.68	807.68
	30	762.0	KG/M													

Preparó:	Revisó:	Aprobó:	Página 3 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

El diámetro en los extremos, tomando en cuenta el diámetro del caño normalizado antes seleccionado será:

$$Di_{ex} = 0.64 * Di_1$$

 $Di_{ex} = 0.64 * 0.2191 m$
 $Di_{ex} = 0.140 m$

Para la selección de caños normalizados según ASTM A53 utilizaremos el mismo fabricante. Con el diámetro obtenido anteriormente se busca el que mejor se ajuste a este.

CAÍ	ÑOS (COI	N Y SI	N CO	STUR	A									
						s	с н	E	D	U	L E	S			
	1ETRO 1INAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73 0.37	2.41 0.47					1.73		2.41				
1/4	13.7	ESP KG/M	2.24	3.03					2.24		3.03				
3/8	17.1	ESP KG/M	2.31	3.20					2.31		3.20				
1/2	21.3	ESP KG/M	2.77	3.73	7.47				2.77		3.73				4.78 1.95
3/4	26.7	ESP KG/M	2.87	1.02	7.82				2.87		3.91				5.56
1	33.4	ESP KG/M	3.38	4.55 3.24	9.09	2.77			3.38		4.55				6.35
1 1/4	42.2	ESP KG/M	3.56	4.85	9.70	2.77			3.56 3.39		4.85				6.35
1 1/2	48.3	ESP	3.39	5.08	7.70 10.16	2.69			3.68		5.08				7.14
2	60.3	KG/M ESP	4.05 3.91	5.41	9.56 11.07	3.11 2.77			4.05 3.91		5.41 5.54				7.25 8.74
2 1/2	73.0	KG/M ESP	5.44	7.48	13.44	3.93			5.44 5.16		7.48				9.53
3	88.9	KG/M ESP	8.63 5.49	7.62	20.39 15.24	5.26 3.05			8.63 5.49		7.62				11.13
3 1/2	101.6	KG/M ESP	11.29 5.74	15.27 8.08	27.68	6.46 3.05			5.74		15.27 8.08				21.35
4	114.3	KG/M ESP	6.02	18.64 8.56	17.12	7.41 3.05			6.02		18.64 8.56		11.13		13.49
5	141.3	KG/M ESP	16.08 6.55	9.53	41.03 19.05	8.37 3.40			16.08 6.55		9.53		28.32 12.70		33.54 15.88
6	168.3	KG/M ESP	7.11	30.97 10.97	57.43 21.95	11.56 3.40			7.11		30.97 10.97		40.28 14.27		49.12 18.26
8	219.1	KG/M ESP	28.26 8.18	42.56 12.70	79.22 22.23	13.83 4.78	6.35	7.04	28.26 8.18	10.31	42.56 12.70	15.09	54.21 18.26	20.62	67.57 23.01
10	273.0	KG/M ESP	42.55 9.27	64.64 12.70	107.93 25.40	25.26 4.19	33.32 6.35	36.82 7.80	42.55 9.53	53.09 12.70	64.64 15.09	75.92 18.26	90.44	100.93 25.40	111.27 28.58
	323.8	KG/M ESP	60.29 9.52	81.53 12.70	155.10 25.40	27.78 4.57	41.76 6.35	51.01 8.38	61.92 10.31	81.53 14.27	95.98 17.48	114.71 21.44	159.87 25.40	155.10 28.58	172.27 33.32
12		KG/M ESP	73.79 9.52	97.44 12.70	186.92	35.98 6.35	49.71 7.92	65.19 9.52	79.71 11.10	108.93 15.09	132.05 19.05	159.87 23.83	186.92 27.79	159.87 31.75	238.69 35.71
14	355.6	KG/M ESP	81.25 9.52	107.40		54.69 6.35	67.91 7.92	81.25 9.52	94.30	126.72	158.11	194.98	224.66 30.96	253.58 36.53	281.72
16	406.4	KG/M ESP	93.18	123.31		62.65	77.83	93.18	123.31	160.13	203.55	245.57	286.66	333.21	365.38 45.24
18	457.2	KG/M ESP	105.11	139.22		70.60	87.75 9.52	122.44	155.88	205.84	254.69	309.78 32.54	363.76 38.10	408.48	459.62 50.01
20	508.0	KG/M ESP	117.03 9.52	155.13		78.56 6.35	117.03	155.13	183.43	247.84	311.19 30.96	381.55 38.89	442.52	508.15	564.85
24	609.6	KG/M	140.89	186.95		94.47	140.89	209.51	255.25	355.04	441.80	547.36	639.62	719.68	807.68
30	762.0	ESP KG/M	9.52 176.67	12.70 234.68		7.92 147.29	12.70	15.88 292.20	19.05 349.46						

Como se puede observar la medida del tramo intermedio será de:

$$Di_2 = 0.1683 m$$

Preparó:	Revisó:	Aprobó:	Página 4 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

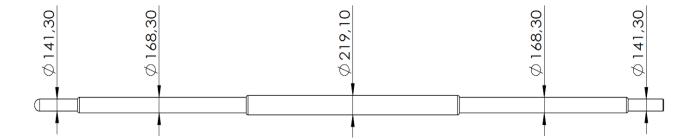
El espesor de los caños normalizados anteriormente seleccionados es:

$$Es_1 = 0.023 * Di_1$$

 $Es_1 = 0.023 * 0.2191 m$
 $Es_1 = 0.00504 m = 5.04 mm$

$$Es_2 = 0.023 * Di_2$$

 $Es_2 = 0.023 * 0.1683 m$
 $Es_2 = 0.00387 m = 3.87 mm$


$$Es_{ex} = 0.023 * Di_{ex}$$

 $Es_{ex} = 0.023 * 0.1413 m$
 $Es_{ex} = 0.00325 m = 3.25 mm$

Como se puede ver en la siguiente tabla, los valores normalizados para los valores obtenidos son los siguientes y corresponden a caños Schedule 40.

CAÍ	ños (01	N Y SI	N CO	STUR	A									
						S	с н	E	D	U	L E	S			
	METRO MINAL		STD	xs	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73	2.41 0.47					1.73		2.41				
1/4	13.7	ESP KG/M	2.24	3.03					2.24 0.63		3.03				
3/8	17.1	ESP KG/M	2.31	3.20					2.31		3.20				
1/2	21.3	ESP	2.77	3.73	7.47				2.77		3.73				4.78
3/4	26.7	KG/M ESP	2.87	1.62	7.82				2.87		3.91				1.95 5.56
		KG/M ESP	1.69 3.38	4.55	3.64 9.09	2.77			1.69 3.38		4.55				2.90 6.35
1	33.4	KG/M ESP	2.50 3.56	3.24 4.85	5.45 9.70	2.09			2.50 3.56		3.24				4.24 6.35
1 1/4	42.2	KG/M	3.39	4.85	7.70	2.69			3.39		4.85 4.47				5.61
1 1/2	48.3	ESP KG/M	3.68 4.05	5.08	10.16 9.56	2.77 3.11			3.68 4.05		5.08				7.14
2	60.3	ESP KG/M	3.91 5.44	5.54 7.48	11.07 13.44	2.77			3.91 5.44		5.54 7.48				8.74 11.11
2 1/2	73.0	ESP KG/M	5.16	7.01	14.02	3.05			5.16	1	7.01				9.53
3	88.9	ESP	8.63 5.49	7.62	20.39 15.24	5.26 3.05			8.63 5.49		7.62				14.92
	101.6	KG/M ESP	11.29 5.74	15.27 8.08	27.68	6.46 3.05			5.74		15.27 8.08				21.35
3 1/2		KG/M ESP	13.57	18.64 8.56	17.12	7.41 3.05			13.57 6.02		18.64 8.56		11.13		13.49
4	114.3	KG/M	16.08	22.32	41.03	8.37			16.08		22.32		28.32		33.54
5	141.3	ESP KG/M	6.55 21.77	9.53	19.05 57.43	3.40 11.56			6.55 21.77		9.53		12.70 40.28		15.88 49.12
6	168.3	ESP KG/M	7.11 28.26	10.97	21.95	3.40			7.11		10.97 42.56		14.27 54.21		18.26 67.57
8	219.1	ESP KG/M	8.18 42.55	12.70 64.64	22.23	4.78 25.26	6.35	7.04 36.82	8.18 42.55	10.31 53.09	12.70 64.64	15.09 75.92	18.26 90.44	20.62	23.01
10	273.0	ESP	9.27	12.70	25.40	4.19	6.35	7.80	9.53	12.70	15.09	18.26	21.44	25.40	28.58
		KG/M ESP	9.52	81.53 12.70	155.10 25.40	27.78 4.57	6.35	51.01 8.38	10.31	81.53 14.27	95.98 17.48	114.71 21.44	159.87 25.40	155.10 28.58	172.27 33.32
12	323.8	KG/M ESP	73.79	97.44	186.92	35.98 6.35	49.71 7.92	65.19 9.52	79.71	108.93	132.05	159.87	186.92 27.79	159.87 31.75	238.69 35.71
14	355.6	KG/M	81.25	12.70 107.40		54.69	67.91	81.25	94.30	126.72	158.11	194.98	224.66	253.58	281.72
16	406.4	ESP KG/M	9.52 93.18	12.70		6.35 62.65	7.92	9.52 93.18	12.70	16.66	21.44	26.19 245.57	30.96	36.53 333.21	40.49 365.38
18	457.2	ESP KG/M	9.52 105.11	12.70 139.22		6.35 70.60	7.92 87.75	11.13	14.27	19.05	23.83	29.36	34.93 363.76	39.67 408.48	45.24 459.62
20	508.0	ESP KG/M	9.52 117.03	12.70		6.35 78.56	9.52	12.70	15.09	20.62	26.19	32.54 381.55	38.10 442.52	44.45	50.01 564.85
24	609.6	ESP	9.52	12.70		6.35	9.52	14.27	17.48	24.61	30.96	38.89	46.02	52.37	59.54
30	762.0	KG/M ESP	9.52	186.95		94.47 7.92	140.89	209.51 15.88	19.05	355.04	441.80	547.36	639.62	719.68	807.68
30	762.0	KG/M	176.67	234.68		147.29	234.68	292.20	349.46						

Preparó:	Revisó:	Aprobó:	Página 5 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Las medidas tentativas de diámetros del mástil se resumen en el esquema que se muestra a continuación:

Cálculo geométrico del puntal.

En esta sección se determinaran las dimensiones preliminares que tendrá el puntal, posteriormente se procederá a la verificación de las medidas adoptadas bajo todos los tipos de esfuerzos a la cual se encuentra solicitado.

Adopción de longitud del tramo.

Para el cálculo del puntal se adopta una longitud del mismo de 8 metros.

$$lp = 8 m$$

Adopción de diámetro y espesor del tramo.

Para la determinación del diámetro en la sección se utilizaran nuevamente los criterios propuestos por el libro "Trasporti Meccanici" de Vittorio Zignoli, los cuales son los siguientes.

Para el puntal se adoptan los siguientes coeficientes:

- Diámetro del puntal (Dp), 0,021 a 0,026 de la longitud total del mástil.
- Espesor del puntal (Ep), 0,022 a 0,023 del diámetro del puntal.

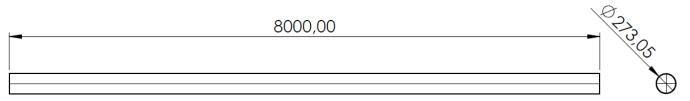
Considerando estos coeficientes se procede al cálculo del puntal:

$$Dp = 0.026 * lm$$

 $Dp = 0.026 * 10.33 m$
 $Dp = 0.2685 m$

Para la selección de caños normalizados según ASTM A53 utilizaremos el fabricante nacional Cardalda S.A, con el diámetro obtenido anteriormente se busca el que mejor se ajuste a este.

En este caso, se adopta un caño de 10' o bien 273 mm de diametro, por lo que el espesor según criterio adoptado será de:


	r -/ r		
Preparó:	Revisó:	Aprobó:	Página 6 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Ep = 0	,∪∠	43	* .	υр
--------	-----	----	-----	----

$$Ep = 0.023 * 0.273 m$$

 $Ep = 0.00627 m = 6.27 mm$

Resultando finalmente en un caño de 10' o bien 273 mm de diámetro con 9,53 mm de espesor (Schedule 40)

Las medidas tentativas del puntal se resumen en el esquema que se muestra a continuación:

STD XS XXS 10 20 30 40 60 80 100 120 140	CAÑOS CON Y SIN COSTURA								
NOMINAL 1/8 10.3 1/3 10.3 1/4 13.7 1/4 13.7 1/4 13.7 1/5 2.24 3.03 1/6 2.31 3.20 1/7 3.73 1/7 3.7									
1/4 13.7 1	160								
1/4									
1/2 21.3 3.20									
1/2 21.3 1.27 3.73 7.47 2.55 3.73 7.47 1.27 1.62 3.73 3.74 3.73 3.73 3.74 3.75 3									
3/4 26.7	4.78 1.95								
1 33.4 1.69 2.20 3.38 4.55 9.09 2.77 3.38 4.55 3.24 3.24 3.25 3.24 3.24 3.25 3.25 3.24 3.25 3.25 3.24 3.25 3.25 3.24 3.25 3.25 3.24 3.25 3.25 3.24 3.25 3.25 3.24 3.25 3.25 3.25 3.24 3.25 3.25 3.25 3.24 3.25	5.56								
1 1/4 42.2 SSP 3.56 4.85 9.70 2.77 3.56 4.85 3.39 4.47 7.70 2.69 3.39 4.47 1.70 2.69 3.39 4.47 1.70 2.69 3.39 4.47 1.70 2.69 3.39 4.47 1.70 2.69 3.39 4.47 1.70 2.77 3.68 5.08 5.41 5.54 5.41 5.56 3.11 4.05 5.41 5.54 1.07 2.77 3.91 5.54 7.48 3.93 5.44 7.48 3.93 5.44 7.48 3.93 5.44 7.48 3.93 5.44 7.48 3.93 5.44 7.48 3.93 3.93 5.44 7.48 3.93 3.93 5.44 7.48 3.93 3.93 3.93 3.94 7.62 3.95 3.91	6.35								
1 1/4 44.2 Naph 3.68 5.08 10.16 2.77 3.68 5.08 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 9.56 3.11 4.05 5.41 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.48 7.49 7.62 7.	6.35								
1 1 2 48.5 86.7 8.5 8.5 1.07 2.77 3.91 5.54 7.48 13.44 3.93 5.44 7.48 7.41 7.48 7.4	5.61								
2 1/2 73.0	7.14								
2 1/2 73.0	8.74								
3 88.9	9.53								
3 1/2 101.6 ESP MAG/M 5.74 13.57 8.08 13.57 18.64 3.05 7.41 13.57 18.64 13.57 18.64 13.57 18.64 13.57 18.64 13.57 18.64 13.57 18.64 11.13 13.57 18.64 11.13 13.57 18.64 11.13 18.64 18.64 18.64 18.64	11.13								
4 114.3 SSP 6.02 8.56 17.12 3.05 6.02 8.56 11.13 16.08 22.32 28.32 14.13 15.09 14.27 14.	21.33								
5 141.3 tsp (a,b) 6.55 9.53 19.05 3.40 6.55 9.53 12.70 6 168.3 tsp (21.77) 30.97 57.43 11.56 21.77 30.97 40.28 8 219.1 tsp (21.77) 8.18 12.70 22.23 4.78 6.35 7.04 8.18 10.31 12.70 15.09 14.27 10 273.0 tsp (25.77) 9.27 12.70 25.40 4.19 6.35 7.80 9.53 12.70 15.09 18.26 20.44 25.40 12 323.8 tsp (25.77) 25.40 4.57 6.35 7.80 9.53 12.70 15.09 18.26 21.44 25.40 14 355.6 tsp (25.77) 25.40 4.57 6.35 7.80 9.53 12.70 15.09 18.26 21.44 25.40 12 323.8 tsp (25.77) 25.40 4.57 6.35 8.38 10.31 14.27 17.48 21.44 25.40 14 355.6 tsp (25.77) 25.40 <td< td=""><td>13.49</td></td<>	13.49								
6 168.3 SF 7.11 10.97 21.95 3.40 7.11 10.97 14.27 28.26 42.56 79.22 13.83 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 28.26 42.56 54.21 42.54 42	33.54 15.88								
8 219.1 SP 8.18 12.70 22.23 4.78 6.35 7.04 8.18 10.31 12.70 15.09 18.26 20.62 10.62	49.12 18.26								
8 219.1 NG/M 42.55 64.64 107.93 25.26 33.32 36.82 42.55 53.09 64.64 75.92 90.44 100.93 10 273.0 ISP 9.27 12.70 25.40 4.19 6.35 7.80 9.53 12.70 15.09 18.26 21.44 25.40 12 323.8 ISP 9.52 12.70 25.40 4.57 6.35 8.38 10.31 14.27 17.48 21.44 25.40 28.58 14 355.6 ISP 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 14 355.6 ISP 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 14 355.6 ISP 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75	67.57								
10 273.0 NG/M 60.29 81.53 155.10 27.78 41.76 51.01 61.92 81.53 95.98 114.71 159.87 155.10 12 323.8 LSP 9.52 12.70 25.40 4.57 6.35 8.38 10.31 14.27 17.48 21.44 25.40 28.58 49.71 65.19 79.71 108.93 132.05 159.87 186.92 159.87 14.71 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 155.10 159.87 159.87 155.10 159.87 155.10 159.87 159.87 155.10 159.87 159.87 159.87 155.10 159.87 15	23.01								
12 323.8 55P 9.52 12.70 25.40 4.57 6.35 8.38 10.31 14.27 17.48 21.44 25.40 28.58 27.79 27.44 186.92 35.98 49.71 65.19 79.71 108.93 132.05 159.87 186.92 159.87 14.27 17.48 21.44 25.40 28.58 27.89 27.89 28.58 27.89 28.58 28.	28.58								
14 355.6 (SP) 9.52 12.70 6.35 7.92 9.52 11.10 15.09 19.05 23.83 27.79 31.75 54.69 67.91 81.25 94.30 126.72 158.11 194.98 224.66 253.58	33.32 238.69								
TO 0.52 12.70 6.25 7.02 0.52 12.70 16.66 21.44 26.10 20.06 26.52	35.71								
	40.49								
18 457 2 ¹⁵⁹ 9.52 12.70 6.35 7.92 11.13 14.27 19.05 23.83 29.36 34.93 39.67	365.38 45.24								
105.11 139.22 70.60 87.75 122.44 155.88 205.84 254.69 309.78 365.76 408.48	459.62 50.01								
20 308.0 M _{G/M} 117.03 155.13 78.56 117.03 155.13 183.43 247.84 311.19 381.55 442.52 508.15	564.85								
24 609.6 KSP 9.52 12.70 6.35 9.52 14.27 17.48 24.61 30.96 38.89 46.02 52.37 140.89 140.89 186.95 94.47 140.89 209.51 255.25 355.04 441.80 547.36 639.62 719.68	59.54 807.68								
30 762.0 LSP 9.52 12.70 7.92 12.70 15.88 19.05 147.29 234.68 292.20 349.46									

Preparó:	Revisó:	Aprobó:	Página 7 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

Dimensionamiento de la longitud del cable de izaje.

Esta distancia está compuesta por los siguientes componentes:

 $d_c = Altura\ percha + Altura\ quilla\ y\ borda + Altura\ gancho\ a\ borde + Margen$

Donde:

 $Altura\ gancho\ a\ borde = Altura\ maxima\ de\ cota - Altura\ percha - Altura\ borda$

Altura gancho a borde =
$$4 m - 2.2 m - 1.5 m$$

Altura gancho a borde = 0.3 m

Sustituyendo:

 $d_c = Altura\ percha + Altura\ quilla\ y\ borda + Altura\ gancho\ a\ borde + Margen + Altura\ encastre$

$$d_c = 2.2 m + 3.2 m + 0.3 m + 1.3 m$$

 $d_c = 7 m$

Mecanismo de elevación.

Para determinar la clasificación del mecanismo de elevación se utilizara la norma citada en la introducción UNE 58-112-91/1.

Según dicha norma para clasificar el aparato se debe conocer: la clase de utilización y el estado de cargas.

Clase de utilización.

La clase de utilización es un parámetro al cual le podemos dar un valor de número de ciclos esperado, o cantidad de horas de servicio en un ciclo determinado.

Para nuestra selección se considerara el criterio de horas de servicio.

La grúa se utiliza para el mantenimiento de la obra viva de las embarcaciones así como también para reparaciones estructurales, las cuales se llevan a cabo sobre tráiler acondicionados para soportar las embarcaciones, por lo que el tiempo de servicio de la grúa es al momento del izaje y la puesta en el tráiler, así como también al momento de posar el barco sobre el agua.

Habiendo recolectado datos de las maniobras del puerto se pudo estimar que la grúa trabaja media hora por día, durante doscientos días al año.

Se estima una vida útil hasta el primer mantenimiento intensivo de quince años. Dando un total de horas de:

$$duracion\ tltal\ del\ servicio = 15a\~nos * 200 \frac{dias}{a\~no} * 0,5 \frac{horas}{dia}$$

 $duracion\ total\ del\ servicio=1500\ Horas.$

Preparó:	Revisó:	Aprobó:	Página 8 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Clases de utilización de los aparatos								
Clases de utilización de los aparatos	Duración total del servicio (h)	Observaciones						
T ₀	200							
T ₁	400	l Hilimonián agonianal						
T ₂	800	Utilización ocasional						
T ₃	1600							
T ₄	3200	Utilización regular en servicio ligero						
T ₅	6300	Utilización regular en servicio intermitente						
T ₆	12000	Utilización regular en servicio intensivo						
T ₇	25000							
T ₈	50000	Utilización intensiva						
Т	100000							

De la siguiente tabla suministrada por la norma entrando con la cantidad de horas de la duración total de servicio, obtenemos la clase de utilización, la misma es: T_3

Esta clase de utilización corresponde para utilizaciones ocasionales del aparato.

Estado de carga del mecanismo.

Para obtener este parámetro es necesario conocer la cantidad de veces que se va a elevar la máxima carga sobre la cantidad total de elevaciones.

Para nuestro caso la carga máxima a izar según las autoridades del puerto es de 6000 kilos, se realizara el dimensionamiento estructural para un 60% más de la carga máxima a izar, este valor permitirá que el mecanismo de elevación trabaje más aliviado, que presente menos desgaste, y que se extiendan los plazos de mantenimiento

$$P_n = 6000Kg * 1,6$$

 $P_n = 9600Kg \approx 10000Kg$

Por lo que se adoptara como carga nominal a izar 10000Kg, ya que no se tuvo en cuenta el peso de la percha de izaje y de las fajas de izaje.

Reemplazando en la ecuación

$$K_m = \frac{numero\; de\; veces\; a\; elevar\; la\; carga\; maxima}{numero\; total\; de\; elevaciones}$$

Como en nuestro caso nunca se elevara la carga máxima ya que fue aumentada un 60% de la real, se adopta el valor de K_m mas bajo

Preparó:	Revisó:	Aprobó:	Página 9 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Coeficientes nominales del espectro de cargas para los mecanismos, ${\sf K}_{\sf m}$								
Estado de carga	Coeficiente nominal del espectro de cargas K _m	Observaciones						
L1 – Ligero	0,125	Aparato que levanta raramente la carga útil y corrientemente cargas muy pequeñas.						
L2 – Moderado	0,25	Aparato que levanta con bastante frecuencia la carga útil y corrientemente cargas pequeñas.						
L3 – Pesado	0,50	Aparato que levanta con bastante frecuencia la carga útil y corrientemente cargas medianas.						
L4 – Muy pesado	1,00	Aparato que corrientemente maneja cargas próximas a la carga útil.						

Para el $K_m = 0.125$ la norma define un estado de carga ligero (L1) que corresponde a un aparato que levanta raramente la carga útil y corrientemente cargas muy pequeñas.

Entrando en la siguiente tabla con el estado de carga y la clase de utilización obtenemos la clasificación final de nuestro aparato.

	Coeficiente	Clas	es de	utiliz	ación						
Estado de carga	nominal del espectro de cargas Km	T0	T1	T2	ТЗ	T4	T5	Т6	T7	Т8	Т9
L1 - Ligero	0,125	M1	M1	M1	M2	М3	M4	M5	M6	M7	M8
L2 - Moderado	0,25	M1	M1	M2	М3	M4	M5	M6	M7	M8	M8
L3 - Pesado	0,5	M1	M2	М3	M4	M5	M6	M7	M8	M8	M8
L4 - Muy pesado	1	M2	M3	M4	M5	M6	M7	M8	M8	M8	M8

Dando como resultado la clasificación M2.

Selección del polipasto.

El polipasto que se utilizara es de la marca FORVIS ya que es una empresa nacional con muy buenas referencias en el ámbito.

Para la grúa se seleccionará un polipasto Modelo FV 4 Fijo sin carro ya que este modelo es el único que cumple con la caga a izar que se requiere. Las características del polipasto se expresan a continuación.

Preparó:	Revisó:	Aprobó:	Página 10 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Nosotros

FORVIS es una empresa constituida en el año 1951, con amplia experiencia en la fabricación y comercialización de equipos industriales de elevación y transporte, siendo reconocida nacional e internacionalmente por la alta calidad y seguridad de sus productos.

FORVIS ofrece una amplia gama de equipos, de fabricación propia y algunos fabricados por empresas de primera línea, a las cuales representa.

Entre los productos que ofrecemos, podemos mencionar: polipastos eléctricos a cable y a cadena, puentes grúa, pórticos grúa, semipórticos grúa, carrosgrùa, polipastos manuales, polipastos neumáticos, plumas giratorias, sistemas de electrificación y equipos antiexplosivos.

La filosofía de FORVIS no consiste solamente en fabricar y comercializar productos, sino en lograr la máxima satisfacción de las necesidades de sus clientes, ya que a ellos le debe su existencia

Para ello, nuestra Empresa cuenta con un Departamento de Desarrollo Tecnológico, cuya misión es la de desarrollar productos y procesos que, atendiendo al avance de la tecnología y a la evolución de las necesidades del mercado, tengan la capacidad de brindar adecuadas soluciones a las mismas.

Paralelamente el Departamento de Ingeniería, elabora las especificaciones tanto técnicas como funcionales de los productos de serie y especiales, ajustándose a las exigencias de las normas norteamericanas CMAA. Y europeas FEM, a fin de garantizar los más altos niveles de calidad y seguridad de diseño.

Nuestro Departamento de Calidad por su parte, monitorea permanentemente el cumplimiento de los requisitos de fabricación, , habiendo implementado un Sistema de Gestión de Calidad, con base en la norma IRAM ISO 9001:2008, ya certificado.

Finalmente nuestra planta industrial de 5000 m2, ubicada en la ciudad de Colón Pcia. de Buenos Aires - Argentina, cuenta con todos lo elementos técnicos necesarios para garantizar una calidad de fabricación acorde con los requisitos del diseño y con personal altamente especializado, que en realidad constituye la base de sustentación más importante con que cuenta la Empresa.

Capacidad	Altura de	Velocidad	Velocidad Comp		n I Motor		Peso en kg			
de carga	elevación	de elevación	Grupo FEM	Modelo	Ramales de cable e	eléctrico	-	Con carro	eléctrico	
(kg)	(m)	(m/min)	TEM		de cuoie	(HP)	Sin carro	Monomiel	Birriel	
3200	20	8	2m	FV4 3220	2/1	7.5	422	511	702	
3200	20	6/1,5	2m	FV4 3220M	2/1	6/1,5	435	524	715	
4000	20	6	1Am	FV4 4020	2/1	7.5	469	558	749	
4000	20	4,4/1,1	1Am	FV4 4020M	2/1	6/1,5	482	571	762	
5000	20	6	1Bm	FV4 5020	2/1	7.5	469	558	749	
5000	20	4,4/1,1	18m	FV4 5020M	2/1	6/1,5	482	571	762	
6400	10	4	2m	FV4 6410	4/1	7.5	495	584	775	
6400	10	3/0,75	2m	FV4 6410M	4/1	6/1,5	508	597	788	
8000	10	3	1Am	FV4 8010	4/1	7.5	542	713	942	
8000	10	2,2/0,5	,1Am	FV4 8010M	4/1	6/1,5	555	726	955	
10000	10	3	1Bm	FV4 10010	4/1	7.5	542	713	942	
10000	10	2,2/0,5	1Bm	FV4 10010M	4/1	6/1,5	555	726	955	
15000	8	2	1Bm	FV4 15008	6/1	7.5	654	•	1154	
15000	8	1,5/0,4	1Bm	FV4 15008M	6/1	6/1,5	667	•	1167	
20000	6	1.5	18m	FV4 20006	8/1	7.5	741		1241	
20000	6	1,2/0,3	1Bm	FV4 20006M	8/1	6/1,5	754	•	1254	

Preparó:	Revisó:	Aprobó:	Página 11 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cálculo estructural del mástil.

En esta sección se verificarán las medidas adoptadas anteriormente. Los cálculos se llevarán a cabo siguiendo los criterios del "Manual del constructor de máquinas" del autor Dubbel.

Cálculo del momento de inercia del tramo central.

El momento de inercia del mástil se dividirá en el cálculo de su tramo central y en el de los extremos para un mejor modelado del diseño propuesto.

$$I = \frac{\pi}{64} \; (D_{tc}^{\ 4} - \; d_{tc}^{4})$$

Siendo:

I : Momento de inercia del tramo central.

 D_{tc} : Diámetro exterior del tramo central.

 d_{tc} : Diámetro interior del tramo central.

$$I = \frac{\pi}{64} \left((21.91 \, cm)^4 - (20.274 \, cm)^4 \right)$$

$$I = 3219.94 cm^4$$

Cálculo del módulo resistente del tramo central.

$$W = \frac{I}{D_{tc}/2}$$

Siendo:

W: Modulo resistente del tramo central.

I : Momento de inercia del tramo central.

 D_{tc} : Diámetro exterior del tramo central.

$$W = \frac{3219.94 \ cm^4}{21,91 \ cm/2}$$

$$W = 146.96 \, cm^3$$

Cálculo del momento de inercia de los tramos externos.

Para el cálculo del momento de inercia en los extremos se procede de la misma forma que se hizo en el cálculo del tramo central.

$$I_0 = \frac{\pi}{64} \; (D_{te}^4 - d_{te}^4)$$

Siendo:

 I_0 : Momento de inercia de los tramos externos.

Preparó:	Revisó:	Aprobó:	Página 12 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 D_{te} : Diámetro exterior de los tramos externos.

 d_{te} : Diámetro interior de los tramos externos.

$$I_0 = \frac{\pi}{64} ((14,13 cm)^4 - (12,82 cm)^4)$$

$$I_0 = 630,83 cm^4$$

Cálculo del módulo resistente de los tramos exteriores.

$$W_0 = \frac{I_0}{D_{te}/2}$$

Siendo:

 W_0 : Modulo resistente de los tramos externos.

 I_0 : Momento de inercia de los tramos externos.

 D_{te} : Diámetro exterior de los tramos externos.

$$W_0 = \frac{630,83 \, cm^4}{14,13 \, cm/_2}$$

$$W_0 = 89.3 \ cm^3$$

Cálculo del momento de inercia ideal.

Tomando en cuenta ambos momentos de inercia calculados anteriormente se realiza el cálculo del momento de inercia ideal del mástil.

$$I_i = I * \left(0.6 + 0.4 * \sqrt{\frac{I_0}{I}} \right)$$

Siendo:

 I_i : Momento de inercia ideal.

 I_0 : Momento de inercia de los tramos externos.

I : Momento de inercia del tramo central.

$$I_i = 3219.94 \ cm^4 * \left(0.6 + 0.4 * \sqrt{\frac{630.83 \ cm^4}{3219.94 \ cm^4}} \right)$$

$$I_i = 2502,05 cm^4$$

Preparó:	Revisó:	Aprobó:	Página 13 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cálculo del radio de giro ideal.

Una vez calculado el momento de inercia ideal y calculando el área transversal de material del caño, calculamos el radio de giro ideal del mástil.

$$i_i = \sqrt{\frac{I_i}{A}}$$

Siendo:

 i_i : Radio de giro ideal.

 I_i : Momento de inercia ideal.

A: Área de la sección transversal del caño central la cual se calcula a continuación.

$$A = \frac{\pi}{4} (D_{tc}^2 - d_{tc}^2)$$

$$A = \frac{\pi}{4} ((21,91 \text{ cm})^2 - (20,274 \text{ cm})^2)$$

$$A = 54.2 \text{ cm}^2$$

Sustituyendo:

$$i_i = \sqrt{\frac{I_i}{A}}$$

$$i_i = \sqrt{\frac{2502,05 \ cm^4}{54,2 \ cm^2}}$$

$$i_i = 6,79 \ cm$$

Cálculo del coeficiente de esbeltez.

Para el cálculo de pandeo de la estructura se utilizara el criterio del coeficiente de pandeo planteado por Dubbel en su manual de construcción de máquinas.

$$\lambda = \frac{I_m}{i_i}$$

Siendo:

 λ : Coeficiente de esbeltez.

 I_m : Largo del mástil.

 i_i : Radio de giro ideal.

$$\lambda = \frac{10,33 m}{0,0679 m}$$
$$\lambda = 152,135$$

Preparó:	Revisó:	Aprobó:	Página 14 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Coeficiente de pandeo.

De la tabla de factores de pandeo del "Manual del constructor de máquinas" del autor Dubbel, entrando con el acero St 37 y con el coeficiente de esbeltez se obtiene el coeficiente de pandeo que se expresa a continuación:

$$\omega = 5.4$$

Cálculo de las excentricidades.

En esta sección se calculará mediante criterios del "Manual del constructor de máquinas" del autor Dubbel la máxima excentricidad que puede tener la estructura por errores en el montaje o bien en la conformación de los materiales que la constituyen. Dicha excentricidad nos da una idea de la desalineación una vez montadas las piezas.

$$e_1 = \frac{l_m}{500} + \frac{D_{tc}}{40}$$

Siendo:

 e_1 : Excentricidad debido a imperfecciones del laminado.

 l_m : Largo del mástil.

 D_{tc} : Diámetro exterior del tramo central.

$$e_1 = \frac{10,33 m}{500} + \frac{0,2191 m}{40}$$

 $e_1 = 26,13 mm$

$$e_2 = \frac{l_m}{100} + \frac{D_{tc}}{40}$$

Siendo:

 e_2 : Excentricidad debido a defectos de montaje.

 l_m : Largo del mástil.

 D_{tc} : Diámetro exterior del tramo central.

$$e_2 = \frac{10,33 m}{100} + \frac{0,2191 m}{40}$$
$$e_2 = 108,77 mm$$

Por último se tiene en cuenta el caso más desfavorable en el cual las dos excentricidades máximas se sumen dando como resultado:

$$e = e_1 + e_2$$

 $e = 26,13 \, mm + 108,77 \, mm$

$$e = 134,9 mm$$

Preparó:	Revisó:	Aprobó:	Página 15 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Peso del mástil.

Para calcular el peso del mástil se utilizarán los datos de la tabla que proporciona el fabricante en la cual se muestran los pesos por metro de cada caño.

$$Q = Tr_1 * Pm_1 + 2 * Tr_2 * Pm_2 + 2 * Tr_3 * Pm_3$$

Siendo:

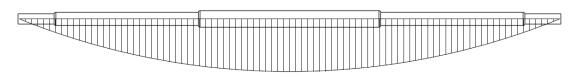
Q: Peso total del mástil.

 Tr_1 : Longitud del tramo central.

 Tr_2 : Longitud del tramo intermedio.

 Tr_3 : Longitud del tramo exterior.

 Pm_1 : Peso por metro del tramo central.


 Pm_2 : Peso por metro del tramo intermedio.

 Pm_3 : Peso por metro del tramo exterior.

$$Q = 3.5 m * 42.53 \frac{kg}{m} + 2 * 2.8 m * 28.26 \frac{kg}{m} + 2 * 0.61 * 21.77 \frac{kg}{m}$$
$$Q = 333.67 kg$$

<u>Cálculo</u> <u>del momento</u> <u>flector</u> <u>máximo</u> <u>debido</u> <u>al peso</u> <u>propio</u> <u>del</u> mástil.

Con el valor del peso total de la estructura, se calcula el momento flector máximo que el peso propio genera. Este se da cuando el mástil se encuentra totalmente horizontal, el valor de dicho momento se calcula a continuación.

$$Mf_{max} = \frac{Q * l_m}{8}$$

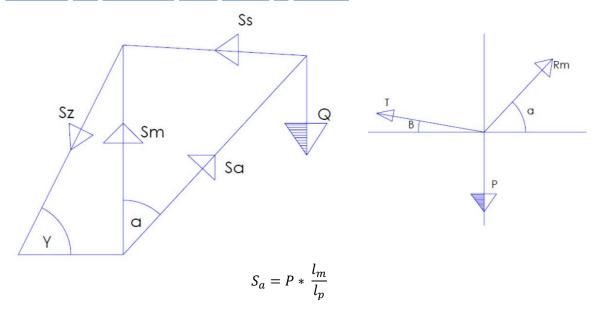
Siendo:

 Mf_{max} : Momento flector máximo.

Q: Peso total del mástil.

 l_m : Longitud del mástil.

$$Mf_{max} = \frac{333,67 \; kg * \; 10,33 \; m}{8}$$


Preparó:	Revisó:	Aprobó:	Página 16 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$Mf_{max} = 430,85 kgm$$

Esfuerzos actuantes sobre el mástil.

En esta sección se utilizaran los valores anteriormente calculados junto con los valores de carga máxima afectados por el coeficiente de seguridad, para determinar la carga total a la cual esta solicitado el mástil.

Cálculo del esfuerzo axial sobre el mástil.

Siendo:

 S_a : Esfuerzo axial sobre el mástil.

P: Carga máxima a izar.

 l_m : Longitud del mástil.

 l_p : Longitud del puntal.

$$S_a = 10500 \ kg * \frac{10,33 \ m}{8 \ m}$$

$$S_a = 13558, 125 \, kg$$

Cálculo del esfuerzo axial debido al peso propio del mástil.

$$\Delta S_a = \frac{Q}{2} * \frac{l_m}{l_p}$$

Preparó:	Revisó:	Aprobó:	Página 17 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

 ΔS_a : Esfuerzo axial sobre el mástil debido al peso propio.

Q: Peso propio del mástil.

 l_m : Longitud del mástil.

 l_p : Longitud del puntal.

$$\Delta S_a = \frac{333,67 \, kg}{2} * \frac{10,33 \, m}{8 \, m}$$
$$\Delta S_a = 215,42 \, kg$$

Cálculo de la fuerza debido al viento sobre el mástil.

Para el cálculo de la fuerza debida al viento, es necesario conocer dos variables, la presión del viento y el área expuesta a este. Para el cálculo se utilizará el valor de presión de viento brindado por el "Manual del constructor de máquinas" del autor Dubbel, el cual propone una presión de 50 kg/m².

$$V = P_v * A_{total}$$

Siendo:

V : Fuerza debido al viento sobre el mástil.

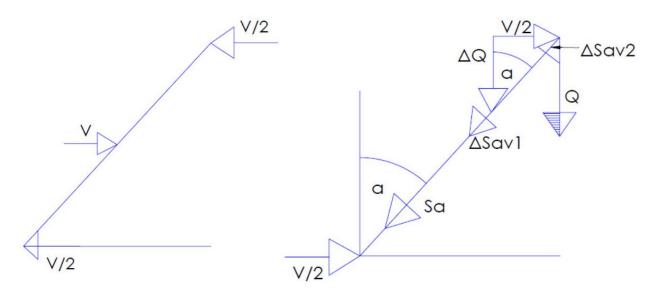
 P_v : Presión del aire sobre el mástil.

 A_{total} : Área expuesta al viento. Esta área se calculará a continuación, considerando que el mástil está construida en su totalidad por una única sección, la más grande, para así considerar más desfavorable el sistema.

$$A_{total} = l_m * a$$

$$A_{total} = 10,33 m * 0,2191 m$$

$$A_{total} = 2,26 m^2$$


Reemplazando:

$$V = P_v * A_{total}$$

$$V = 50 \frac{kg}{m^2} * 2,26 m^2$$

$$V = 113,16 kg$$

Cálculo del esfuerzo debido al viento sobre el mástil.

Con la fuerza que el viento ejerce sobre el mástil, esta puede producir un esfuerzo sobre el sentido de la carga y otro sobre la dirección del mástil. Por tanto estas son:

$$\Delta Q = \frac{V}{2 * tg \; \alpha}$$

Siendo:

 ΔQ : Esfuerzo en sentido de la carga.

V: Fuerza debido al viento sobre el mástil.

$$\Delta Q = \frac{113,16 \, kg}{2 * tg \, 45}$$

$$\Delta Q = 56,58 \, kg$$

Por otro lado tenemos que el esfuerzo en dirección al puntal es el siguiente:

$$\Delta S_{av1} = \Delta Q * \frac{l_m}{l_p}$$

Siendo:

 ΔS_{av1} : Esfuerzo axial sobre el mástil debido al viento.

 ΔQ : Esfuerzo en sentido de la carga.

 l_m : Longitud del mástil.

Preparó:	Revisó:	Aprobó:	Página 19 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 l_p : Longitud del puntal.

$$\Delta S_{av1} = 56,58 \text{ kg } * \frac{10,33 \text{ } m}{8 \text{ } m}$$

$$\Delta S_{av1} = 73,06 \text{ } kg$$

La otra componente del viento viene dada por:

$$\Delta S_{av2} = \frac{V}{2 * sen \alpha}$$

$$\Delta S_{av2} = \frac{113,16 \ kg}{2 * sen 45}$$

$$\Delta S_{av2} = 80 \ kg$$

El esfuerzo real sobre el mástil será:

$$\Delta S_{av} = \Delta S_{av1} - \Delta S_{av2}$$
$$\Delta S_{av} = 80 kg - 73,06 kg$$
$$\Delta S_{av} = 7 kg$$

Cálculo del esfuerzo axial total del mástil.

Con los esfuerzos axiales calculados anteriormente obtenemos el esfuerzo axial total que soporta el mástil.

$$P_{total} = S_a + \Delta S_a + \Delta S_{av}$$
 $P_{total} = 13558,125 kg + 215,42 kg + 7 kg$
 $P_{total} = 13780 kg$

Cálculo de la tensión máxima sobre el mástil.

Sumando la carga de pandeo, las por excentricidades y la debida al momento flector máximo, se obtiene el sigma necesario que debe tener el material que conforme el mástil.

$$\sigma_{max} = \frac{P_{total} * \omega}{A} + \frac{P_{total} * e}{W} + \frac{Mf_{max}}{W}$$

Siendo:

 σ_{max} : Tensión máxima que posee el mástil.

 P_{total} : Esfuerzo axial total del mástil.

Preparó:	Revisó:	Aprobó:	Página 20 de 115
Lanalma Guillormo: Kautz Diogo	GD = 01/10/2019		

 ω : Coeficiente de pandeo.

A : Área de la sección transversal del caño central.

e: Excentricidad del mástil.

W: Modulo resistente del tramo central.

 Mf_{max} : Momento flector máximo.

$$\sigma_{max} = \frac{13780 \; kg * 5,4}{54,2 \; cm^2} + \frac{13780 \; kg * \; 10,87 \; cm}{146,96 \; cm^3} + \frac{43085 \; kg cm}{146,96 \; cm^3}$$

$$\sigma_{max1} = 2685,33 \frac{kg}{cm^2}$$

Cálculo de tenciones admisibles para el acero ASTM A53 Gr A.

En esta sección se consideraran criterios de autores para la adopción de coeficientes de seguridad para comparar las tensiones obtenidas en el cálculo con las tensiones admisibles del material de construcción de la pluma.

$$\sigma_{fl} = 2151, 6 \frac{kg}{cm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_{fl}$$

$$\sigma_{adm} = 0.6 * 2151.6 \frac{kg}{cm^2}$$

$$\sigma_{adm} = 1291 \frac{kg}{cm^2}$$

Verificación de tenciones para el mástil de acero ASTM A53 Gr A.

Se procederá a comparar los resultados de tensión y su verificación.

$$\sigma_{adm} \geq \sigma_{max1}$$

$$\sigma_{adm} \geq 2685,33 \frac{kg}{cm^2}$$

$$1291 \frac{kg}{cm^2} \geq 2685,33 \frac{kg}{cm^2}$$

No verifica

Preparó:	Revisó:	Aprobó:	Página 21 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Como no verifican las secciones preseleccionadas se procede a aumentar una unidad el diametro de cada tramo, dando como resultado las siguientes medidas:

Como se puede ver en la siguiente tabla, los valores normalizados para los valores obtenidos son los siguientes y corresponden a caños Schedule 40.

CAÍ	ÑOS (100	N Y SI	N CO	STUR	A									
						S	C F	1 E	D	U	L E	S			
	1ETRO 1INAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73 0.37	2.41 0.47					1.73		2.41 0.47				
1/4	13.7	ESP KG/M	2.24 0.63	3.03					2.24 0.63		3.03 0.80				
3/8	17.1	ESP KG/M	2.31 0.84	3.20 1.10					2.31 0.84		3.20 1.10				
1/2	21.3	ESP KG/M	2.77 1.27	3.73 1.62	7.47 2.55				2.77		3.73 1.62				4.78 1.95
3/4	26.7	ESP KG/M	2.87 1.69		7.82 3.64				2.87 1.69		3.91				5.56 2.90
1	33.4	ESP KG/M	3.38 2.50	4.55 3.24	9.09 5.45	2.77			3.38		4.55 3.24				6.35 4.24
1 1/4	42.2	ESP KG/M	3.56 3.39	4.85	9.70 7.70	2.77			3.56		4.85 4.47				6.35 5.61
1 1/2	48.3	ESP KG/M	3.68 4.05	5.08	10.16 9.56	2.77 3.11			3.68 4.05		5.08 5.41				7.14 7.25
2	60.3	ESP KG/M	3.91 5.44	5.54 7.48	11.07	2.77			3.91 5.44		5.54 7.48				8.74 11.11
2 1/2	73.0	ESP KG/M	5.16 8.63	7.01	14.02	3.05 5.26			5.16 8.63		7.01 11.41				9.53 14.92
3	88.9	ESP KG/M	5.49 11.29	7.62	15.24	3.05 6.46			5.49 11.29		7.62 15.27				11.13
3 1/2	101.6	ESP KG/M	5.74 13.57	8.08 18.64		3.05 7.41			5.74 13.57		8.08 18.64				
4	114.3	ESP KG/M	6.02	8.56 22.32	17.12 41.03	3.05 8.37			6.02		8.56 22.32		11.13		13.49 33.54
5	141.3	ESP KG/M	6.55	9.53	19.05	3.40			6.55		9.53		12.70 40.28		15.88 49.12
6	168.3	ESP KG/M	7.11 28.26	10.97 42.56	21.95	3.40 13.83			7.11		10.97 42.56		14.27 54.21		18.26 67.57
8	219.1	ESP KG/M	8.18 42.55	12.70	22.23	4.78	6.35	7.04	8.18 42.55	10.31 53.09	12.70 64.64	15.09 75.92	18.26 90.44	20.62	23.01
10	273.0	ESP KG/M	9.27	12.70	25.40	4.19	6.35	7.80	9.53	12.70 81.53	15.09 95.98	18.26	21.44	25.40 155.10	28.58
12	323.8	ESP KG/M	9.52	12.70 97.44	25.40 186.92	4.57	6.35	8.38	10.31	14.27	17.48 132.05	21.44	25.40 186.92	28.58	33.32 238.69
14	355.6	ESP KG/M	9.52 81.25	12.70 107.40	300132	6.35	7.92 67.91	9.52 81.25	11.10 94.30	15.09 126.72	19.05	23.83	27.79	31.75 253.58	35.71 281.72

Las medidas tentativas de diámetros del mástil se resumen en el esquema que se muestra a continuación:

Preparó:	Revisó:	Aprobó:	Página 22 de 115	1
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

Cálculo estructural del mástil corregido.

En esta sección se verificarán las medidas adoptadas anteriormente. Los cálculos se llevarán a cabo siguiendo los criterios del manual de construcción de máquinas del autor Dubbel.

Cálculo del momento de inercia del tramo central.

El momento de inercia del mástil se dividirá en el cálculo de su tramo central y en el de los extremos para un mejor modelado del diseño propuesto.

$$I = \frac{\pi}{64} (D_{tc}^4 - d_{tc}^4)$$

Siendo:

I: Momento de inercia del tramo central.

 D_{tc} : Diámetro exterior del tramo central.

 d_{tc} : Diámetro interior del tramo central.

$$I = \frac{\pi}{64} \left((27.3 \text{ cm})^4 - (25.39 \text{ cm})^4 \right)$$

$$I = 6866, 38 \, cm^4$$

Cálculo del módulo resistente del tramo central.

$$W = \frac{I}{D_{tc}/2}$$

Siendo:

W : Modulo resistente del tramo central.

I : Momento de inercia del tramo central.

 D_{tc} : Diámetro exterior del tramo central.

$$W = \frac{6866,38 \, cm^4}{27,3 \, cm/_2}$$

$$W = 503 cm^3$$

Cálculo del momento de inercia de los tramos externos.

Para el cálculo del momento de inercia en los extremos se procede de la misma forma que se hizo en el cálculo del tramo central.

$$I_0 = \frac{\pi}{64} \left(D_{te}^4 - d_{te}^4 \right)$$

Preparó:	Revisó:	Aprobó:	Página 23 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

 I_0 : Momento de inercia de los tramos externos.

 D_{te} : Diámetro exterior de los tramos externos.

 d_{te} : Diámetro interior de los tramos externos.

$$I_0 = \frac{\pi}{64} ((16,83 cm)^4 - (15,41 cm)^4)$$
$$I_0 = 1170, 18 cm^4$$

Cálculo del módulo resistente de los tramos exteriores.

$$W_0 = \frac{I_0}{D_{te/2}}$$

Siendo:

 W_0 : Modulo resistente de los tramos externos.

 I_0 : Momento de inercia de los tramos externos.

 D_{te} : Diámetro exterior de los tramos externos.

$$W_0 = \frac{1170,18 \text{ cm}^4}{16,83 \text{ cm}/2}$$
$$W_0 = 139 \text{ cm}^3$$

Cálculo del momento de inercia ideal.

Tomando en cuenta ambos momentos de inercia calculados anteriormente se realiza el cálculo del momento de inercia ideal del mástil.

$$I_i = I * \left(0.6 + 0.4 * \sqrt{\frac{I_0}{I}} \right)$$

Siendo:

 I_i : Momento de inercia ideal.

 I_0 : Momento de inercia de los tramos externos.

I: Momento de inercia del tramo central.

Preparó:	Revisó:	Aprobó:	Página 24 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

$$I_i = 6866,38 \, cm^4 * \left(0,6 + 0,4 * \sqrt{\frac{1170,18 \, cm^4}{6866,38 \, cm^4}} \right)$$

$$I_i = 5253,66 cm^4$$

Cálculo del radio de giro ideal.

Una vez calculado el momento de inercia ideal y calculando el área transversal de material del caño, calculamos el radio de giro ideal del mástil.

$$i_i = \sqrt{\frac{I_i}{A}}$$

Siendo:

 i_i : Radio de giro ideal.

 I_i : Momento de inercia ideal.

A: Área de la sección transversal del caño central la cual se calcula a continuación.

$$A = \frac{\pi}{4} (D_{tc}^2 - d_{tc}^2)$$

$$A = \frac{\pi}{4} \left((27,3 \ cm)^2 - (25,39 \ cm)^2 \right)$$

$$A = 79.44 cm^2$$

Sustituyendo:

$$i_i = \sqrt{\frac{I_i}{A}}$$

$$i_i = \sqrt{\frac{5253,66 \ cm^4}{79,44 \ cm^2}}$$

$$i_i = 8, 13 cm$$

Cálculo del coeficiente de esbeltez.

Para el cálculo de pandeo de la estructura se utilizara el criterio del coeficiente de pandeo planteado por Dubbel en su manual de construcción de máquinas.

$$\lambda = \frac{I_m}{i_i}$$

Siendo:

 λ : Coeficiente de esbeltez.

 I_m : Largo del mástil.

 i_i : Radio de giro ideal.

1	Preparó:	Revisó:	Aprobó:	Página 25 de 115
	Lanalma Guillerme: Kautz Diego	GD _ 01/10/2019	•	ı

$$\lambda = \frac{10,33 \, m}{0,0813 \, m}$$

$$\lambda = 127$$

Coeficiente de pandeo.

De la tabla de factores de pandeo del manual de construcción de máquinas del autor Dubbel, entrando con el acero st 37 y con el coeficiente de esbeltez se obtiene el coeficiente de pandeo que se expresa a continuación:

$$\omega = 3,823$$

Cálculo de las excentricidades.

En esta sección se calculará mediante criterios del manual de construcción de máquinas del autor Dubbel la máxima excentricidad que puede tener la estructura por errores en el montaje o bien en la conformación de los materiales que la constituyen. Dicha excentricidad nos da una idea de la desalineación una vez montadas las piezas.

$$e_1 = \frac{l_m}{500} + \frac{D_{tc}}{40}$$

Siendo:

 e_1 : Excentricidad debido a imperfecciones del laminado.

 l_m : Largo del mástil.

 D_{tc} : Diámetro exterior del tramo central.

$$e_1 = \frac{10,33 \, m}{500} + \frac{0,273 \, m}{40}$$

$$e_1 = 27,48 \, mm$$

$$e_2 = \frac{l_m}{100} + \frac{D_{tc}}{40}$$

Siendo:

 e_2 : Excentricidad debido a defectos de montaje.

 l_m : Largo del mástil.

 D_{tc} : Diámetro exterior del tramo central.

$$e_2 = \frac{10,33 \, m}{100} + \frac{0,273 \, m}{40}$$

$$e_2 = 110, 125 mm$$

Por último se tiene en cuenta el caso más desfavorable en el cual las dos excentricidades máximas se sumen dando como resultado:

Preparó:	Revisó:	Aprobó:	Página 26 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$e = e_1 + e_2$$

 $e = 27,48 mm + 110,125 mm$
 $e = 137,6 mm$

Peso del mástil.

Para calcular el peso del mástil se utilizarán los datos de la tabla que proporciona el fabricante en la cual se muestran los pesos por metro de cada caño.

$$Q = Tr_1 * Pm_1 + 2 * Tr_2 * Pm_2 + 2 * Tr_3 * Pm_3$$

Siendo:

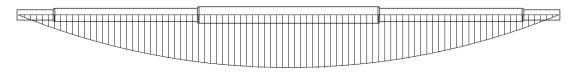
Q: Peso total del mástil.

 Tr_1 : Longitud del tramo central.

 Tr_2 : Longitud del tramo intermedio.

 Tr_3 : Longitud del tramo exterior.

 Pm_1 : Peso por metro del tramo central.


 Pm_2 : Peso por metro del tramo intermedio.

 Pm_3 : Peso por metro del tramo exterior.

$$Q = 3.5 \, m * 61.92 \, \frac{kg}{m} + 2 * 2.8 \, m * 42.53 \, \frac{kg}{m} + 2 * 0.61 * 28.26 \, \frac{kg}{m}$$
$$Q = 489.36 \, kg$$

<u>Cálculo del momento flector máximo debido al peso propio del mástil.</u>

Con el valor del peso total de la estructura, se calcula el momento flector máximo que el peso propio genera. Este se da cuando el mástil se encuentra totalmente horizontal, el valor de dicho momento se calcula a continuación.

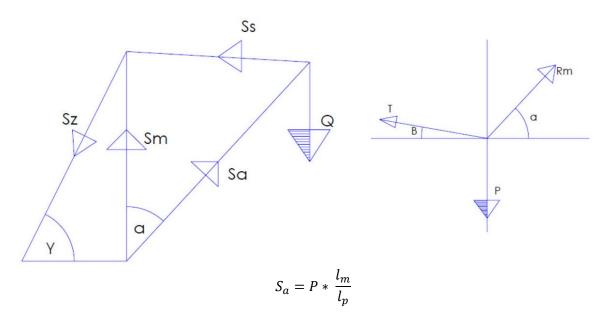
$$Mf_{max} = \frac{Q * l_m}{8}$$

Siendo:

 Mf_{max} : Momento flector máximo.

0 : Peso total del mástil.

 l_m : Longitud del mástil.


Preparó:	Revisó:	Aprobó:	Página 27 de 115	ı
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ı

$$Mf_{max} = \frac{489,36 \, kg * 10,33 \, m}{8}$$

 $Mf_{max} = 631,89 \, kgm$

Esfuerzos actuantes sobre el mástil.

En esta sección se utilizaran los valores anteriormente calculados junto con los valores de carga máxima afectados por el coeficiente de seguridad, para determinar la carga total a la cual esta solicitado el mástil.

Cálculo del esfuerzo axial sobre el mástil.

Siendo:

 S_a : Esfuerzo axial sobre el mástil.

P: Carga máxima a izar.

 l_m : Longitud del mástil.

 l_p : Longitud del puntal.

$$S_a = 10500 \ kg * \frac{10,33 \ m}{8 \ m}$$

$$S_a = 13558, 125 kg$$

Cálculo del esfuerzo axial debido al peso propio del mástil.

$$\Delta S_a = \frac{Q}{2} * \frac{l_m}{l_p}$$

Preparó:	Revisó:	Aprobó:	Página 28 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

 ΔS_a : Esfuerzo axial sobre el mástil debido al peso propio.

Q: Peso propio del mástil.

 l_m : Longitud del mástil.

 l_p : Longitud del puntal.

$$\Delta S_a = \frac{489,36 \, kg}{2} * \frac{10,33 \, m}{8 \, m}$$
$$\Delta S_a = 315,94 \, kg$$

Cálculo de la fuerza debido al viento sobre el mástil.

Para el cálculo de la fuerza debida al viento, es necesario conocer dos variables, la presión del viento y el área expuesta a este. Para el cálculo se utilizará el valor de presión de viento brindado por el "Manual del constructor de máquinas" del autor Dubbel, el cual propone una presión de 50 kg/m².

$$V = P_v * A_{total}$$

Siendo:

V: Fuerza debido al viento sobre el mástil.

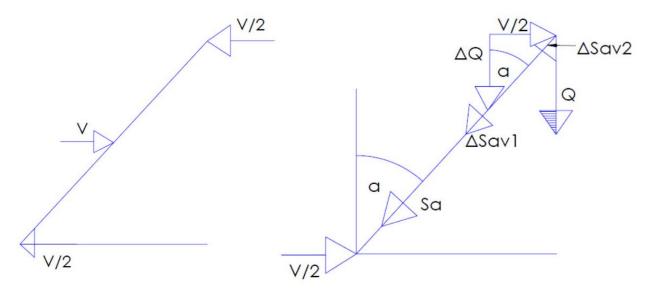
 P_v : Presión del aire sobre el mástil.

 A_{total} : Área expuesta al viento. Esta área se calculará a continuación, considerando que el mástil está construida en su totalidad por una única sección, la más grande, para así considerar más desfavorable el sistema.

$$A_{total} = l_m * a$$

$$A_{total} = 10,33 m * 0,273 m$$

$$A_{total} = 2,82 m^2$$


Reemplazando:

$$V = P_v * A_{total}$$

$$V = 50 \frac{kg}{m^2} * 2,82 m^2$$

$$V = 141 kg$$

Cálculo del esfuerzo debido al viento sobre el mástil.

Con la fuerza que el viento ejerce sobre el mástil, esta puede producir un esfuerzo sobre el sentido de la carga y otro sobre la dirección del mástil. Por tanto estas son:

$$\Delta Q = \frac{V}{2 * tg \; \alpha}$$

Siendo:

 ΔQ : Esfuerzo en sentido de la carga.

V: Fuerza debido al viento sobre el mástil.

$$\Delta Q = \frac{141 \, kg}{2 * tg \, 45}$$

$$\Delta Q = 70,5 kg$$

Por otro lado tenemos que el esfuerzo en dirección al puntal es el siguiente:

$$\Delta S_{av1} = \Delta Q * \frac{l_m}{l_p}$$

Siendo:

 ΔS_{av1} : Esfuerzo axial sobre el mástil debido al viento.

 ΔQ : Esfuerzo en sentido de la carga.

 l_m : Longitud del mástil.

Preparó:	Revisó:	Aprobó:	Página 30 de 115	l
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

 l_p : Longitud del puntal.

$$\Delta S_{av1} = 70.5 \text{ kg} * \frac{10.33 m}{8 m}$$

$$\Delta S_{av1} = 91 kg$$

La otra componente del viento viene dada por:

$$\Delta S_{av2} = \frac{V}{2 * sen \alpha}$$

$$\Delta S_{av2} = \frac{141 kg}{2 * sen 45}$$

$$\Delta S_{av2} = 99,7 kg$$

El esfuerzo real sobre el mástil será:

$$\Delta S_{av} = \Delta S_{av1} - \Delta S_{av2}$$
$$\Delta S_{av} = 99,7 kg - 91 kg$$
$$\Delta S_{av} = 8,7 kg$$

Cálculo del esfuerzo axial total del mástil.

Con los esfuerzos axiales calculados anteriormente obtenemos el esfuerzo axial total que soporta el mástil.

$$P_{total} = S_a + \Delta S_a + \Delta S_{av}$$
 $P_{total} = 13558,125 kg + 315,94 kg + 8,7 kg$
 $P_{total} = 13882,76 kg$

Cálculo de la tensión máxima sobre el mástil.

Sumando la carga de pandeo, las por excentricidades y la debida al momento flector máximo, se obtiene el sigma necesario que debe tener el material que conforme el mástil.

$$\sigma_{max} = \frac{P_{total} * \omega}{A} + \frac{P_{total} * e}{W} + \frac{Mf_{max}}{W}$$

Siendo:

 σ_{max} : Tensión máxima que posee el mástil.

P_{total}: Esfuerzo axial total del mástil.

Preparó:	Revisó:	Aprobó:	Página 31 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

 ω : Coeficiente de pandeo.

A : Área de la sección transversal del caño central.

e: Excentricidad del mástil.

W: Modulo resistente del tramo central.

 Mf_{max} : Momento flector máximo.

$$\sigma_{max} = \frac{13882,76 \; kg * 3,823}{79,44 \; cm^2} + \frac{13882,76 \; kg * 13,76 \; cm}{503 \; cm^3} + \frac{63189 \; kg cm}{503 \; cm^3}$$

$$\sigma_{max} = 1173, 5 \frac{kg}{cm^2}$$

Cálculo de pandeo según fórmula de Euler para el mástil.

Se calculará a su vez la resistencia en kilogramos que posee el mástil por medio de la fórmula de Euler.

$$P_{pandeo} = \frac{\pi^2 * E * I_i}{l_m^2}$$

Siendo:

 P_{vandeo} : Carga máxima de pandeo.

E: Módulo de Young del material.

 I_i : Momento de inercia ideal.

 l_m : Longitud del mástil.

$$P_{pandeo} = \frac{\pi^2 * 2074055,26 \frac{kg}{cm^2} * 5253,66 cm^4}{(1033 cm)^2}$$

$$P_{pandeo} = 100781 \, kg$$

Cálculo de aplastamiento para el mástil.

$$\sigma_{apla} = \frac{P_{total}}{A_0}$$

Siendo:

 σ_{apla} : Tensión de aplastamiento.

Preparó:	Revisó:	Aprobó:	Página 32 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

P_{total}: Carga total axial del mástil.

 A_0 : Área de los extremos del mástil, la cual se calcula a continuación.

$$A_0 = \frac{\pi}{4} (D_{te}^2 - d_{te}^2)$$

$$A_0 = \frac{\pi}{4} ((16,83 cm)^2 - (15,4 cm)^2)$$

$$A_0 = 35,95 cm^2$$

$$\sigma_{apla} = \frac{13882,73 kg}{35,95 cm^2}$$

$$\sigma_{apla} = 386,16 \frac{kg}{cm^2}$$

Cálculo de tenciones admisibles para el acero ASTM A53 Gr A.

En esta sección se consideraran criterios de autores para la adopción de coeficientes de seguridad para comparar las tensiones obtenidas en el cálculo con las tensiones admisibles del material de construcción de la pluma.

$$\sigma_{fl} = 2151, 6 \frac{kg}{cm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_{fl}$$

$$\sigma_{adm} = 0.6 * 2151.6 \frac{kg}{cm^2}$$

$$\sigma_{adm} = 1291 \frac{kg}{cm^2}$$

Según el criterio de los autores Pisarenko, Yákovlev y Matvéev en su libro "Manual de resistencia de materiales".

$$\sigma_{adm \ apla} = 2 * \sigma_{adm}$$

$$\sigma_{adm \ apla} = 2 * 1291 \frac{kg}{cm^2}$$

$$\sigma_{adm \ apla} = 2582 \frac{kg}{cm^2}$$

Preparó:	Revisó:	Aprobó:	Página 33 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

Verificación de tenciones para el mástil de acero ASTM A53 Gr A.

Se procederá a comparar los resultados de tensión y su verificación.

$$\sigma_{adm} \geq \sigma_{max}$$

$$\sigma_{adm} \geq 1173.5 \frac{kg}{cm^2}$$

$$1291 \frac{kg}{cm^2} \geq 1173.5 \frac{kg}{cm^2}$$

Verifica

$$P_{pandeo} \geq P_{total}$$
 $P_{pandeo} \geq 13882,76 \, kg$ $\mathbf{100781} \, kg \geq \mathbf{13882,76} \, kg$

Verifica

$$\sigma_{adm \, apla} \geq \sigma_{apla}$$

$$\sigma_{adm \, apla} \geq 386,16 \, \frac{kg}{cm^2}$$

$$2582 \, \frac{kg}{cm^2} \geq 386,16 \, \frac{kg}{cm^2}$$

Verifica

Preparó:	Revisó:	Aprobó:	Página 34 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cálculo estructural del puntal.

En esta sección se verificarán las medidas adoptadas anteriormente para el puntal. Los cálculos se llevarán a cabo siguiendo los criterios del "Manual del constructor de máquinas" del autor Dubbel.

Cálculo del momento de inercia del puntal.

El momento de inercia del puntal al ser un único tramo, se calcula de la siguiente forma.

$$I = \frac{\pi}{64} \; (D_p^4 - d_p^4)$$

Siendo:

I : Momento de inercia del puntal.

 D_p : Diámetro exterior del puntal.

 d_p : Diámetro interior del puntal.

$$I = \frac{\pi}{64} \left((27.3 \text{ cm})^4 - (25.39 \text{ cm})^4 \right)$$

$$I = 6866, 38 cm^4$$

Cálculo del módulo resistente del puntal.

$$W = \frac{I}{D_p/2}$$

Siendo:

W : Modulo resistente del puntal.

I : Momento de inercia del puntal.

 D_p : Diámetro exterior del puntal.

$$W = \frac{6866,38 \, cm^4}{27,3 \, cm/2}$$

$$W = 503 \, cm^3$$

<u>Cálculo del radio de giro del puntal.</u>

Una vez calculado el momento de inercia y calculando el área transversal de material del caño, calculamos el radio de giro del puntal.

$$i = \sqrt{\frac{I}{A}}$$

Preparó:	Revisó:	Aprobó:	Página 35 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

i: Radio de giro.

I : Momento de inercia del puntal.

A: Área de la sección transversal del caño del puntal el cual se calcula a continuación.

$$A = \frac{\pi}{4} (D_p^2 - d_p^2)$$

$$A = \frac{\pi}{4} ((27,3 \text{ cm})^2 - (25,39 \text{ cm})^2)$$

$$A = 79.44 \text{ cm}^2$$

Sustituyendo:

$$i = \sqrt{\frac{I}{A}}$$

$$i = \sqrt{\frac{6866,38 \text{ cm}^4}{79,44 \text{ cm}^2}}$$

$$i = 9.3 \text{ cm}$$

Cálculo del coeficiente de esbeltez.

Para el cálculo de pandeo de la estructura se utilizara el criterio del coeficiente de pandeo planteado por Dubbel en su libro "Manual del constructor de máquinas".

$$\lambda = \frac{I_p}{i}$$

Siendo:

 λ : Coeficiente de esbeltez.

 I_p : Largo del puntal.

i: Radio de giro del puntal.

$$\lambda = \frac{8 m}{0,093 m}$$
$$\lambda = 86$$

Coeficiente de pandeo.

De la tabla de factores de pandeo del "Manual del constructor de máquinas" del autor Dubbel, entrando con el acero st 37 y con el coeficiente de esbeltez se obtiene el coeficiente de pandeo que se expresa a continuación:

$$\omega = 1,764$$

Preparó:	Revisó:	Aprobó:	Página 36 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

Cálculo de las excentricidades.

En esta sección se calculará mediante criterios del "Manual del constructor de máquinas" del autor Dubbel la máxima excentricidad que puede tener la estructura por errores en el montaje o bien en la conformación de los materiales que la constituyen. Dicha excentricidad nos da una idea de la desalineación una vez montadas las piezas.

$$e_1 = \frac{l_p}{500} + \frac{D_p}{40}$$

Siendo:

 e_1 : Excentricidad debido a imperfecciones del laminado.

 l_p : Largo del puntal.

 D_p : Diámetro exterior del puntal.

$$e_1 = \frac{8\,m}{500} + \frac{0,273\,m}{40}$$

$$e_1 = 22,85 \, mm$$

$$e_2 = \frac{l_p}{100} + \frac{D_p}{40}$$

Siendo:

e₂: Excentricidad debido a defectos de montaje.

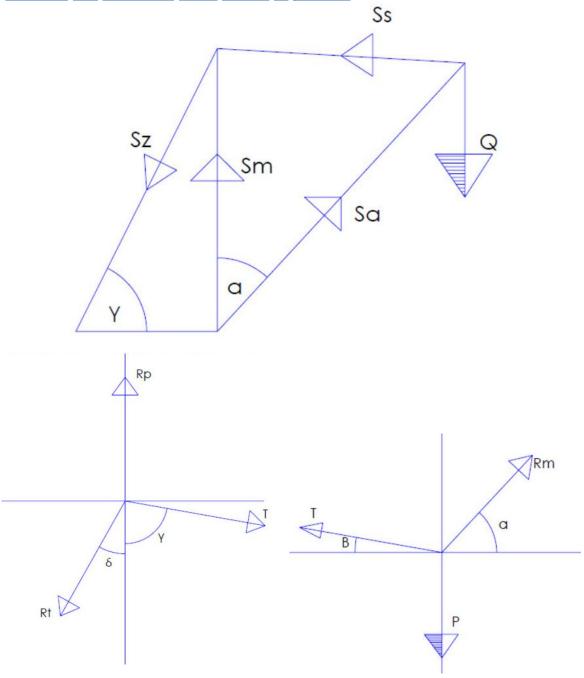
 l_p : Largo del puntal.

 D_p : Diámetro exterior del puntal.

$$e_2 = \frac{8\,m}{100} + \frac{0,273\,m}{40}$$

$$e_2 = 86,82 \ mm$$

Por último se tiene en cuenta el caso más desfavorable en el cual las dos excentricidades máximas se sumen dando como resultado:


$$e = e_1 + e_2$$

 $e = 22,85 mm + 86,82 mm$
 $e = 109,67 mm$

Preparó:	Revisó:	Aprobó:	Página 37 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Esfuerzos actuantes sobre el puntal.

En esta sección se utilizaran los valores anteriormente calculados junto con los valores de carga máxima afectados por el coeficiente de seguridad, para determinar la carga total a la cual esta solicitado el puntal.

Cálculo del esfuerzo axial sobre el puntal.

Del analisis de fuersas que se mostró anteriormente se deducen las sifuientes ecuaciones:

Preparó:	Revisó:	Aprobó:	Página 38 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

$$P = S_s * sen \beta + S_a * sen \alpha$$
$$0 = S_s * cos \beta - S_a * cos \alpha$$

$$10500 = S_s * sen 3,27 + S_a * sen 47,35$$
$$0 = S_s * cos 3,27 - S_a * cos 47,35$$

Resolviendo el sistema de ecuaciones se obtiene:

$$S_s = 9203, 6 \, kg$$

 $S_a = 1358, 125 \, kg$

De la misma forma, resolviendo el lado izquierdo del diagrama se obtiene:

$$S_z * sen (90 - \gamma) - S_s * sen (90 - \beta) = 0$$

$$S_z = \frac{S_s * sen (90 - \beta)}{sen (90 - \gamma)}$$

$$S_z = \frac{9203,6 * sen (86,73)}{sen (26,56)}$$

$$S_z = 20550 kg$$

$$S_m = S_S * \cos (90 - \beta) + S_Z * \cos (90 - \gamma)$$

$$S_m = 9203,6 * \cos (86,73) + 20550 * \cos (26,56)$$

$$S_m = 18906 kg$$

Cálculo de la fuerza debido al viento sobre el puntal.

Para el cálculo de la fuerza debida al viento, es necesario conocer dos variables, la presión del viento y el área expuesta a este. Para el cálculo se utilizará el valor de presión de viento brindado por el "Manual del constructor de máquinas" del autor Dubbel, el cual propone una presión de 50 kg/m².

$$V = P_v * A_{total}$$

Siendo:

V : Fuerza debido al viento sobre el puntal.

 P_v : Presión del aire sobre el puntal.

 A_{total} : Área expuesta al viento. Esta área se calculará a continuación.

$$A_{total} = l_p * a$$

Preparó:	Revisó:	Aprobó:	Página 39 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$A_{total} = 8 m * 0,273 m$$

 $A_{total} = 2,184 m^2$

$$V = P_v * A_{total}$$

$$V = 50 \frac{kg}{m^2} * 2,184 m^2$$

$$V = 109,2kg$$

Cálculo del esfuerzo debido al viento sobre el puntal.

Con la fuerza que el viento ejerce sobre el puntal, se calcula el esfuerzo debido a este.

$$\Delta S_m = \operatorname{tg} \gamma * \frac{V}{2}$$

Siendo:

 ΔS_m : Esfuerzo sobre el puntal.

V: Fuerza debido al viento en el puntal.

$$\Delta S_m = \text{tg } 63,43 * \frac{109,2 \, kg}{2}$$

$$\Delta S_m = 109,17 \, \text{kg}$$

Cálculo del esfuerzo axial total del puntal.

Con los esfuerzos axiales calculados anteriormente obtenemos el esfuerzo axial total que soporta el puntal.

$$P_{total} = S_m + \Delta S_m$$

 $P_{total} = 18906 kg + 109,17 kg$
 $P_{total} = 19015,17 kg$

Cálculo de la tensión máxima sobre el puntal.

Sumando la carga de pandeo y las por excentricidades, se obtiene el sigma necesario que debe tener el material que conforme el puntal.

$$\sigma_{max} = \frac{P_{total} * \omega}{A} + \frac{P_{total} * e}{W}$$

Preparó:	Revisó:	Aprobó:	Página 40 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Siendo:

 σ_{max} : Tensión máxima que posee el puntal.

 P_{total} : Esfuerzo axial total del puntal.

 ω : Coeficiente de pandeo.

A : Área de la sección transversal del caño.

e: Excentricidad del puntal.

$$\sigma_{max} = \frac{19015,17~kg*1,764}{79,44~cm^2} + \frac{19015,17~kg*~10,967~cm}{503~cm^3}$$

$$\sigma_{max} = 836,82 \frac{kg}{cm^2}$$

Cálculo de pandeo según fórmula de Euler para el puntal.

Se calculará a su vez la resistencia en kilogramos que posee el puntal por medio de la fórmula de Euler.

$$P_{pandeo} = \frac{\pi^2 * E * I}{l_p^2}$$

Siendo:

 P_{vandeo} : Carga máxima de pandeo.

E: Módulo de Young del material.

I: Momento de inercia.

 l_p : Longitud del puntal.

$$P_{pandeo} = \frac{\pi^2 * 2074055,26 \frac{kg}{cm^2} * 6866,34 cm^4}{(800 \ cm)^2}$$

$$P_{pandeo}=219616,7\;kg$$

Cálculo de aplastamiento para el puntal.

$$\sigma_{apla} = \frac{P_{total}}{A}$$

Siendo:

 σ_{apla} : Tensión de aplastamiento.

Preparó:	Revisó:	Aprobó:	Página 41 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 P_{total} : Carga total axial del puntal.

A : Área del puntal.

$$\sigma_{apla} = \frac{19015,17 \, kg}{79,44 \, cm^2}$$

$$\sigma_{apla}=239,36\;\frac{kg}{cm^2}$$

Cálculo de tenciones admisibles para el acero ASTM A53 Gr A.

$$\sigma_{fl} = 2151, 6 \frac{kg}{cm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_{fl}$$

$$\sigma_{adm} = 0.6 * 2151.6 \frac{kg}{cm^2}$$

$$\sigma_{adm} = 1291 \frac{kg}{cm^2}$$

Según el criterio de los autores Pisarenko, Yákovlev y Matvéev en su libro "Manual de resistencia de materiales".

$$\sigma_{adm \ apla} = 2 * \sigma_{adm}$$

$$\sigma_{adm \ apla} = 2 * 1291 \frac{kg}{cm^2}$$

$$\sigma_{adm \ apla} = 2582 \frac{kg}{cm^2}$$

Verificación de tenciones para el puntal de acero ASTM A53 Gr A.

$$\sigma_{adm} \geq \sigma_{max}$$

$$\sigma_{adm} \geq 836,82 \frac{kg}{cm^2}$$

$$1291 \frac{kg}{cm^2} \geq 836,82 \frac{kg}{cm^2}$$

Preparó:	Revisó:	Aprobó:	Página 42 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Verifica

$$P_{pandeo} \ge P_{total}$$
 $P_{pandeo} \ge 19015,17 \, kg$ **219616**, $7 \, kg \ge 19015,17 kg$

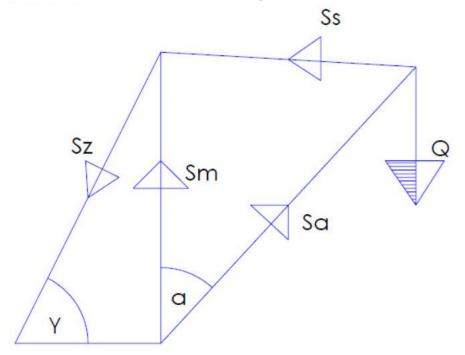
Verifica

$$\sigma_{adm \, apla} \geq \sigma_{apla}$$

$$\sigma_{adm \, apla} \geq 239,36 \, \frac{kg}{cm^2}$$

$$2582 \, \frac{kg}{cm^2} \geq 239,36 \, \frac{kg}{cm^2}$$

Verifica


Esfuerzos actuantes sobre los vientos rígidos.

En esta sección se utilizaran los valores anteriormente calculados, para determinar la carga total a la cual están solicitados los vientos rígidos y su verificación, el caño seleccionado para la verificación es un caño de 8" Sch 80.

CAÍ	vos (COI	N Y SI	N CO	STUR	A									
						s	с н	E	D	U	L E	s			
	IETRO IINAL		STD	XS	XXS	10	20	30	40	60	80	100	120	140	160
1/8	10.3	ESP KG/M	1.73 0.37	2.41					1.73		2.41 0.47				
1/4	13.7	ESP KG/M	2.24	3.03					2.24		3.03				
3/8	17.1	ESP KG/M	2.31	3.20					2.31		3.20				
1/2	21.3	ESP	2.77	3.73	7.47				2.77		3.73				4.78
3/4	26.7	KG/M ESP	2.87	1.62	7.82				2.87		3.91				5.56
		KG/M ESP	1.69 3.38	4.55	9.09	2.77			1.69 3.38		2.20 4.55				6.35
1	33.4	KG/M ESP	2.50 3.56	3.24 4.85	5.45 9.70	2.09			2.50 3.56		3.24 4.85				6.35
1 1/4	42.2	KG/M ESP	3.39	4.47	7.70	2.69			3.39		4.47				5.61 7.14
1 1/2	48.3	KG/M	3.68 4.05	5.08	9.56	3.11			4.05		5.41				7.25
2	60.3	ESP KG/M	3.91 5.44	5.54 7.48	11.07 13.44	2.77 3.93			3.91 5.44		5.54 7.48				8.74 11.11
2 1/2	73.0	ESP KG/M	5.16 8.63	7.01	14.02 20.39	3.05 5.26			5.16 8.63		7.01 11.41				9.53 14.92
3	88.9	ESP KG/M	5.49 11.29	7.62	15.24 27.68	3.05 6.46			5.49 11.29		7.62 15.27				11.13
3 1/2	101.6	ESP KG/M	5.74	8.08	27.00	3.05			5.74		8.08 18.64				22.00
4	114.3	ESP KG/M	6.02	8.56	17.12	3.05			6.02		8.56		11.13		13.49
5	141.3	ESP	6.55	9.53	41.03 19.05	8.37 3.40			6.55		9.53		28.32 12.70		33.54 15.88
6	168.3	KG/M ESP	7.11	30.97 10.97	57.43 21.95	3.40			7.11		30.97 10.97		40.28 14.27		49.12 18.26
	_	KG/M ESP	28.26 8.18	42.56 12.70	79.22 22.23	13.83 4.78	6.35	7.04	28.26 8.18	10.31	42.56 12.70	15.09	54.21 18.26	20.62	67.57 23.01
8	219.1	KG/M ESP	42.55 9.27	12.70	107.93	25.26 4.19	33.32	36.82 7.80	42.55 9.53	53.09 12.70	64.64 15.09	75.92 18.26	90.44	100.93 25.40	111.27 28.58
10	273.0	KG/M	60.29	81.53	155.10	27.78	41.76	51.01	61.92	81.53	95.98	114.71	159.87	155.10	172.27
12	323.8	ESP KG/M	9.52 73.79	97.44	25.40 186.92	4.57 35.98	6.35 49.71	8.38 65.19	10.31 79.71	14.27 108.93	17.48 132.05	21.44 159.87	25.40 186.92	28.58 159.87	33.32 238.69
14	355.6	ESP KG/M	9.52 81.25	12.70 107.40		6.35 54.69	7.92 67.91	9.52 81.25	11.10 94.30	15.09 126.72	19.05 158.11	23.83 194.98	27.79 224.66	31.75 253.58	35.71 281.72
16	406.4	ESP KG/M	9.52 93.18	12.70		6.35 62.65	7.92 77.83	9.52 93.18	12.70 123.31	16.66 160.13	21.44	26.19 245.57	30.96	36.53	40.49 365.38
18	457.2	ESP KG/M	9.52	12.70 139.22		6.35	7.92 87.75	11.13	14.27	19.05	23.83	29.36 309.78	34.93 363.76	39.67 408.48	45.24 459.62
20	508.0	ESP KG/M	9.52	12.70		6.35	9.52	12.70	15.09	20.62	26.19	32.54	38.10	44.45	50.01
24	609.6	ESP	9.52	155.13		78.56 6.35	9.52	155.13	17.48	247.84	311.19	381.55 38.89	442.52	508.15 52.37	564.85
30	762.0	KG/M ESP	9.52	186.95		94.47 7.92	140.89	209.51 15.88	255.25 19.05	355.04	441.80	547.36	639.62	719.68	807.68
30	702.0	KG/M	176.67	234.68		147.29	234.68	292.20	349.46						

Preparó:	Revisó:	Aprobó:	Página 44 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

Cálculo del esfuerzo en los vientos rígidos.

Como ya se calculó anteriormente la fuerza sobre los vientos es de:

$$S_z = 20550 \, kg$$

Este valor se da cuando el mástil se encuentra en la misma línea que el viento correspondiente, actuando esta carga tanto en tracción cuando el mástil está a 180 grados del viento como a compresión cuando se encuentra sobre este.

Cálculo estructural de los vientos rígidos.

Los cálculos se llevarán a cabo siguiendo los criterios del "Manual del constructor de máquinas" del autor Dubbel.

Se propondrá construirlos de una única sección de caños de 8" Sch 80 o bien XS y se pondrán 2 rigidizadores para disminuir la longitud de pandeo.

Cálculo del momento de inercia de los vientos rígidos.

El momento de inercia de los vientos rígidos al ser un único tramo, se calcula de la siguiente forma.

$$I = \frac{\pi}{64} \left(D_{vr}^{4} - d_{vr}^{4} \right)$$

Siendo:

I : Momento de inercia de los vientos rígidos.

 D_{vr} : Diámetro exterior de los vientos rígidos.

 d_{vr} : Diámetro interior de los vientos rígidos.

Ī	Preparó:	Revisó:	Aprobó:	Página 45 de 115
١	Lanalma Guillerme: Kautz Diego	GD _ 01/10/2019	•	

$$I = \frac{\pi}{64} ((21,91 \text{ cm})^4 - (19,37 \text{ cm})^4)$$
$$I = 4401 \text{ cm}^4$$

Cálculo del módulo resistente de los vientos rígidos.

$$W = \frac{I}{D_{vr}/2}$$

Siendo:

W: Modulo resistente de los vientos rígidos.

I : Momento de inercia de los vientos rígidos.

 D_{vr} : Diámetro exterior de los vientos rígidos.

$$W = \frac{4401 \, cm^4}{21,91 \, cm/2}$$

$$W = 401,73 cm^3$$

Cálculo del radio de giro de los vientos rígidos.

Una vez calculado el momento de inercia y calculando el área transversal de material del caño, calculamos el radio de giro de los vientos rígidos.

$$i = \sqrt{\frac{I}{A}}$$

Siendo:

 i_i : Radio de giro.

 I_i : Momento de inercia.

A : Área de la sección transversal del caño de los vientos rígidos el cual se calcula a continuación.

$$A = \frac{\pi}{4} (D_{vr}^2 - d_{vr}^2)$$

$$A = \frac{\pi}{4} ((21,91 \text{ cm})^2 - (19,37 \text{ cm})^2))$$

$$A = 82,35 \text{ cm}^2$$

Sustituyendo:

$$i = \sqrt{\frac{I}{A}}$$

Preparó:	Revisó:	Aprobó:	Página 46 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$i = \sqrt{\frac{4401 \ cm^4}{82,35 \ cm^2}}$$

$$i = 7,31 cm$$

Cálculo del coeficiente de esbeltez.

Para el cálculo de pandeo de la estructura se utilizara el criterio del coeficiente de pandeo planteado por Dubbel en su "Manual del constructor de máquinas".

$$\lambda = \frac{I_{vr}/(1 + N_{rig})}{i}$$

Siendo:

 λ : Coeficiente de esbeltez.

 I_{vr} : Largo de los vientos rígidos.

i: Radio de giro.

 N_{rig} : Número de rigidizadores.

$$\lambda = \frac{9.16 \, m/3}{0,0731 \, m}$$

$$\lambda = 41,76$$

Coeficiente de pandeo.

De la tabla de factores de pandeo del manual de construcción de máquinas del autor Dubbel, entrando con el acero st 37 y con el coeficiente de esbeltez se obtiene el coeficiente de pandeo que se expresa a continuación:

$$\omega = 1.112$$

Cálculo de las excentricidades.

En esta sección se calculará mediante criterios del "Manual del constructor de máquinas" del autor Dubbel la máxima excentricidad que puede tener la estructura por errores en el montaje o bien en la conformación de los materiales que la constituyen. Dicha excentricidad nos da una idea de la desalineación una vez montadas las piezas.

$$e_1 = \frac{l_{vr}}{500} + \frac{D_{vr}}{40}$$

Siendo:

 e_1 : Excentricidad debido a imperfecciones del laminado.

 l_{vr} : Largo de los vientos rígidos.

 D_{vr} : Diámetro exterior de los vientos rígidos.

Preparó:	Revisó:	Aprobó:	Página 47 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

$$e_1 = \frac{9,16 m}{500} + \frac{0,2191 m}{40}$$
$$e_1 = 23,79 mm$$

$$e_2 = \frac{l_{vr}}{100} + \frac{D_{vr}}{40}$$

Siendo:

e₂: Excentricidad debido a defectos de montaje.

 l_{vr} : Largo de los vientos rígidos.

 D_p : Diámetro exterior de los vientos rígidos.

$$e_2 = \frac{9.16 m}{100} + \frac{0.2191 m}{40}$$

 $e_2 = 97.07 mm$

Por último se tiene en cuenta el caso más desfavorable en el cual las dos excentricidades máximas se sumen dando como resultado:

$$e = e_1 + e_2$$

 $e = 23,79 \, mm + 97,07 \, mm$
 $e = 120,86 \, mm$

Cálculo del esfuerzo debido al viento en los vientos rígidos.

Con la fuerza que el viento ejerce sobre el puntal, se calcula el esfuerzo debido a este en los vientos.

$$\Delta S_z = \frac{V}{2 * \cos \gamma}$$

Siendo:

 ΔS_z : Esfuerzo sobre los vientos debida al viento.

V: Fuerza debido al viento del puntal.

$$\Delta S_z = \frac{109.2 \, kg}{2 * \cos 63.43}$$
$$\Delta S_z = 122 \, kg$$

Preparó:	Revisó:	Aprobó:	Página 48 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cálculo del esfuerzo total en los vientos rígidos.

Con los esfuerzos calculados anteriormente obtenemos el esfuerzo total que soportan los vientos.

$$P_z = S_z + \Delta S_z$$

$$P_z = 20550 kg + 122 kg$$

$$P_z = 20672 kg$$

<u>Cálculo del momento flector debido al peso propio de los vientos rígidos.</u>

Con el valor del peso total de la estructura, se calcula el momento flector máximo que el peso propio genera, el valor de dicho momento se calcula a continuación.

$$Mf = \frac{Q_{vr} * l_{vr} * sen (90 - \gamma)}{8}$$

Siendo:

Mf: Momento flector.

 l_{vr} : Longitud del viento rígido.

 Q_{vr} : Peso total del viento rígido, el cual se calcula a continuación:

$$Q_{vr} = l_{vr} * Q_{vr/m}$$

$$Q_{vr} = 9,16 m * 64,64 \frac{kg}{m}$$

$$Q_{vr} = 592,1 kg$$

Sustituyendo:

$$Mf = \frac{592,1 \, kg * 9,16 \, m * sen (26,56)}{8}$$
$$Mf = 303,13 \, kgm$$

<u>Cálculo de la tensión máxima sobre el viento rígido.</u>

Sumando la carga de pandeo, las por excentricidades y la debida al momento flector máximo, se obtiene el sigma necesario que debe tener el material que conforme los vientos rígidos.

$$\sigma_{max} = \frac{P_z * \omega}{A} + \frac{P_z * e}{W} + \frac{Mf}{W}$$

Siendo:

 σ_{max} : Tensión máxima.

Preparó:	Revisó:	Aprobó:	Página 49 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

 P_z : Esfuerzo axial total de los vientos rígidos.

 ω : Coeficiente de pandeo.

A: Área de la sección transversal del caño.

e: Excentricidad de los vientos rígidos.

W: Modulo resistente de los vientos rígidos.

Mf: Momento flector.

$$\sigma_{max} = \frac{20672 \; kg * 1{,}112}{82{,}35 \; cm^2} + \frac{20672 \; kg * \; 12{,}08 \; cm}{401{,}73 \; cm^3} + \frac{30313 \; kgcm}{401{,}73 \; cm^3}$$

$$\sigma_{max1} = 976, 2 \frac{kg}{cm^2}$$

Cálculo de pandeo según fórmula de Euler para los vientos rígidos.

Se calculará a su vez la resistencia en kilogramos que poseen los vientos rígidos por medio de la fórmula de Euler.

$$P_{pandeo} = \frac{\pi^2 * E * I}{l_{vr}^2}$$

Siendo:

 P_{vandeo} : Carga máxima de pandeo.

E: Módulo de Young del material.

I: Momento de inercia.

 l_{vr} : Longitud libre al pandeo.

$$P_{pandeo} = \frac{\pi^2 * 2074055,26 \frac{kg}{cm^2} * 4401 cm^4}{(305 cm)^2}$$

$$P_{pandeo} = 968437 kg$$

Cálculo de aplastamiento para el viento rígido.

$$\sigma_{apla} = \frac{P_z}{A}$$

Preparó:	Revisó:	Aprobó:	Página 50 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

 σ_{apla} : Tensión de aplastamiento.

 P_z : Carga total axial del viento rígido.

A : Área del viento rígido.

$$\sigma_{apla} = \frac{20672 \, kg}{82,35 \, cm^2}$$

$$\sigma_{apla} = 251,02 \frac{kg}{cm^2}$$

Cálculo de tenciones admisibles para el acero ASTM A53 Gr A.

En esta sección se consideraran criterios de autores para la adopción de coeficientes de seguridad para comparar las tensiones obtenidas en el cálculo con las tensiones admisibles del material de construcción de la pluma.

$$\sigma_{fl} = 2151, 6 \frac{kg}{cm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_{fl}$$

$$\sigma_{adm} = 0.6 * 2151.6 \frac{kg}{cm^2}$$

$$\sigma_{adm} = 1291 \frac{kg}{cm^2}$$

Según el criterio de los autores Pisarenko, Yákovlev y Matvéev en su libro "Manual de resistencia de materiales".

$$\sigma_{adm \ apla} = 2 * \sigma_{adm}$$

$$\sigma_{adm \ apla} = 2 * 1291 \frac{kg}{cm^2}$$

$$\sigma_{adm \ apla} = 2582 \frac{kg}{cm^2}$$

Verificación de tenciones para el mástil de acero ASTM A53 Gr A.

Se procederá a comparar los resultados de tensión y su verificación.

$$\sigma_{adm} \geq \sigma_{max1}$$

Preparó:	Revisó:	Aprobó:	Página 51 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\sigma_{adm} \ge 976.2 \frac{kg}{cm^2}$$

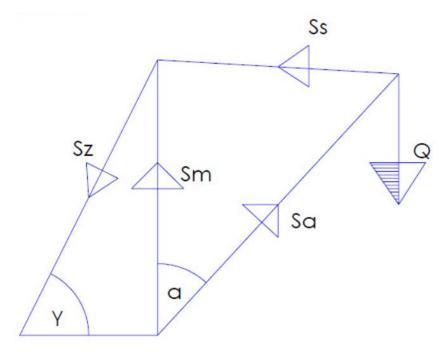
$$1291\frac{kg}{cm^2} \ge 976, 2 \; \frac{kg}{cm^2}$$

Verifica

$$P_{pandeo} \ge P_{total}$$
 $P_{pandeo} \ge 20672 \, kg$
 $968437 \, kg \ge 20672 \, kg$

Verifica

$$\sigma_{adm \, apla} \geq \sigma_{apla}$$


$$\sigma_{adm \, apla} \geq 251,02 \, \frac{kg}{cm^2}$$

$$2582 \, \frac{kg}{cm^2} \geq 251,02 \, \frac{kg}{cm^2}$$

Verifica

Esfuerzos actuantes sobre el tensor.

En esta sección se utilizaran los valores anteriormente calculados para determinar la carga total a la cual esta solicitado el tensor.

Preparó:	Revisó:	Aprobó:	Página 52 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Como ya se calculó anteriormente el valor de la fuerza en el tensor es de:

$$S_s = 9203, 6 \, kg$$

Selección de cable y componentes del tensor.

Para la selección de cable y herrajes correspondientes al tensor, serán utilizados el catálogo de Cables de acero para uso general del fabricante IPH y el catálogo General de productos del fabricante Crosby.

Para la selección del cable se considerará el criterio del proveedor, el cual establece lo siguiente:

Carga que puede aplicarse sobre un cable

Como regla básica, ampliamente utilizada en la industria del izaje general, la carga que puede aplicarse sobre un cable es la carga de tabla (CMR) dividida por 5. Más exactamente, la carga segura de trabajo se determina dividiendo el valor de tabla (CMR) por un factor de seguridad (FS) que varía dependiendo del equipamiento o aplicación. A modo informativo:

- Cables estáticos: 3 a 4
- Elevación de cargas en general, grúas, eslingas, etc.: 5 a 6
- Casos con altas temperaturas u otras condiciones extremas: 8 a 12
- Elevación de personas: 12 a 22

Este factor lo adopta el diseñador del equipo o el usuario, para lo cual debe tener en cuenta recomendaciones del fabricante del equipo y del cable, así como normas relacionadas específicas.

Por lo que para nuestro calculo adoptaremos un coeficiente de seguridad de 5 y la reducción que proporciona la pasteca de 6:1, dando como resultado.

$$S_{s \max seg} = S_{s \max} * 4$$

$$S_{s \max seg} = 9203.6 kg * 4$$

$$S_{s \max seg} = 36814.4 kg$$

Por lo que se adopta el cable inmediato superior al valor calculado, el cual es el siguiente:

Preparó:	Revisó:	Aprobó:	Página 53 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

AFS Carga mínima de rotura

Diámetro	Masa aprox.	Grado 1770		Grad 196	
[mm]	[kg/m]	[kN]	[t]	[kN]	[t]
3,00	0,032	4,9	0,5	5,8	0,6
5,00	0,087	13,6	1,4	16,2	1,7
8,00	0,230	37,4	3,8	41,2	4,2
9,50	0,320	52,7	5,4	58,8	6,0
11,00	0,433	70,7	7,2	78,4	8,0
13,00	0,607	98,7	10,1	109	11,1
14,00	0,704	114	11,6	127	13,0
16,00	0,919	150	15,3	166	16,9
19,00	1,300	211	21,5	233	23,8
22,00	1,740	283	28,9	313	31,9
26,00	2,430	395	40,3	437	44,6
28,00	2,810	458	46,7	507	51,7
32,00	3,680	598	61,0	662	67,6
35,00	4,400	716	73,1	792	80,8
38,00	5,180	843	86,0	934	95,3
44,00	6,950	1130	115	1250	128
51,00	9,340	1520	155	168	171

Preparó:	Revisó:	Aprobó:	Página 54 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Y del fabricante Crosby se seleccionan las grampas de sujeción según la recomendación de este.

G-450 Grapas Crosby®, Clip

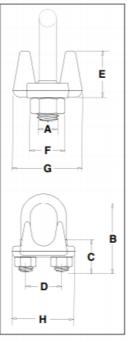
Todas las grapas Crosby de tamaño 1/4" y mayores cumplen con la Especificacion Federal FF-C-450 TYPE 1 CLASE 1, excepto por aquellas provisiones exigidas por el contratista. Para mayores informaciones ver página 452.

- · Cada base lleva forjada el código de identificación del producto (PIC) para rastrear el material, el nombre Crosby o "CG" y el tamaño.
- Basado en la carga de ruptura del cable de acero indicado en el catálogo, las grapas Crosby tienen una eficiencia del 80% para tamaños de 1/8" a 7/8", y 90% para tamaños de 1" hasta 3 1/2".
- La grapa en su totalidad es galvanizada para resistir la acción corrosiva y oxidante.
- Las grapas de 1/8" a 21/2" y 3" (3mm a 65mm y 75-78mm) tienen bases forjadas.
- · Todas las grapas se empaquetan y etiquetan individualmente con las instrucciones de aplicación y las advertencias apropiadas.
- Las grapas hasta 1½" tienen rosca rolada.
- · Crosby Cumple o excede todos los requerimientos de ASME B30.26 incluyendo identificación, ductilidad, factor de diseño, carga de prueba y requisitos de temperatura. Además, estas grapas para cable cumplen con otros requisitos críticos de rendimiento que incluyen índices de fatiga, propiedades de impacto, y capacidad de rastrear el material que no han sido abordados por ASME B30.26.
- Busque la marca Red-U-Bolt[®], su garantía de Auténticas Grapas Crosby.

3. Cuando se requieran tres o más grapas, coloque las grapas adicionales espaciadas

a la misma distancia entre las dos primeras -tense el cable flojo- y apriete

uniformemente las tuercas en cada perno en U con torquímetro, alternando de una tuerca a la otra hasta lograr el valor de torque recomendado. (Ver Figura 3). + MOR


		Tabla 1	I	
Tamaño grapa (pulg.)	Tamaño cable (pulg.)	No. mínimo de grapas	Cantidad de cable a doblar en pulgadas	*Torque en pies-lb
1/8	1/8	2	3-1/4	4.5
3/16	3/16	2	3-3/4	7.5
1/4	1/4	2	4-3/4	15
5/16	5/16	2	5-1/4	30
3/8	3/8	2	6-1/2	45
7/16	7/16	2	7	65
1/2	1/2	3	11-1/2	65
9/16	9/16	3	12	95
5/8	5/8	3	12	95
3/4	3/4	4	18	130
7/8	7/8	4	19	225
1	1	5	26	225
1-1/8	1-1/8	6	34	225
1-1/4	1-1/4	7	44	360
1-3/8	1-3/8	7	44	360
1-1/2	1-1/2	8	54	360
1-5/8	1-5/8	8	58	430
1-3/4	1-3/4	8	61	590
2	2	8	71	750
2-1/4	2-1/4	8	73	750
2-1/2	2-1/2	9	84	750
2-3/4	2-3/4	10	100	750
3	3	10	106	1200
3-1/2	3-1/2	12	149	1200

Si se utiliza una polea para doblar el cable, adicionar una grapa más. Ver figura 4.

Si se utiliza un mayor número de grapas que las indicadas en las tablas, se debe incrementar proporcionalmente la longitud del cable que se dobla.

Los valores de torque se indican para cables limpios, secos y sin lubricación.

Preparó:	Revisó:	Aprobó:	Página 55 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-450 Grapas Crosby®

Tamaño	Cable	G-450 No. de	Cantidad en Paq.	Peso por 100					siones lg.)			
(pulg.)	(mm)	Parte	Estandar	(lbs.)	Α	В	С	D	E	F	G	Н
1/8*	3-4*	1010015	100	6	.22	.72	.44	.47	.37	.38	.81	.99
3/16*	5*	1010033	100	10	.25	.97	.56	.59	.50	.44	.94	1.18
1/4	6-7	1010051	100	19	.31	1.03	.50	.75	.66	.56	1.19	1.43
5/16	8	1010079	100	28	.38	1.38	.75	.88	.73	.69	1.31	1.66
3/8	9-10	1010097	100	48	.44	1.50	.75	1.00	.91	.75	1.63	1.94
7/16	11	1010113	50	78	.50	1.88	1.00	1.19	1.13	.88	1.91	2.28
1/2	12-13	1010131	50	80	.50	1.88	1.00	1.19	1.13	.88	1.91	2.28
9/16	14-15	1010159	50	109	.56	2.25	1.25	1.31	1.34	.94	2.06	2.50
5/8	16	1010177	50	110	.56	2.25	1.25	1.31	1.34	.94	2.06	2.50
3/4	18-20	1010195	25	142	.62	2.75	1.44	1.50	1.39	1.06	2.25	2.84
7/8	22	1010211	25	212	.75	3.12	1.62	1.75	1.58	1.25	2.44	3.16
1	24-26	1010239	10	252	.75	3.50	1.81	1.88	1.77	1.25	2.63	3.47
1-1/8	28-30	1010257	10	283	.75	3.88	2.00	2.00	1.91	1.25	2.81	3.59
1-1/4	32-34	1010275	10	438	.88	4.44	2.22	2.34	2.17	1.44	3.13	4.13
1-3/8	36	1010293	10	442	.88	4.44	2.22	2.34	2.31	1.44	3.13	4.19
1-1/2	38	1010319	10	544	.88	4.94	2.38	2.59	2.44	1.44	3.41	4.44
1-5/8	41-42	1010337	granel	704	1.00	5.31	2.62	2.75	2.66	1.63	3.63	4.75
1-3/4	44-46	1010355	granel	934	1.13	5.75	2.75	3.06	2.92	1.81	3.81	5.24
2	48-52	1010373	granel	1300	1.25	6.44	3.00	3.38	3.03	2.00	4.44	5.88
2-1/4	56-58	1010391	granel	1600	1.25	7.13	3.19	3.88	3.19	2.00	4.56	6.38
2-1/2	62-65	1010417	granel	1900	1.25	7.69	3.44	4.13	3.69	2.00	4.69	6.63
** 2-3/4	** 68-72	1010435	granel	2300	1.25	8.31	3.56	4.38	4.88	2.00	5.00	6.88
3	75-78	1010453	granel	3100	1.50	9.19	3.88	4.75	4.44	2.38	5.31	7.61
** 3-1/2	** 85-90	1010426	granel	4000	1.50	10.75	4.50	5.50	6.00	2.38	6.19	8.38

*Pernos en U y tuercas electroenchapados. ** La base de la de 2-3/4" y 3-1/2" es de acero fundido.

Dimensionamiento de los herrajes.

En esta sección se utilizaran los valores anteriormente calculados, para determinar la geometría que deben tener todos los herrajes necesarios y su verificación.

Es necesario aclarar que para estos se utilizara planchas de acero 1020 laminado en caliente, 1045 para los pernos y St 38-13 para los tornillos.

Las tensiones admisibles del acero 1020 se calculan a continuación:

$$\sigma_f = 31 \, \frac{kg}{mm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_f$$

$$\sigma_{adm} = 0.6 * 31 \frac{kg}{mm^2}$$

$$\sigma_{adm} = 18,6 \; \frac{kg}{mm^2}$$

Según el criterio del autor Stiopin en su libro "Resistencia de materiales".

$$\tau_{adm} = 0.5 * \sigma_{adm}$$

$$\tau_{adm} = 0.5 * 18.6 \frac{kg}{mm^2}$$

Preparó:	Revisó:	Aprobó:	Página 56 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\tau_{adm} = 9.3 \; \frac{kg}{mm^2}$$

Según el criterio de los autores Pisarenko, Yákovlev y Matvéev en su libro "Manual de resistencia de materiales".

$$\sigma_{adm \, apl} = 2 * \sigma_{adm}$$

$$\sigma_{adm \, apl} = 2 * 18.6 \frac{kg}{mm^2}$$

$$\sigma_{adm \, apl} = 37.2 \frac{kg}{mm^2}$$

Calculo de soldaduras en la estructura.

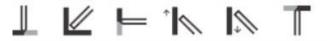
En esta sección se calcularan los cordones de soldadura y se seleccionará el electrodo junto con el procedimiento de soldadura, para unir las partes que componen el mástil, el puntal y los vientos rígidos.

Electrodo.

El electrodo seleccionado es del fabricante CONARCO el cual es apto para soldar en múltiples posiciones y es el recomendado para la soldadura de aceros ASTM A 53 y aceros al carbono en general.

CONARCO 10 celulósico

DESCRIPCION / APLICACION


Muy buena penetración para soldadura en toda posición. Electrodo universal para uso en fabricación y montaje donde las condiciones de soldadura no son ideales (óxido, mala preparación de biseles, etc).

Apto para soldadura de cañerías y aceros de baja, media y alta presión, gasoductos, soldadura de aceros API 5L X 42, X46, X52, aceros ASTM A 53 grado A/B, A106 A/B, A134 A/B, A139 A/B, A151 A/B, A155 A/B y similares. Caños con y sin costura. Soldaduras de cascos de barcos en chapa naval, chapa estructural de acero al carbono de baja y media resistencia, calderas, recipientes de presión, estructuras de puentes, muelles, edificios y similares.

CARACTERISTICAS OPERATIVAS

CC (+)

POSICION DE SOLDADURA

Preparó:	Revisó:	Aprobó:	Página 57 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

CLASIFICACION

AWS A5.1

E6010

COMPOSICION QUIMICA TIPICA DEL METAL DEPOSITADO

C 0,13 % Mn 0,50 % Si 0,20 %

PROPIEDADES MECANICAS DEL METAL DEPOSITADO (VALORES TIPICOS)

R 529 MPa Rf 466 MPa Al 29 % CVN(-29 °C) 53 J

El procedimiento de soldado se especifica a continuación:

Para obtener los mejores resultados, se recomienda un arco de longitud mediana que permita controlar mejor la forma y aspecto del cordón.

Para soldar filetes planos y horizontales, se recomienda mantener el electrodo a 45° con cada plancha, oscilándolo en el sentido de avance. El movimiento adelante tiene por objeto obtener una buena penetración y el movimiento hacia atrás controla la socavación y la forma del cordón.

En la soldadura vertical se recomienda llevar el electrodo en un ángulo de casi 90°, inclinándolo ligeramente en el sentido de avance.

Se debe llevar un movimiento de vaivén, alargando el arco para no depositar metal en el movimiento hacia arriba y luego acortándolo para depositar en el cráter y así controlar las dimensiones del depósito y la socavación.

Soldadura en el mástil.

Esta soldadura corresponde a la unión de tramos por la que está compuesta el mástil, se calculará en la unión de menor diámetro y espesor, si esta verifica, las uniones con diámetros más grandes también lo harán.

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

Preparó:	Revisó:	Aprobó:	Página 58 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$a = ks * e$$

Donde:

ks : Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{m\acute{a}stil} = 0.7 * 7.11 mm$$

$$a_{m\acute{a}stil} = 4.97 mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm} = 12.91 \, \frac{kg}{mm^2} \, \, acero \, ASTM \, A53$$

$$\rho_{adm} = 0.65 * \, 12.91 \, \frac{kg}{mm^2}$$

$$\rho_{adm} = 8.4 \, \frac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{13882,76 \, kg}{4,97 \, mm * 8,4 \, \frac{kg}{mm^2}}$$

$$lu = 332,53 \, mm$$

Preparó:	Revisó:	Aprobó:	Página 59 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$lt = lu + 2 * a$$

 $lt = 332,53 \ mm + 2 * 4,97 \ mm$
 $lt = 324,47 \ mm$

Perímetro disponible:

$$ext{Pr} = \pi * D_{te}$$

$$ext{Pr} = \pi * 168,3$$

$$ext{Pr} = ext{528},7mm \quad verifica$$

Soldadura en el puntal.

Esta soldadura corresponde a la unión de tramos por la que está compuesta el puntal, ya que los caños comercialmente son de 6 m se debe agregar un tramo para alcanzar la altura deseada.

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks: Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{puntal} = 0.7 * 9.53 mm$$
$$a_{puntal} = 6.671 mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Preparó:	Revisó:	Aprobó:	Página 60 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12{,}91\,rac{kg}{mm^2}\,\,acero\,\,ASTM\,\,A53$$

$$ho_{adm}=0{,}65*\,\,12{,}91\,rac{kg}{mm^2}$$

$$ho_{adm}=8{,}4\,rac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{19015,17 \ kg}{6,671 \ mm * 8,4 \ \frac{kg}{mm^2}}$$

$$lu = 339,33 \ mm$$

$$lt = lu + 2 * a$$

 $lt = 332,53 mm + 2 * 6,671 mm$
 $lt = 352,67 mm$

Perímetro disponible:

$$ext{Pr} = \pi * D_{pu}$$
 $ext{Pr} = \pi * 273 \, mm$ $ext{Pr} = 857,65 \, mm \quad verifica$

Soldadura en los vientos rígidos.

Esta soldadura corresponde a la unión de tramos por la que está compuesta los vientos rígidos, ya que los caños comercialmente son de 6 m se debe agregar un tramo para alcanzar la altura deseada.

$$lu = \frac{P}{a * \rho}$$

Siendo:

Preparó:	Revisó:	Aprobó:	Página 61 de 115
Lapalma, Guillermo: Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks: Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{puntal} = 0.7 * 12.7 mm$$
$$a_{puntal} = 8.89 mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12.91\,rac{kg}{mm^2}\,\,acero\,\,ASTM\,\,A53$$

$$ho_{adm}=0.65*\,\,12.91\,rac{kg}{mm^2}$$

$$ho_{adm}=8.4\,rac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{20672 \, kg}{8,89 \, mm * 8,4 \, \frac{kg}{mm^2}}$$

Preparó:	Revisó:	Aprobó:	Página 62 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

$$lu = 280 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 280 mm + 2 * 8,89 mm$
 $lt = 297,7 mm$

Perímetro disponible:

$$\Pr = \pi * D_{vr}$$

$$\Pr = \pi * 219,1 mm$$

$$\Pr = 688 mm \quad verifica$$

Herraje ER1 - Sujeción tensor y polipasto SE1.

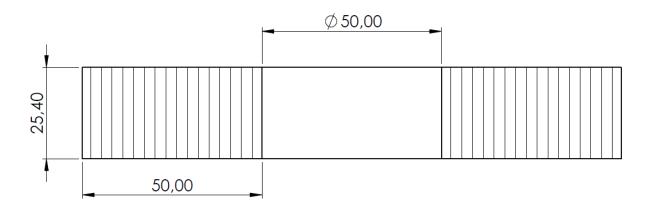
Este herraje se encarga de unir el polipasto SE1 con el mástil de la grúa y también en su lado opuesto se sujeta el cable tensor al mástil.

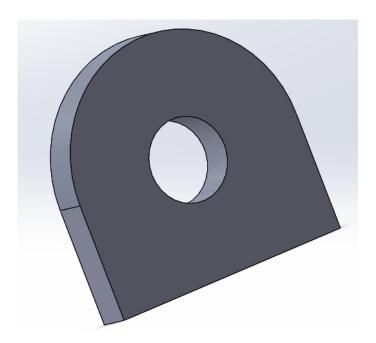
$$A_{cr} = \frac{P}{\sigma_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

P: Carga a elevar + Polipasto.


 σ_{adm} : Tensión admisible del material de la planchuela.


$$A_{cr} = \frac{10500 \, kg}{18.6 \, \frac{kg}{mm^2}}$$

$$A_{cr}=564.5\ mm^2$$

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Verificaciones.

Aplastamiento:

$$\sigma_{apl} = \frac{S_s}{A_{apl}}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 S_s : Tensión del tensor.

 A_{apl} : Área de aplastamiento, la cual se calcula a continuación.

 $A_{apl} = Ancho planchuela * Díametro del cable$

Preparó:	Revisó:	Aprobó:	Página 64 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

$$A_{apl} = 25,4 \text{ mm} * 26 \text{ mm}$$

 $A_{apl} = 660,4 \text{ mm}^2$

$$\sigma_{apl} = \frac{9203,6 \, kg}{660,4 \, mm^2}$$

$$\sigma_{apl} = 13,93 \; \frac{kg}{mm^2}$$

Tomando el valor de tensión admisible calculado anteriormente, vemos que verifica.

$$\sigma_{adm\,apl}=37.2\;rac{kg}{mm^2}\geq\;\sigma_{apl}=13.93\;rac{kg}{mm^2}$$

Soldadura:

Se realizará la verificación de la longitud de soldadura entre el herraje y el mástil.

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a: Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks: Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{gancho} = 0.7 * 7.11 mm$$

 $a_{gancho} = 4.97 mm$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Preparó:	Revisó:	Aprobó:	Página 65 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12{,}91\,rac{kg}{mm^2}\,\,acero\,\,ASTM\,\,A53$$

$$ho_{adm}=0{,}65*\,\,12{,}91\,rac{kg}{mm^2}$$

$$ho_{adm}=8{,}4\,rac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{10500 \, kg}{4,97 \, mm * 8,4 \, \frac{kg}{mm^2}}$$

$$lu = 251,5 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 251,5 mm + 2 * 4,97 mm$
 $lt = 261,4 mm$

Perímetro disponible:

Herraje ER2 - Perno viento rígido.

El cálculo de este perno se realiza teniendo como tensión principal, la tensión de corte.

$$A_{cr} = \frac{P_z}{\tau_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

Preparó:	Revisó:	Aprobó:	Página 66 de 115
Lanalma Guillermo: Kautz Diego.	GP = 01/10/2018		

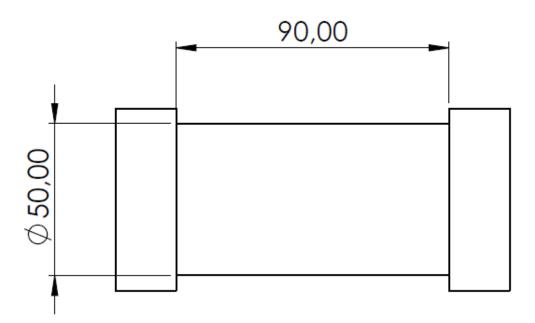
G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

 P_z : Carga actuante en los vientos rígidos.

 τ_{adm} : Tensión admisible del material de la planchuela, la cual se calcula a continuación tomando como material un acero 1045 laminado en caliente.

$$au_{adm} = 0.5 * \sigma_{adm}$$

$$au_{adm} = 0.5 * 25.8 \frac{kg}{mm^2}$$


$$au_{adm} = 12.9 \frac{kg}{mm^2}$$

Sustituyendo:

$$A_{cr} = \frac{20672 \, kg}{12.9 \, \frac{kg}{mm^2}}$$

$$A_{cr} = 1602,4 \ mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

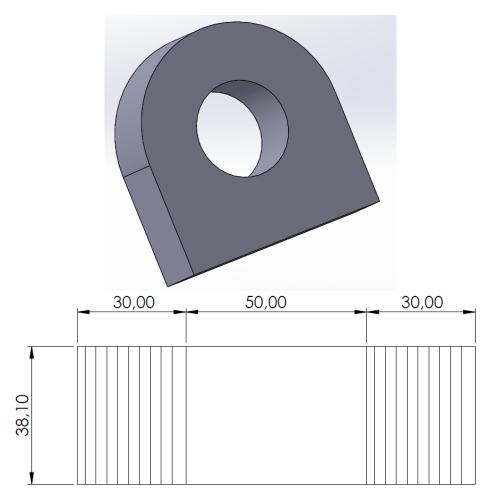
Herraje ER3 - Sujeción viento rígido a perno.

$$A_{cr} = \frac{P_z}{\sigma_{adm}}$$

Siendo:

Preparó:	Revisó:	Aprobó:	Página 67 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.


 P_z : Carga en vientos rígidos.

 σ_{adm} : Tensión admisible del material de la planchuela para este caso se utilzará acero 1020 laminado en caliente.

$$A_{cr} = \frac{20672 \, kg}{18.6 \, \frac{kg}{mm^2}}$$

$$A_{cr} = 1111,4 \ mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Preparó:	Revisó:	Aprobó:	Página 68 de 115	l
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

Verificaciones.

Aplastamiento:

$$\sigma_{apl} = \frac{P_z}{A_{apl}}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 P_z : Tensión de los vientos rígidos.

 A_{apl} : Área de aplastamiento, la cual se calcula a continuación.

 $A_{apl} = Ancho planchuela * Díametro del perno$

$$A_{apl} = 38.1 \text{ } mm * 50 \text{ } mm$$
$$A_{apl} = 1905 \text{ } mm^2$$

$$\sigma_{apl} = \frac{20672 \, kg}{1905 \, mm^2}$$

$$\sigma_{apl} = 10.85 \, \frac{kg}{mm^2}$$

Tomando el valor de tensión admisible al aplastamiento del acero 1020 LC, vemos que verifica.

$$\sigma_{adm\,apl}=37.2\;rac{kg}{mm^2}\geq\;\sigma_{apl}=10.85\;rac{kg}{mm^2}$$

Soldadura:

$$lu = \frac{P_z}{a * \rho}$$

Siendo:

 P_z : Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks : Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a = 0.7 * 12.7 mm$$

Preparó:	Revisó:	Aprobó:	Página 69 de 115	l
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

$$a = 8.89 \, mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12.91\,rac{kg}{mm^2}\,\,acero\,\,ASTM\,\,A53$$

$$ho_{adm}=0.65*\,\,12.91\,\,rac{kg}{mm^2}$$

$$ho_{adm}=8.4\,\,rac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{20672 \, kg}{8,89 \, mm * 8,4 \, \frac{kg}{mm^2}}$$

$$lu = 276,8 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 276,8 mm + 2 * 8,89 mm$
 $lt = 294,6 mm$

Perímetro disponible:

$$Pr = 2 * (ancho + largo)$$

Preparó:	Revisó:	Aprobó:	Página 70 de 115	l
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

$$Pr = 2 * (38,1 mm + 110 mm)$$

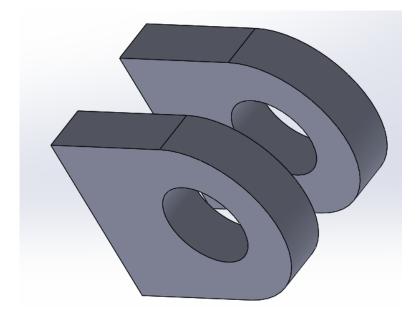
Pr = 296, 2 mm verifica

Herraje ER4 - Mástil a perno de viento rígido.

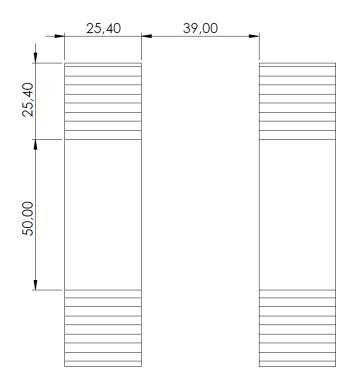
$$A_{cr} = \frac{P_z}{\sigma_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.


 P_z : Carga en vientos rígidos.

 σ_{adm} : Tensión admisible del material de la planchuela para este caso se utilizará acero 1020 laminado en caliente.


$$A_{cr} = \frac{20672 \, kg}{18.6 \, \frac{kg}{mm^2}}$$

$$A_{cr}=1111,4\ mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Preparó:	Revisó:	Aprobó:	Página 71 de 115	ı
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

Verificaciones.

Aplastamiento:

$$\sigma_{apl} = \frac{P_z}{A_{anl}}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 P_z : Tensión de los vientos rígidos.

 A_{apl} : Área de aplastamiento, la cual se calcula a continuación.

$$A_{apl} = 2 * (Ancho planchuela * Díametro del perno)$$

$$A_{apl} = 2 * (25.4 mm * 50 mm)$$

 $A_{apl} = 2540 mm^2$

$$\sigma_{apl} = \frac{20672 \, kg}{2540 \, mm^2}$$

$$\sigma_{apl} = 8,13 \; \frac{kg}{mm^2}$$

Tomando el valor de tensión admisible al aplastamiento del acero 1020 LC, vemos que verifica.

Preparó:	Revisó:	Aprobó:	Página 72 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

$$\sigma_{adm \; apl} = 37.2 \; \frac{kg}{mm^2} \geq \; \sigma_{apl} = 8.13 \; \frac{kg}{mm^2}$$

Soldadura:

$$lu = \frac{P_z}{a * \rho}$$

Siendo:

 P_z : Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks : Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a = 0.7 * 9.53 mm$$

 $a = 6.671 mm$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12{,}91~\frac{kg}{mm^2}~acero~ASTM~A53$$

$$ho_{adm}=0{,}65*~12{,}91~\frac{kg}{mm^2}$$

$$ho_{adm}=8{,}4~\frac{kg}{mm^2}$$

Preparó:	Revisó:	Aprobó:	Página 73 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{20672 \, kg}{6,671 \, mm * 8,4 \, \frac{kg}{mm^2}}$$

$$lu = 368,9 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 368,9 mm + 2 * 6,671 mm$
 $lt = 382,24 mm$

Perímetro disponible:

$$Pr = 4 * (ancho + largo)$$
 $Pr = 4 * (25,4 mm + 100,8 mm)$
 $Pr = 504,8 mm \ verifica$

Herraje ER5 - Sujeción puntal - mástil y puntal - tensor.

Para el diseño de estas sujeciones se utilizaran las fuerzas de la solicitación más elevada, una vez dimensionado para dicha fuerza se adoptarán las mismas medidas para la otra sujeción.

Perno de unión.

El cálculo de este perno se realiza teniendo como tensión principal, la tensión de corte.

$$A_{cr} = \frac{S_a}{\tau_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

 S_a : Carga actuante en el mástil.

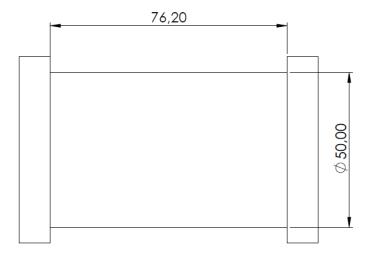
 τ_{adm} : Tensión admisible del material, la cual se calcula a continuación tomando como material un acero 1045 laminado en caliente.

$$au_{adm} = 0.5 * \sigma_{adm}$$

$$au_{adm} = 0.5 * 25.8 \frac{kg}{mm^2}$$

Preparó:	Revisó:	Aprobó:	Página 74 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.


$$\tau_{adm} = 12.9 \; \frac{kg}{mm^2}$$

Sustituyendo:

$$A_{cr} = \frac{13882,76 \, kg}{12,9 \, \frac{kg}{mm^2}}$$

$$A_{cr} = 1076 \, mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Planchuela de unión.

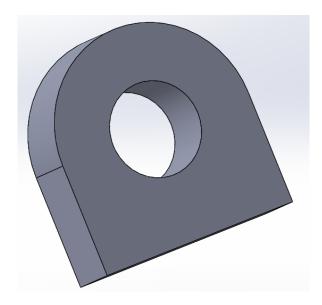
$$A_{cr} = \frac{S_a}{\sigma_{adm}}$$

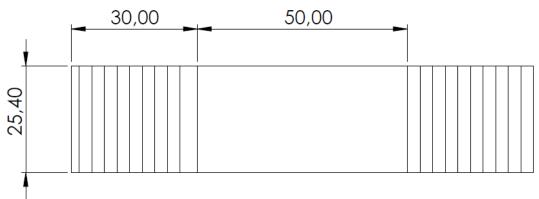
Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

 S_a : Carga en el mástil.

 σ_{adm} : Tensión admisible del material de la planchuela para este caso se utilzará acero 1020 laminado en caliente.


$$A_{cr} = \frac{13882 \, kg}{18,6 \, \frac{kg}{mm^2}}$$


$$A_{cr} = 746,\!38 \ mm^2$$

Preparó:	Revisó:	Aprobó:	Página 75 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			1

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Verificaciones.

Aplastamiento:

$$\sigma_{apl} = \frac{S_a}{A_{apl}}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 S_a : Tensión del mástil.

 A_{apl} : Área de aplastamiento, la cual se calcula a continuación.

 $A_{apl} = Ancho planchuela * Díametro del perno$

$$A_{apl} = 25,4 \, mm * 50 \, mm$$

$$A_{apl}=1270\ mm^2$$

Preparó:	Revisó:	Aprobó:	Página 76 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\sigma_{apl} = \frac{13882,76 \ kg}{1270 \ mm^2}$$

$$\sigma_{apl} = 10,93 \ \frac{kg}{mm^2}$$

Tomando el valor de tensión admisible al aplastamiento del acero 1020 LC, vemos que verifica.

$$\sigma_{adm\,apl} = 37.2 \frac{kg}{mm^2} \ge \sigma_{apl} = 10.93 \frac{kg}{mm^2}$$

Soldadura:

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks: Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a = 0.7 * 25.4 mm$$

 $a = 17.78 mm$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

Preparó:	Revisó:	Aprobó:	Página 77 de 115	l
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm} = 18.6 \frac{kg}{mm^2} \ acero SAE \ 1020$$

$$\rho_{adm} = 0.65 * 18.6 \frac{kg}{mm^2}$$

$$\rho_{adm} = 12.09 \frac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{13882,76 \, kg}{17,78 \, mm * 12,09 \, \frac{kg}{mm^2}}$$

$$lu = 64,58 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 64,58 \, mm + 2 * 17,78 \, mm$
 $lt = 100 \, mm$

Perímetro disponible:

Eje de pivote.

El cálculo de este eje se realiza teniendo como tensión principal, la tensión de corte.

$$A_{cr} = \frac{S_a}{\tau_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

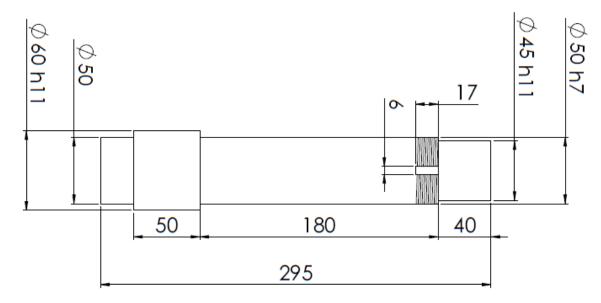
 S_a : Carga actuante en el mástil.

 au_{adm} : Tensión admisible del material, la cual se calcula a continuación tomando como material un acero 1045 laminado en caliente.

$t_{adm} = 0.5 * b_{adm}$		
Revisó:	Aprobó:	Página 78 de

Preparó:	Revisó:	Aprobó:	Página 78 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\tau_{adm} = 0.5 * 25.8 \frac{kg}{mm^2}$$


$$\tau_{adm} = 12.9 \frac{kg}{mm^2}$$

Sustituyendo:

$$A_{cr} = \frac{13882,76 \, kg}{12,9 \, \frac{kg}{mm^2}}$$

$$A_{cr} = 1076 \, mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Rodamientos.

El cálculo de los rodamientos se realiza para rodamientos que trabajan de forma estática o con movimientos de giro muy lentos. El cálculo es el siguiente:

$$P_0 = C_0 * S_0$$

Siendo:

 S_0 = Factor de seguridad estático. Para nuestro caso al ser el movimiento muy lento y sin golpes, este factor de seguridad, según el catálogo es igual a 1.

 C_0 = Coeficiente de carga estático.

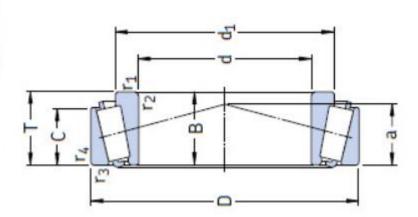
 P_0 = Carga admisible, la cual se calcula de la siguiente forma:

$$P_0 = X_0 * F_r + Y_0 * F_a$$

Donde:

Preparó:	Revisó:	Aprobó:	Página 79 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 $X_0 = \text{Factor de carga en la dirección radial al rodamiento. Este se encuentra en el catálogo del fabricante de rodamientos, en este caso se utiliza el proveedor SKF.$


 F_r = Fuerza aplicada en el sentido radial.

 $Y_0 =$ Factor de carga en la dirección axial del rodamiento. Este se encuentra en el catálogo del fabricante de rodamientos, en este caso se utiliza el proveedor SKF.

 F_a = Fuerza aplicada en el sentido axial del rodamiento.

$$P_0 = 1 * 4733 kg + 0.8 * 10210 kg$$

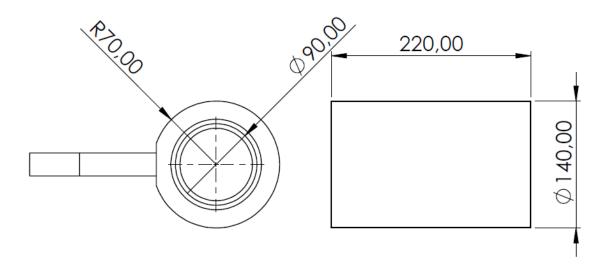
 $P_0 = 12901 kg = 126.4 KN$

Con el valor de carga admisible calculado anteriormente, se selecciona en el catálogo un rodamiento cónico de rodillos que posee las siguientes características.

	ensio cipal		básica	d de carga	límite	Velocidad Velocidad	Velocidad	Masa	Designación	Serie de dimensiones
d	D	Т	dinámica C	estática C ₀	de fatiga P _u	de refe- rencia	límite			según la ISO 355 (ABMA)
mm	í.		kN		kN	rpm		kg	_	21
50	80 80 80	20 20 24	60,5 60,5 69,3	88 88 102	9,65 9,65 11,4	6 000 6 000 6 000	8 000 8 000 8 000	0,37 0,37 0,45	32010 X/Q 32010 X/QCL7CVB026 33010/Q	3CC 3CC 2CE
	82 85	21,5 26	72,1 85,8	100 122	11 13,4	6 000 5 600	8 5 0 0 7 5 0 0	0,43 0,59	JLM 104948 AA/910 AA/Q 33110/Q	(LM 104900) 3CE
	90 90 90	21,75 24,75 28 28	76,5 82,5 106 106	91,5 100 140	10,4 11,4 16	5 600 5 600 5 300 5 300	7 500 7 500 8 000 8 000	0,54 0,61 0,75 0.75	30210 J2/Q 32210 J2/Q JM 205149/110/Q JM 205149/110 A/O	3DB 3DC (M 205100)
	90	32	114	160	18,3	5 000	7 0 0 0	0,90	33210/Q	3DE

Preparó:	Revisó:	Aprobó:	Página 80 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			l

d	d ₁	В	C	r _{1,2} min	r _{3,4} min	а	d _a máx	d _b mín	D _a min	D _{a,} máx	D _b	C _a ,	C _b	r _a máx	r _b máx	е	Y	Yo
mn	n						mm	(-		- 0
50	65,6 65,6 64,9	20 20 24	15,5 15,5 19	1 3 1	1 1 1	18 18 17	57 57 56	56 62 56	72 72 72	74 74 74	77 77 76	4 4	4,5 4,5 5	1 2,5 1	1 1 1	0,43 0,43 0,31	1,4 1,4 1,9	0,8 0,8 1,1
	65,1 67,9	21,5 26	17 20	3,6 1,5	1,2 1,5	16 20	57 57	62 57	74 74	76 78	78 82	4	4,5 6	3,4 1,5	1,2 1,5	0,3 0,4	2 1,5	1,1 0,8
	67,9 68,5 68,7	20 23 28 28	17 19 23 23	1,5 1,5 3	1,5 1,5 2,5	19 21 20 20	58 58 58	57 57 64	79 78 78 78	83 83 78 85	85 85 85	3 3 5 5	4,5 5,5 5	1,5 1,5 2,5 2,5	1,5 1,5 2	0,43 0,43 0,33	1,4 1,4 1,8	0,8 0,8 1
	70,7	32	24.5	1.5	1.5	23	57	57	77	83	87	5	7.5	1.5	1.5	0.4	1.5	0,8


Por lo que reemplazando en la ecuación anterior podemos verificar que el rodamiento es el adecuado.

$$P_0 = C_0 * S_0$$

126,4 KN \leq 160 KN * 1

Verifica.

Camisa porta rodamientos.

El cálculo de esta caja, se realizara suponiendo las siguientes medidas.

Se calculará la pieza al momento flector que el mástil le está produciendo, la distancia de cálculo es la distancia entre rodamientos más el ancho de un rodamiento.

$$Mf_{max} = \frac{S_a * l_r}{8}$$

Siendo:

 Mf_{max} : Momento flector máximo.

 S_a : Carga total del mástil.

 l_r : Longitud entre rodamientos más un ancho de rodamiento.

Preparó:	Revisó:	Aprobó:	Página 81 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì

$$Mf_{max} = \frac{13882,76 \, kg * \, 132 \, mm}{8}$$

$$Mf_{max} = 229065 kgmm$$

El momento de inercia es:

$$I = \frac{\pi}{64} \; (D_c^4 - d_c^4)$$

Siendo:

I: Momento de inercia de la camisa.

 D_c : Diámetro exterior de la camisa.

 d_c : Diámetro interior de la camisa.

$$I = \frac{\pi}{64} \left((140 \, mm)^4 - (90 \, mm)^4 \right)$$

$$I = 15636786 \, mm^4$$

Cálculo del módulo resistente:

$$W = \frac{I}{D_c/_2}$$

Siendo:

W: Modulo resistente de la camisa.

I : Momento de inercia de la camisa.

 D_c : Diámetro exterior de la camisa.

$$W = \frac{15636786 \, mm^4}{140 \, mm/_2}$$

$$W = 223382 \, mm^3$$

Por lo tanto la tensión máxima que sufre la camisa es de:

$$\sigma_{max} = \frac{Mf_{max}}{W}$$

$$\sigma_{max} = \frac{229064 \ kgmm}{223382 \ mm^3}$$

$$\sigma_{max} = 1,025 \ \frac{kg}{mm^2}$$

Verifica.

Preparó:	Revisó:	Aprobó:	Página 82 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

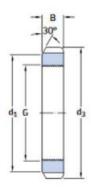
Selección de los retenes.

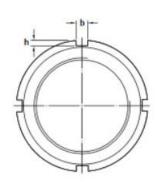
En cada borde de la caja porta rodamientos se pondrán retenes para impedir el ingreso de agua desde el exterior y a su vez mantener la grasa de lubricación dentro de la caja.

En la parte superior de la caja porta rodamientos irá alojado un retén LX 9961 y en la parte inferior el retén LX 5278.

A continuación se muestran los retenes seleccionados, los cuales son de la marca DBH.

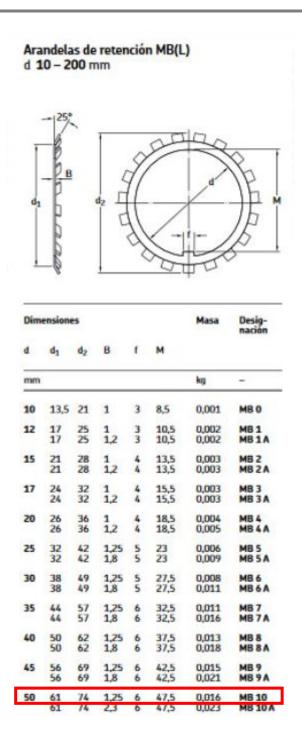
			3	Catálogo	general	de med	lidas DBH
		DIMENSIONE		Nº DBH	TIPO	GIRO	COMPUESTO
11/ 9/2	EJE	ALOJ.	ALTURA	n Don	11111	Cano.	COME GESTO
U.S.	45.00	60.00	8.00	9294	Lx	L	NBR
Kz		60.00	8.00	9905	Lx	Bidi	ACM
		60.00	9.00	8709	Lx-R	Н	ACM / FPM
92		60.00	10.00	5588	Lx	L	NBR / ACM
(United		60.00	10.00	8032	Lx-R	Н	ACM
Kx		61.00	10.00	5540	Mz	L	NBR
		63.00	7.50	9882	Lx-R	Н	FPM
m m		64.00	9.00	8048	Lx	L	NBR
97		65.00	5.00	8656	Mx	L	NBR
		65.00	8.00	5231	Lx	L	NER/MVQ/ACM/FPM
Lx		65.00	8.00	9287	Lx-R	AH	ACM
		85.00	12.00	6767	Lx	L	NBR
		100.00	10.00	9961	Lx	L	FPM


Retene	s Ordenad	os por ejes	Ž.			
	DIMENSIONE	~	Nº DBH	TIPO	GIRO	COMPUESTO
EJE	ALOJ.	ALTURA	M DON	IIIFU	GINU	COMPTUESTO
60.00	70.00	9.10	8084	A 155	L	NBR
	72.00	8.00	9444	Lx	L	NBR
	73.00	10.50	9684	A 156	Bidi	FPM
	74.00	8.00	9930	Mx	Bidi	ACM
	75.00	7.00	1185	Lx-R	Н	FPM
	75.00	8.00	5356	Lz	L	NBR / MVQ / FPM
	75.00	8.00	8154	Lx	L	NBR
	77.00	7,5/14	1141	A 373	L	NBR
	78.00	10.00	5358	Lz	L	NBR
	85.10	12.70	8700	Lz	L	NBR
	90.00	9.20	6649	A 099	L	NBR
	90.00	10.00	5278	Lx	L	NBR / MVQ
	90.00	10.00	5724	Lz	L	NBR
	90.00	12.00	8952	Lx	L	NBR

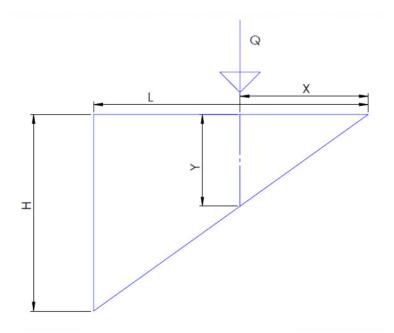

Preparó:	Revisó:	Aprobó:	Página 83 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

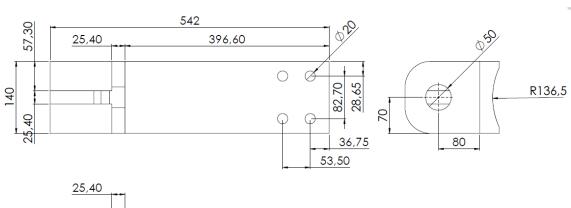
Tuerca de retención de rodamiento

El rodamiento superior del pivote debe asegurarse mediante una tuerca de fijación con una arandela de retención para que el mismo no posea ningún tipo de holgura y se mantenga rígidamente en su sitio, para esto se seleccionan los siguientes componentes del fabricante SKF.


Tuercas de fijación KM(L) con arandelas de retención M10×0,75 – M 200×3

Dimensiones						Capacidad de carga axial	Masa	Designacio Tuerca de fijación	nes Arandela de retención	Llave
G	d_1	d ₃	В	ь	h	estática			adecuada	
mm						kN	kg	-		
M 10×0,75	13,5	18	4	3	2	9,8	0,004	KM 0	MB 0	-
M 12×1	17	22	4	3	2	11,8	0,006	KM 1	MB1	HN1
M 15×1	21	25	5	4	2	14,6	0,009	KM 2	MB 2	HN 2
M 17×1	24	28	5	4	2	19,6	0,012	KM 3	MB3	HN3
M 20×1	26	32	6	4	2	24	0,025	KM 4	MB 4	HN 4
M 25×1,5	32	38	7	5	2	31,5	0,028	KM 5	MB 5	HN 5
M 30×1,5	38	45	7	5	2	36,5	0,039	KM 6	MB 6	HN 6
M 35×1,5	44	52	8	5	2	50	0,059	KM 7	MB 7	HN 7
M 40×1,5	50	58	9	6	2,5	62	0,078	KM 8	MB 8	HN 8
M 45×1,5	56	65	10	6	2,5	78	0,11	KM 9	MB 9	HN 9
M 50×1,5	61	70	11	6	2,5	91,5	0,14	KM 10	MB 10	HN 10


Preparó:	Revisó:	Aprobó:	Página 84 de 115	ì
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ì


Soporte de pivote.

Para este cálculo se utilizará el criterio citado en el libro del autor Dubbel, "Manual del constructor de máquinas" el cual es el siguiente:

Preparó:	Revisó:	Aprobó:	Página 85 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Para el cálculo se adoptan las siguientes dimensiones:

$$Y = X * \sqrt{\frac{3 * Q}{b * L * \sigma_{adm}}}$$

$$H = \sqrt{\frac{3 * L * Q}{b * \sigma_{adm}}}$$

Siendo:

b: Espesor de la planchuela.

Preparó:	Revisó:	Aprobó:	Página 86 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Q: Carga vertical del mástil.

 σ_{adm} : Tensión admisible del material de la planchuela para este caso se utilzará acero 1020 laminado en caliente.

$$Y = 86,66 \, mm * \sqrt{\frac{3 * 9476 \, kg}{25,4 \, mm * 166,66 \, mm * 18,6 \, \frac{kg}{mm^2}}}$$

$$Y = 52.07 mm$$

Verifica.

$$H = \sqrt{\frac{3 * 166,66 mm * 9476 kg}{25,4 * 18,6 \frac{kg}{mm^2}}}$$

$$H = 100 mm$$

Verifica.

Verificaciones.

Aplastamiento:

$$\sigma_{apl} = \frac{S_{ax}}{A_{apl}}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 S_{ax} : Tensión del mástil en dirección axial.

 A_{apl} : Área de aplastamiento, la cual se calcula a continuación.

 $A_{apl} = Ancho \ planchuela * Díametro \ del \ perno$

$$A_{apl} = 25.4 \ mm * 50 \ mm$$

 $A_{apl} = 1270 \ mm^2$

$$\sigma_{apl} = \frac{10210 \ kg}{1270 \ mm^2}$$

$$\sigma_{apl} = 8.04 \ \frac{kg}{mm^2}$$

Preparó:	Revisó:	Aprobó:	Página 87 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Tomando el valor de tensión admisible al aplastamiento del acero 1020 LC, vemos que verifica.

$$\sigma_{adm \, apl} = 37.2 \, \frac{kg}{mm^2} \geq \, \sigma_{apl} = 8.04 \, \frac{kg}{mm^2}$$

Soldadura:

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks : Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a = 0.7 * 25.4 mm$$

$$a = 17,78 \, mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm} = 18,6 \; \frac{kg}{mm^2} \; acero \; SAE \; 1020$$

$$\rho_{adm} = 0.65 * 18.6 \frac{kg}{mm^2}$$

Preparó:		Revisó:	Aprobó:	Página 88 de 115
La	apalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\rho_{adm} = 12,09 \; \frac{kg}{mm^2}$$

Reemplazando:

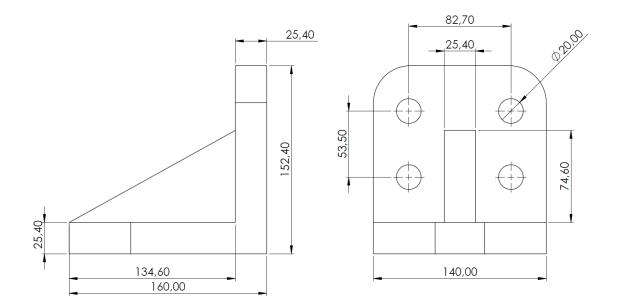
$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{13882,76 \, kg}{17,78 \, mm * 12,09 \, \frac{kg}{mm^2}}$$

$$lu = 64,58 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 64,58 \ mm + 2 * 17,78 \ mm$
 $lt = 100 \ mm$


Perímetro disponible:

$$Pr = 140 \ mm + 57,3 \ mm + 57,3 \ mm + 120 \ mm + 120 \ mm$$
 $Pr = 494,6 \ mm \ verifica$

Soporte de pivote desmontable.

Para este cálculo solo se realizara el dimensionamiento de los tornillos de fijación de este al soporte, las medidas se tomarán iguales a la pieza del soporte. Se adopta colocar 4 tornillos de fijación, las medidas adoptadas para el soporte desmontable son las siguientes:

Preparó:	Revisó:	Aprobó:	Página 89 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

El cálculo de los pernos se calculan primeramente a tracción dando como resultado:.

$$A_{cr} = \frac{S_s/2}{\sigma_{adm}}$$

Siendo:

 A_{cr} : Área de material mínimo necesario para resistir la tención actuante.

 S_s : Carga actuante en el tensor.

 σ_{adm} : Tensión admisible del material de los tornillos, la cual se calcula a continuación tomando como material un acero St 38 -13.

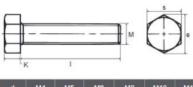
$$\sigma_{adm} = 0.6 * \sigma_f$$

$$\sigma_{adm} = 0.6 * 21 \frac{kg}{mm^2}$$

$$\sigma_{adm} = 12.6 \frac{kg}{mm^2}$$

Sustituyendo:

$$A_{cr} = \frac{4601.8 \, kg}{12.6 \, \frac{kg}{mm^2}}$$


$$A_{cr} = 365,22 \ mm^2$$

Dividiendo esta área por la cantidad de tornillos da como resultado un diámetro de:

$$D_{tor} = 10,78 \ mm$$

Se adoptara tornillos M20 x 80 los cuales se muestran a continuación, estos se seleccionan del proveedor Echebarria Suministros.

Preparó:	Revisó:	Aprobó:	Página 90 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24
s	7	8	10	13	17	19	22	24	27	30	32	36
k	2,8	3,5	4	5,3	6,4	7,5	8,8	10	11,5	12,5	14	15
Paso	0,7	0,8	1	1,25	1,50	1,75	2	2	2,5	2,5	2,5	3
е	7,66	8,79	11,05	14,38	18,90	21,10	24,49	26,75	30,14	33,53	35,72	39,98

Calidad 6.8 Ref. Catálogo	Calidad 8.8 Ref . Catálogo	Calidad Inox. Ref. Catálogo	Medidas d x L
13010127	13010288	13010449	M18x80
13010128	13010289	13010450	M18x90
13010129	13010290	13010451	M18x100
13010130	13010291	13010452	M20x30
13010131	13010292	13010453	M20x35
13010132	13010293	13010454	M20x40
13010133	13010294	13010455	M20x45
13010134	13010295	13010456	M20x50
13010135	13010296	13010457	M20x55
13010136	13010297	13010458	M20x60
13010137	13010298	13010459	M20x65
13010138	13010299	13010460	M20x70
13010139	13010300	13010461	M20x80
13010140	13010301	13010462	M20x90
13010141	13010302	13010463	M20x100
13010142	13010303	13010464	M22x40
13010143	13010304	13010465	M22x45
13010144	13010305	13010466	M22x50

Verificaciones.

Corte.

Cuando la grúa se encuentre en la posición de 0 y 180 grados, los tornillos estarán sometidos principalmente a corte, este esfuerzo se calcula a continuación.

$$\tau_{max} = \frac{S_s/2}{A_{tor} * 4}$$

Siendo:

 A_{tor} : Área de material mínimo necesario para resistir la tención actuante la cual se calcula a continuación.

$$A_{tor} = \frac{\pi * D_{util}^2}{4}$$
 $A_{tor} = \frac{\pi * 16,48 \, mm^2}{4}$ $A_{tor} = 213,3 \, mm^2$

Preparó:	Revisó:	Aprobó:	Página 91 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

 S_s : Carga actuante en el tensor.

 τ_{max} : Tensión actuante en el tornillo.

$$\tau_{max} = \frac{S_s/2}{A_{tor} * 4}$$

$$\tau_{max} = \frac{9203,6 \ kg/2}{213,3 \ mm^2 * 4}$$

$$\tau_{max} = 5,39 \ \frac{kg}{mm^2}$$

La tensión admisible del material es el siguiente:

$$au_{adm} = 0.5 * \sigma_{adm}$$

$$au_{adm} = 0.5 * 12.6 \frac{kg}{mm^2}$$

$$au_{adm} = 6.3 \frac{kg}{mm^2}$$

$$\tau_{adm} = 6.3 \frac{kg}{mm^2} \ge \tau_{max} = 5.39 \frac{kg}{mm^2}$$

Verifica.

Aplastamiento:

$$\sigma_{apl} = \frac{S_s/2}{A_{apl} * 4}$$

Siendo:

 σ_{apl} : Tensión de aplastamiento.

 S_s : Tensión del tensor.

 A_{avl} : Área de aplastamiento, la cual se calcula a continuación.

 $A_{apl} = Profundidad de la rosca * Díametro util del tornillo$

$$A_{apl} = 47,63 \text{ } mm * 16,48 \text{ } mm$$

 $A_{apl} = 784,94 \text{ } mm^2$

$$\sigma_{apl} = \frac{S_s/2}{A_{apl} * 4}$$

Preparó:	Revisó:	Aprobó:	Página 92 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

$$\sigma_{apl} = \frac{9203,6 \ kg/2}{784,94 \ mm^2 * 4}$$
$$\sigma_{apl} = 23,45 \ \frac{kg}{mm^2}$$

Tomando el valor de tensión admisible al aplastamiento del acero St 38 -13, vemos que verifica.

$$\sigma_{adm \, apl} = 25.2 \, \frac{kg}{mm^2} \ge \sigma_{apl} = 23.45 \, \frac{kg}{mm^2}$$

Verifica.

Instalación eléctrica.

El sistema cuenta con una potencia instalada que se resume en la siguiente tabla:

Descripción	Cantidad	Potencia unitario	Potencia total	Corriente
Polipasto	1	5,6 kW	5,6 kW	8,5 A
Luminarias LED	2	0,1 kW	0,2 kW	0,9 A

Para la protección de los artefactos colocados y la seguridad de los operarios se colocan los siguientes sistemas de protección.

Llave termomagnetica.

Se colocarán 2 llaves Termomagneticas, una dedicada a la protección del polipasto y otra destinada a las luminarias, las llaves seleccionadas se muestran a continuación.

Llave termomagnetica del polipasto.

Preparó:	Revisó:	Aprobó:	Página 93 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Principal

Aplicación del dispositivo	Distribución
Distancia	Acti 9
Nombre del producto	C60
Tipo de producto o componente	Disyuntor en miniatura
Número de polos	3P
Número de polos protegidos	3
Corriente nominal	10 A
Tipo de red	CA
Tipo de unidad de control	Térmico-magnético
Código de curva de disparo ins	D
Poder de corte	6 kA - 440 V CA 50/60 Hz 10 kA - 415 V CA 50/60 Hz 20 kA - 240 V CA 50/60 Hz 30 kA - <= 125 V CC 6000 A conforme a IEC 60898-1 - 400 V CA 50/60 Hz

Llave termomagnetica de las luminarias.

Preparó:	Revisó:	Aprobó:	Página 94 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

D.	1100		~	$\overline{}$
-			•	-
		\sim	_	•

Aplicación del dispositivo	Distribución	
Distancia	Acti 9	
Nombre del producto	C60	
Tipo de producto o componente	Disyuntor en miniatura	
Número de polos	2P	
Número de polos protegidos	2	
Corriente nominal	2 A	
Tipo de red	CA	
Tipo de unidad de control	Térmico-magnético	
Código de curva de disparo ins	С	
Poder de corte	6 kA - 440 V CA 50/60 Hz 10 kA - 415 V CA 50/60 Hz 20 kA - 240 V CA 50/60 Hz 20 kA - <= 125 V CC 6000 A conforme a IEC 60898-1 - 400 V CA 50/60 Hz	

Llave disyuntora.

Se colocará una llave disyuntora para la protección de los operarios, la llave seleccionada se muestra a continuación.

Principal

Distancia	Acti 9
Nombre del producto	Acti 9 iID
Tipo de producto o componente	Disyuntor de corriente residual (RCCB)
Modelo de dispositivo	IID
Número de polos	4P
Posición de polo de neutro	Izquierda
Corriente nominal	25 A
Tipo de red	CA
Sensibilidad a la fuga a tierra	30 mA
Retraso tiempo protec. pérdida a tierra	Instantáneo
Prot. c. fuga a tier.(tabular)	Tipo A-SI

Preparó:	Revisó:	Aprobó:	Página 95 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cable.

Como la instalación eléctrica se encuentra expuesta a las inundaciones se decidió colocar cables subterráneos. El cable seleccionado es de la marca Prysmian el cual se muestra a continuación.

Se selecciona un conductor trifásico de 6 mm² para la entrada de potencia al tablero y a su vez, dicho conductor se utiliza para alimentar el polipasto. Para las luminarias se selecciona un cable de 2,5 mm², más que suficiente para satisfacer la carga. A continuación se muestran los conductores seleccionados junto con la corriente admisible de ellos y la cantidad de metros necesarios.

Preparó:	Revisó:	Aprobó:	Página 96 de 115	ı
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			ı

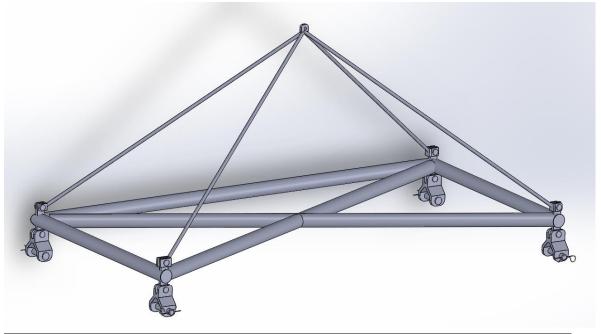
Tipo de conductor	Metros necesarios
Sintenax Valio 2 x 2,5 mm ²	8 m
Sintenax Valio 3 x 6 mm ²	15 m

Sección nominal	Método E Bandeja perforada		
mm²	(5)	(6)	
1,5	19	16	
2,5	26	22	
4	35	30	
6	44	37	

Sección nominal	Método E Bandeja perforada		
		<u></u>	
mm²	(5)	(6) 16	
2,5	26	22	
4	35	30	
6	44	37	

Preparó:		Revisó:	Aprobó:	Página 97 de 115
Lanalma Guillermo: Kautz	Diego	GP = 01/10/2018		

Caja estanca.


Como el sistema estará sometido a inundaciones, es necesario colocar cajas estancas que resistan al ingreso de agua, para esto se selecciona la siguiente caja.

Descripción	Proveedor	Dimensiones	Grado
Gabinete Polipropileno	Electrocity	207 x 284 x 120 mm	IP 67

Cálculo estructural de la percha de izaje.

Se propone calcular la percha de izaje con caños ASTM A53 de 5" Schedule 40, a continuación se realizaran los cálculos para la verificación de esta selección.

Preparó:	Revisó:	Aprobó:	Página 98 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Los cálculos se llevarán a cabo siguiendo los criterios del "Manual del constructor de máquinas" del autor Dubbel.

Cálculo del momento de la percha.

El momento de inercia de la percha al ser un único tramo, se calcula de la siguiente forma.

$$I = \frac{\pi}{64} \; (D_{pe}^{\ 4} - d_{pe}^{4})$$

Siendo:

I: Momento de inercia del puntal.

 D_{pe} : Diámetro exterior de la percha.

 d_{pe} : Diámetro interior de la percha.

$$I = \frac{\pi}{64} \left((11,43 \text{ cm})^4 - (10,226 \text{ cm})^4 \right)$$

$$I = 301,05 cm^4$$

Cálculo del módulo resistente de la percha.

$$W = \frac{I}{D_{pe}/2}$$

Siendo:

W: Modulo resistente de la percha.

I: Momento de inercia de la percha.

 D_{pe} : Diámetro exterior de la percha.

$$W = \frac{301,05 \, cm^4}{11,43 \, cm/_2}$$

$$W = 52,67 cm^3$$

Cálculo del radio de giro de la percha.

Una vez calculado el momento de inercia y calculando el área transversal de material del caño, calculamos el radio de giro del puntal.

$$i = \sqrt{\frac{I}{A}}$$

Preparó:	Revisó:	Aprobó:	Página 99 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Siendo:

i: Radio de giro.

I: Momento de inercia de la percha.

A: Área de la sección transversal del caño de la percha el cual se calcula a continuación.

$$A = \frac{\pi}{4} (D_{pe}^2 - d_{pe}^2)$$

$$A = \frac{\pi}{4} ((11,43 \text{ cm})^2 - (10,226 \text{ cm})^2)$$

$$A = 20,478 \text{ cm}^2$$

Sustituyendo:

$$i = \sqrt{\frac{I}{A}}$$

$$i = \sqrt{\frac{301,05 \text{ cm}^4}{20,478 \text{ cm}^2}}$$

$$i = 3.83 \text{ cm}$$

Cálculo del coeficiente de esbeltez.

Para el cálculo de pandeo de la estructura se utilizara el criterio del coeficiente de pandeo planteado por Dubbel en su libro "Manual del constructor de máquinas".

$$\lambda = \frac{I_{pe}}{i}$$

Siendo:

 λ : Coeficiente de esbeltez.

 I_{pe} : Largo de la percha.

i: Radio de giro de la percha.

$$\lambda = \frac{4 m}{0,0383 m}$$
$$\lambda = \mathbf{104,4}$$

Coeficiente de pandeo.

De la tabla de factores de pandeo del "Manual del constructor de máquinas" del autor Dubbel, entrando con el acero st 37 y con el coeficiente de esbeltez se obtiene el coeficiente de pandeo que se expresa a continuación:

$$\omega = 2,56$$

Preparó:	Revisó:	Aprobó:	Página 100 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Cálculo de las excentricidades.

En esta sección se calculará mediante criterios del "Manual del constructor de máquinas" del autor Dubbel la máxima excentricidad que puede tener la estructura por errores en el montaje o bien en la conformación de los materiales que la constituyen. Dicha excentricidad nos da una idea de la desalineación una vez montadas las piezas.

$$e_1 = \frac{l_{pe}}{500} + \frac{D_{pe}}{40}$$

Siendo:

 e_1 : Excentricidad debido a imperfecciones del laminado.

 l_{pe} : Largo de la percha.

 D_{pe} : Diámetro exterior de la percha.

$$e_1 = \frac{4 \, m}{500} + \frac{0,1143 \, m}{40}$$

$$e_1 = 10,85 mm$$

$$e_2 = \frac{l_{pe}}{100} + \frac{D_{pe}}{40}$$

Siendo:

e₂: Excentricidad debido a defectos de montaje.

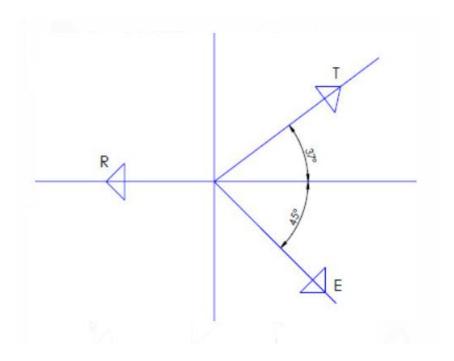
 l_{pe} : Largo de la percha.

 D_{pe} : Diámetro exterior de la percha.

$$e_2 = \frac{4\,m}{100} + \frac{0,1143\,m}{40}$$

$$e_2 = 42,85 \, mm$$

Por último se tiene en cuenta el caso más desfavorable en el cual las dos excentricidades máximas se sumen dando como resultado:


$$e = e_1 + e_2$$

 $e = 10,85 mm + 42,85 mm$
 $e = 53,707 mm$

Preparó:	Revisó:	Aprobó:	Página 101 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Esfuerzos actuantes sobre la percha.

En esta sección se utilizaran los valores anteriormente calculados junto con los valores de carga máxima afectados por el coeficiente de seguridad, para determinar la carga total a la cual esta solicitado la percha.

Cálculo del esfuerzo axial sobre la percha.

Del analisis de fuersas que se mostró anteriormente se deducen las sifuientes ecuaciones:

$$T * sen 37 = E * sen 45$$

$$T = \frac{E * sen 45}{sen 37}$$

$$T = \frac{2500 kg * sen 45}{sen 37}$$

$$T = 2937, 4 kg$$

$$R = T * cos 37 + E * cos 45$$

$$R = 2937,4 kg * cos 37 + 2500 kg * cos 45$$

$$R = 4113,7 kg$$

Preparó:	Revisó:	Aprobó:	Página 102 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

La fuerza R calculada es la encargada de solicitar la estructura de la percha de izaje mientras que la fuerza T es la presente en los cables y se utilizará más adelante para seleccionar los mismos.

Cálculo de la tensión máxima sobre la percha.

Sumando la carga de pandeo y las por excentricidades, se obtiene el sigma necesario que debe tener el material que conforme la percha.

$$\sigma_{max} = \frac{R * \omega}{A} + \frac{R * e}{W}$$

Siendo:

 σ_{max} : Tensión máxima que posee la percha.

R: Esfuerzo axial total de la percha.

 ω : Coeficiente de pandeo.

A : Área de la sección transversal del caño.

e: Excentricidad de la percha.

$$\sigma_{max} = \frac{4113,7 \; kg * 2,56}{20,478 \; cm^2} + \frac{4113,7 \; kg * 5,3707 \; cm}{52,67 \; cm^3}$$

$$\sigma_{max} = 933,67 \frac{kg}{cm^2}$$

<u>Cálculo de pandeo según fórmula de Euler para la percha.</u>

Se calculará a su vez la resistencia en kilogramos que posee la percha por medio de la fórmula de Euler.

$$P_{pandeo} = \frac{\pi^2 * E * I}{l_{ne}^2}$$

Siendo:

 P_{pandeo} : Carga máxima de pandeo.

E : Módulo de Young del material.

I: Momento de inercia.

 l_{pe} : Longitud de la percha.

Preparó:	Revisó:	Aprobó:	Página 103 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

$$P_{pandeo} = \frac{\pi^2 * 2074055,26 \frac{kg}{cm^2} * 301,05 cm^4}{(400 cm)^2}$$

$$P_{pandeo} = 38515,7 kg$$

Cálculo de tenciones admisibles para el acero ASTM A53 Gr A.

$$\sigma_{fl} = 2151, 6 \frac{kg}{cm^2}$$

Según el criterio de los autores Mesny y Cosme en su libro "Elementos de máquinas: métodos modernos de cálculo y diseño".

$$\sigma_{adm} = 0.6 * \sigma_{fl}$$

$$\sigma_{adm} = 0.6 * 2151.6 \frac{kg}{cm^2}$$

$$\sigma_{adm} = 1291 \frac{kg}{cm^2}$$

Verificación de tenciones para el puntal de acero ASTM A53 Gr A.

$$\sigma_{adm} \geq \sigma_{max}$$

$$\sigma_{adm} \geq 933,67 \frac{kg}{cm^2}$$

$$1291 \frac{kg}{cm^2} \geq 933,67 \frac{kg}{cm^2}$$

Verifica

$$P_{pandeo} \ge P_{total}$$
 $P_{pandeo} \ge 4113,7 \, kg$ $38515,7 \, kg \ge 4113,7 kg$

Verifica

Soldadura en la percha.

Esta soldadura corresponde a la unión de tramos por la que está compuesta la percha.

$$lu = \frac{P}{a * \rho}$$

Preparó:	Revisó:	Aprobó:	Página 104 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Siendo:

P: Carga actuante sobre la soldadura.

a : Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

ks : Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{puntal} = 0.7 * 6.02 mm$$

$$a_{puntal} = 4,214 mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm} = 12,91 \, \frac{kg}{mm^2} \, acero \, ASTM \, A53$$

$$\rho_{adm} = 0.65 * 12.91 \frac{kg}{mm^2}$$

$$\rho_{adm} = 8.4 \; \frac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

Preparó:	Revisó:	Aprobó:	Página 105 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

$$lu = \frac{4113.7 \ kg}{4,214 \ mm * 8,4 \ \frac{kg}{mm^2}}$$
$$lu = 116,21 \ mm$$

$$lt = lu + 2 * a$$

 $lt = 116,21 \, mm + 2 * 4,214 \, mm$
 $lt = 124,64 \, mm$

Perímetro disponible:

$$\Pr = \pi * D_{pu}$$

$$\Pr = \pi * 114,3 mm$$

$$\Pr = 359 mm \quad verifica$$

Herraje ER7 – Sujeciones en la percha.

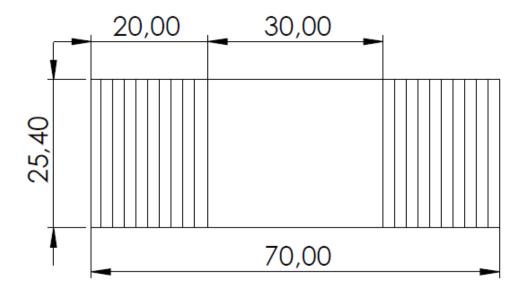
Este herraje se encarga de unir las eslingas con la percha y también en su lado opuesto se sujeta el cable tensor de la percha.

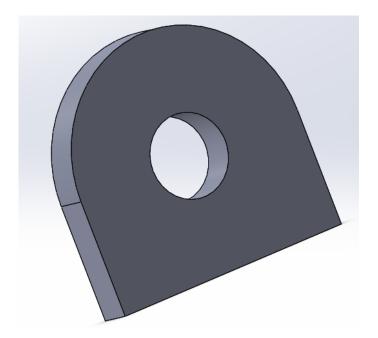
$$A_{cr} = \frac{T}{\sigma_{adm}}$$

Siendo:

 $A_{cr}:$ Área de material mínimo necesario para resistir la tención actuante.

T: Carga en los cables de la percha.


 σ_{adm} : Tensión admisible del material de la planchuela.


$$A_{cr} = \frac{2937,4 \, kg}{18,6 \, \frac{kg}{mm^2}}$$

$$A_{cr} = 159{,}92 \; mm^2$$

Se adoptaran las siguientes dimensiones, las cuales satisfacen lo requerido por el esfuerzo actuante.

Preparó:	Revisó:	Aprobó:	Página 106 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

Verificaciones.

Soldadura:

Se realizará la verificación de la longitud de soldadura entre el herraje y el mástil.

$$lu = \frac{P}{a * \rho}$$

Siendo:

P: Carga actuante sobre la soldadura.

a: Espesor de la soldadura, la cual se calcula como:

$$a = ks * e$$

Donde:

Preparó:	Revisó:	Aprobó:	Página 107 de 115
Lanalma Guillermo: Kautz Diego	GP = 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

ks: Coeficiente se adopta según la bibliografía como ks = 0,7.

e: Espesor de la parte más delgada a soldar.

$$a_{gancho} = 0.7 * 6.02 mm$$
$$a_{gancho} = 4.214 mm$$

lu: Longitud útil de la soldadura, la cual se calcula de la siguiente manera:

$$lu = lt - 2 * a$$

Donde:

lt: Longitud total a soldar.

 ρ : Tensión admisible de la soldadura, la cual se calcula a continuación:

$$\rho = Kc * \sigma_{adm}$$

Siendo:

Kc: Coeficiente que depende del tipo de soldadura y de los esfuerzos a la cual está sometida la soldadura, en nuestro caso al ser soldadura en ángulo se adopta Kc = 0.65.

 σ_{adm} : Tensión admisible del material menos resistente, la cual toma el valor de:

$$\sigma_{adm}=12{,}91~\frac{kg}{mm^2}~acero~ASTM~A53$$

$$ho_{adm}=0{,}65*~12{,}91~\frac{kg}{mm^2}$$

$$ho_{adm}=8{,}4~\frac{kg}{mm^2}$$

Reemplazando:

$$lu = \frac{P}{a * \rho}$$

$$lu = \frac{2937.4 \, kg}{4,214 \, mm * 8.4 \, \frac{kg}{mm^2}}$$

$$lu = 82,98 \, mm$$

$$lt = lu + 2 * a$$

 $lt = 82,98 mm + 2 * 4,214 mm$

$$lt = 91,41 mm$$

Preparó:	Revisó:	Aprobó:	Página 108 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Perímetro disponible:

$$Pr = 2 * (ancho + largo)$$
 $Pr = 2 * (25,4 mm + 70 mm)$
 $Pr = 190,8 mm \ verifica$

Selección de cable y componentes de la percha.

Para la selección de cable, herrajes y eslingas correspondientes a la percha, serán utilizados el catálogo de Cables de acero para uso general del fabricante IPH, el catálogo General de productos del fabricante Crosby y el catálogo de productos de la marca Strongloop.

Cables.

Para la selección del cable se considerará el criterio del proveedor, el cual establece lo siguiente:

Carga que puede aplicarse sobre un cable

Como regla básica, ampliamente utilizada en la industria del izaje general, la carga que puede aplicarse sobre un cable es la carga de tabla (CMR) dividida por 5. Más exactamente, la carga segura de trabajo se determina dividiendo el valor de tabla (CMR) por un factor de seguridad (FS) que varía dependiendo del equipamiento o aplicación. A modo informativo:

- · Cables estáticos: 3 a 4
- Elevación de cargas en general, grúas, eslingas, etc.: 5 a 6
- Casos con altas temperaturas u otras condiciones extremas: 8 a 12
- Elevación de personas: 12 a 22

Este factor lo adopta el diseñador del equipo o el usuario, para lo cual debe tener en cuenta recomendaciones del fabricante del equipo y del cable, así como normas relacionadas específicas.

Por lo que para nuestro calculo adoptaremos un coeficiente de seguridad de 5 y la reducción que proporciona la pasteca de 6:1, dando como resultado.

$$T_{seg} = T * 5$$
 $T_{seg} = 2937.4 kg * 5$
 $T_{seg} = 14687 kg$

Preparó:	Revisó:	Aprobó:	Página 109 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

G-1805A - Ingeniería y diseño de grúa para elevar barcos. MEMORIA DE CÁLCULO.

Por lo que se adopta el cable inmediato superior al valor calculado, el cual es el siguiente:

AFS Carga mínima de rotura

Diámetro	Diámetro Masa aprox.		ido 70	Grado 1960		
[mm]	[kg/m]	[kN]	[t]	[kN]	[t]	
3,00	0,032	4,9	0,5	5,8	0,6	
5,00	0,087	13,6	1,4	16,2	1,7	
8,00	0,230	37,4	3,8	41,2	4,2	
9,50	0,320	52,7	5,4	58,8	6,0	
11,00	0,433	70,7	7,2	78,4	8,0	
13,00	0,607	98,7	10,1	109	11,1	
14,00	0,704	114	11,6	127	13,0	
16,00	0,919	150	15,3	166	16,9	
19,00	1,300	211	21,5	233	23,8	
22,00	1,740	283	28,9	313	31,9	
26,00	2,430	395	40,3	437	44,6	
28,00	2,810	458	46,7	507	51,7	
32,00	3,680	598	61,0	662	67,6	
35,00	4,400	716	73,1	792	80,8	
38,00	5,180	843	86,0	934	95,3	
44,00	6,950	1130	115	1250	128	
51,00	9,340	1520	155	168	171	

Preparó:	Revisó:	Aprobó:	Página 110 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

Grampas

Y del fabricante Crosby se seleccionan las grampas de sujeción según la recomendación de este.

G-450 Grapas Crosby[®], Clip

Todas las grapas Crosby de tamaño 1/4" y mayores cumplen con la Especificacion Federal FF-C-450 TYPE I CLASE I, excepto por aquellas provisiones exigidas por el contratista. Para mayores informaciones ver página 452.

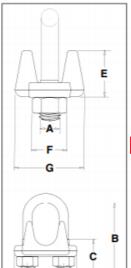
- Cada base lleva forjada el código de identificación del producto (PIC) para rastrear el material, el nombre Crosby o "CG" y el tamaño.
- Basado en la carga de ruptura del cable de acero indicado en el catálogo, las grapas Crosby tienen una eficiencia del 80% para tamaños de 1/8" a 7/8", y 90% para tamaños de 1" hasta 3 ½".
- La grapa en su totalidad es galvanizada para resistir la acción corrosiva y oxidante.
- Las grapas de 1/8" a 2½" y 3" (3mm a 65mm y 75-78mm) tienen bases forjadas.
- Todas las grapas se empaquetan y etiquetan individualmente con las instrucciones de aplicación y las advertencias apropiadas.
- Las grapas hasta 1½" tienen rosca rolada.
- Crosby Cumple o excede todos los requerimientos de ASME B30.26 incluyendo identificación, ductilidad, factor de diseño, carga de prueba y requisitos de temperatura. Además, estas grapas para cable cumplen con otros requisitos críticos de rendimiento que incluyen índices de fatiga, propiedades de impacto, y capacidad de rastrear el material que no han sido abordados por ASME B30.26.
- Busque la marca Red-U-Bolt[®], su garantía de Auténticas Grapas Crosby.

 Cuando se requieran tres o más grapas, coloque las grapas adicionales espaciadas

a la misma distancia entre las dos primeras -tense el cable flojo- y apriete

Figura 3

uniformemente las tuercas en cada perno en U con torquímetro, alternando de una tuerca a la otra hasta lograr el valor de torque recomendado. (Ver Figura 3).


Tabla 1								
Tamaño grapa (pulg.)	Tamaño cable (pulg.)	No. mínimo de grapas	Cantidad de cable a doblar en pulgadas	*Torque en pies-lb				
1/8	1/8	2	3-1/4	4.5				
3/16	3/16	2	3-3/4	7.5				
1/4	1/4	2	4-3/4	15				
5/16	5/16	2	5-1/4	30				
3/8	3/8	2	6-1/2	45				
7/16	7/16	2	7	65				
1/2	1/2	3	11-1/2	65				
9/16	9/16	3	12	95				
5/8	5/8	3	12	95				
3/4	3/4	4	18	130				
7/8	7/8	4	19	225				
1	1	5	26	225				
1-1/8	1-1/8	6	34	225				
1-1/4	1-1/4	7 44		360				
1-3/8	1-3/8	7	44	360				
1-1/2	1-1/2	8	54	360				
1-5/8	1-5/8	8	58	430				
1-3/4	1-3/4	8	61	590				
2	2	8	71	750				
2-1/4	2-1/4	8	73	750				
2-1/2	2-1/2	9	84	750				
2-3/4	2-3/4	10	100	750				
3	3	10	106	1200				
3-1/2	3-1/2	12	149	1200				
Ci an utiliza una polar para deblar al pebla, adicionar una crosa más								

Si se utiliza una polea para doblar el cable, adicionar una grapa más. Ver figura 4.

Si se utiliza un mayor número de grapas que las indicadas en las tablas, se debe incrementar proporcionalmente la longitud del cable que se dobla.

*Los valores de torque se indican para cables limpios, secos y sin lubricación.

Preparó:	Revisó:	Aprobó:	Página 111 de 115	
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018			

G-450 Grapas Crosby® -

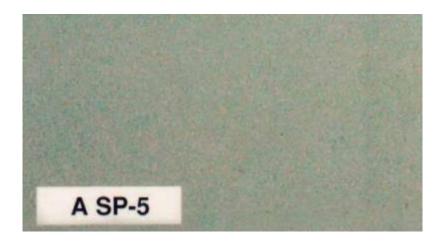
Tamañ	o Cable	G-450 No. de	Cantidad en Pag.	Peso por 100					siones Ig.)			
(pulg.)	(mm)	Parte	Estandar	(lbs.)	Α	В	С	D	E	F	G	Н
1/8*	3-4*	1010015	100	6	.22	.72	.44	.47	.37	.38	.81	.99
3/16*	5*	1010033	100	10	.25	.97	.56	.59	.50	.44	.94	1.18
1/4	6-7	1010051	100	19	.31	1.03	.50	.75	.66	.56	1.19	1.43
5/16	8	1010079	100	28	.38	1.38	.75	.88	.73	.69	1.31	1.66
3/8	9-10	1010097	100	48	.44	1.50	.75	1.00	.91	.75	1.63	1.94
7/16	11	1010113	50	78	.50	1.88	1.00	1.19	1.13	.88	1.91	2.28
1/2	12-13	1010131	50	80	.50	1.88	1.00	1.19	1.13	.88	1.91	2.28
9/16	14-15	1010159	50	109	.56	2.25	1.25	1.31	1.34	.94	2.06	2.50
5/8	16	1010177	50	110	.56	2.25	1.25	1.31	1.34	.94	2.06	2.50
3/4	18-20	1010195	25	142	.62	2.75	1.44	1.50	1.39	1.06	2.25	2.84
7/8	22	1010211	25	212	.75	3.12	1.62	1.75	1.58	1.25	2.44	3.16
1	24-26	1010239	10	252	.75	3.50	1.81	1.88	1.77	1.25	2.63	3.47
1-1/8	28-30	1010257	10	283	.75	3.88	2.00	2.00	1.91	1.25	2.81	3.59
1-1/4	32-34	1010275	10	438	.88	4.44	2.22	2.34	2.17	1.44	3.13	4.13
1-3/8	36	1010293	10	442	.88	4.44	2.22	2.34	2.31	1.44	3.13	4.19
1-1/2	38	1010319	10	544	.88	4.94	2.38	2.59	2.44	1.44	3.41	4.44
1-5/8	41-42	1010337	granel	704	1.00	5.31	2.62	2.75	2.66	1.63	3.63	4.75
1-3/4	44-46	1010355	granel	934	1.13	5.75	2.75	3.06	2.92	1.81	3.81	5.24
2	48-52	1010373	granel	1300	1.25	6.44	3.00	3.38	3.03	2.00	4.44	5.88
2-1/4	56-58	1010391	granel	1600	1.25	7.13	3.19	3.88	3.19	2.00	4.56	6.38
2-1/2	62-65	1010417	granel	1900	1.25	7.69	3.44	4.13	3.69	2.00	4.69	6.63
** 2-3/4	** 68-72	1010435	granel	2300	1.25	8.31	3.56	4.38	4.88	2.00	5.00	6.88
3	75-78	1010453	granel	3100	1.50	9.19	3.88	4.75	4.44	2.38	5.31	7.61
** 3-1/2	** 85-90	1010426	granel	4000	1.50	10.75	4.50	5.50	6.00	2.38	6.19	8.38

^{*}Pernos en U y tuercas electroenchapados. ** La base de la de 2-3/4" y 3-1/2" es de acero fundido.

Eslingas

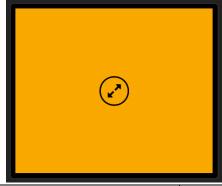
Para las eslingas se seleccionarán las siguientes, estas son de un ancho de 100 mm, color gris y de dos capas, que cada una de las eslingas puede soportar 11,2 toneladas en posición de U:

Preparó:	Revisó:	Aprobó:	Página 112 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		


Anc	ho		Laure			Carga L	ímite Tral	bajo	m ton																						
mm	Inch Cold	Color	Color	Ojo Cm	Nº Capas	Axial	Lazo	Ü	60º	8 45º	30º																				
				1	1	1	1	1	1	1																					
25	1	eta	20	2	1,4	1,1	2,8	2,5	2,0	1,4																					
23	1	Violeta	30	3	2,1	1,7	4,2	3,8	2,9	2,1																					
		1		4	2,8	2,2	5,6	5,0	3,9	2,8																					
				1	1,4	1,1	2,8	2,5	2,0	1,4																					
FO	3	age	-	2	2,8	2,2	5,6	5,0	3,9	2,8																					
50	2	Verde	30	3	4,2	3,4	8,4	7,6	5,9	4,2																					
				4	5,6	4,5	11,2	10,1	7,8	5,6																					
		_		1	2,1	1,7	4,2	3,8	2,9	2,1																					
7.	2	Amarillo		2	4,2	3,4	8,4	7,6	5,9	4,2																					
75	3		mai	mai	mai	mai	mai	mai	mai	mai	mai	mai	mai	mai	mail	mail	mai	ma	ma	ma	mai	ma	mai	g 30	30	3	6,3	5,0	12,6	11,3	8,8
		Ā		4	8,4	6,7	16,8	15,1	11,8	8,4																					
				1	2,8	2,2	5,6	5,0	3,9	2,8																					
400		vs.	10.754	2	5,6	4,5	11,2	10,1	7,8	5,6																					
100	4	Gris	40	3	8,4	6,7	16,8	15,1	11,8	8,4																					
			7 20	4	11,2	9,0	22,4	20,2	15,7	11,2																					
				1	3,5	2,8	7,0	6,3	4,9	3,5																					
135	-	0	40	2	7,0	5,6	14,0	12,6	9,8	7,0																					
125	5	Rojo	40	3	10,5	8,4	21,0	18,9	14,7	10,5																					
				4	14,0	11,2	28,0	25,2	19,6	14,0																					

Pintura.

Para lograr una buena protección de la estructura es necesario seguir los siguientes pasos para su pintado.


- <u>Limpieza de superficie</u>: Esto tiene como objetivo eliminar toda impureza que pueda ocasionar fallas permanentes en el sistema de protección con pinturas. Proporcionar una superficie que pueda impregnarse fácilmente, la cual provea una buena adherencia del recubrimiento aplicado.
 - Para ello es necesario utilizar el método de limpieza con chorro abrasivo grado metal blanco (NACE 1/SSPC SP5) en el cual, la superficie se define como una superficie con color uniforme gris blanco metálico, ligeramente rugosa y con un conveniente perfil de anclaje para la pintura. La superficie quedara libre de aceite, grasa, suciedad, cascarilla de laminación, herrumbre, productos de corrosión, óxidos, pintura o cualquier otra materia extraña.

Preparó:	Revisó:	Aprobó:	Página 113 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

La superficie limpiada con chorro debe ser tratada o imprimada antes de que se oxide. De otra manera, los beneficios de la limpieza por chorro se perderían. El metal desnudo recientemente expuesto se oxidara rápidamente bajo condiciones de alta humedad, punto de roció o atmosfera corrosiva. Bajo condiciones atmosféricas normales y suaves, la mejor práctica es imprimar o tratar químicamente dentro de las 6 horas después de la limpieza. Bajo ninguna circunstancia debe permitirse que el acero se oxide antes de pintarlo, para ello se debe tener cuidado con el tiempo que trascurre entre la limpieza y la aplicación del imprimante.

- Primera capa: Debe ser aplicado un imprimante anticorrosivo o también conocido como base anticorrosiva la cual es aplicada directamente sobre el metal. La misma tiene el propósito principal de inhibir la oxidación del material, y secundariamente el de proporcionar una superficie que ofrezca las condiciones propias para ser pintada con otros acabados.
- <u>Segunda capa</u>: Sello epóxico aducto amina trietilen tetra amina, esta capa tiene la finalidad de proteger a la primera capa de pintura, a su vez ser una barrera contra el ingreso de humedad, proveer cuerpo al recubrimiento frente a golpes o rasguños y proporcionar una buena adherencia para la capa final.
- <u>Capa final</u>: Para esta capa se debe aplicar un esmalte de alto brillo como por ejemplo un poliéster hidroxilado de color Amarillo señal. Y en color negro grande y visible la capacidad de elevación de la grúa (6 ton).

Presupuesto

A continuación se muestra la lista de materiales con su respectivo costo por unidad y total.

Descripción	Precio por unidad	Cantidad	Precio final [U\$S]
Caño 4" Sch 40	48 U\$S/m	30 m	1440
Caño 6" Sch 40	87 U\$S/m	2 m	174
Caño 8" Sch 40	131 U\$S/m	7 m	917
Caño 10'' Sch 40	150 U\$S/m	14 m	2100
Caño 8" Sch 80	200 U\$S/m	20 m	4000
Chapa 1" S.A.E 1020	405 U\$S/m2	1 m2	405
Chapa 1 1/2" S.A.E 1020	844 U\$S/m2	1/2 m2	422
Redondo 2 1/2" S.A.E 1045	45 U\$S/m	1 m	45
Redondo 2" S.A.E 1045	42 U\$S/m	1,6 m	67,2
Rodamiento cónico a rodillo	60 U\$S/uni	4	240
Retén LX9961	15 U\$S/uni	2	30
Retén LX5278	5 U\$S/uni	2	10
Bulón M20x80 Gr8.8	1,9 U\$S/uni	8	15,2
Tuerca de fijación KM10	19,57 U\$S/uni	2	39,14
Arandela de retención	5,25 U\$S/uni	2	10,5
Cable 6x19 26 mm Gr1960	12,83 U\$S/m	10 m	128,3
Cable 6x19 16 mm Gr1960	5,69 U\$S/m	15 m	85,35
Grampa G-450 1"	3,3 U\$S/uni	10	33
Grampa G-450 5/8"	1,35 U\$S/uni	24	32,4
Eslinga 100mm 2 capas	50 U\$S/uni	2	100
Cable subterráneo 2x2,5 mm2	1,2 U\$S/m	8 m	9,6
Cable subterráneo 3x6 mm2	3,94 U\$S/m	15 m	59
Termomagnetica 3 x 10A	25 U\$S/uni	1	25
Termomagnetica 2 x 2A	8 U\$S/uni	1	8
Disyuntor 4 x 40 A 30mA	85,5 U\$S/uni	1	85,5
Caja estanca IP 67	28 U\$S/uni	1	28
Polipasto FV4 10010	13500 U\$S/uni	1	13500
	Total		24009,19

Preparó:	Revisó:	Aprobó:	Página 115 de 115
Lapalma, Guillermo; Kautz, Diego.	GP - 01/10/2018		

Bibliografía

Dubbel, H. (1969). Manual del constructor de máquinas. Buenos Aires: Labor.

Mesny, M., & Cosme, H. (1977). *Elementos de máquinas: Métodos modernos de cálculo y diseño*. Buenos Aires: Marymar.

Pisarenko, G., Yákovlev, A., & Matvéev, V. (1979). *Manual de resistencia de materiales*. Moscú: Mir.

Zignoli, V. (s.f.). *Trasporti meccanici: técnica ed economía.* Milán: Ulrico Hoelpi Milano.

Webgrafía

CARDALDA S.A. Productos metalúrgicos. Recuperado el 01 de octubre de 2018 de: http://www.cardalda.com.ar/#PRODUCTOS

FORVIS. Polipastos y accesorios para el izaje de cargas. Recuperado el 24 de septiembre de 2018 de: http://www.forvis.com.ar/

ENG-TIPS. Intelligent work forums for engineering professionals. Recuperado el 14 de septiembre de 2018 de: https://www.eng-tips.com/viewthread.cfm?qid=185540/

IPH GLOBAL. Fabricación de cables de acero y eslingas. Recuperado el 28 de septiembre de 2018 de http://es.iphglobal.com/

THE CROSBY GROUP. Material handling solutions. Recuperado el 28 de septiembre de 2018 de: https://www.thecrosbygroup.com/

ESAB – CONARCO. Equipos, máquinas y consumibles. Recuperado el 15 de septiembre de 2018 de: https://www.esab.com.ar/

SKF. Rodamientos, sellos, lubricación, mecatrónica y servicios. Recuperado el 30 de septiembre de 2018 de: www.skf.com.ar/index.html/

DBH. Di Benedetto Hnos S.A. Recuperado el 30 de septiembre de 2018 de: www.retenesdbh.com.ar/empresa.html/

ECHEBERRÍA SUMINISTROS. Ferretería industrial. Recuperado el 30 de septiembre de 2018 de: www.echeberriasuministros.com/

SCHNEIDER ELECTRIC. El especialista global en manejo de energía. Recuperado el 26 de septiembre de 2018 de: https://www.schneider-electric.com.ar/es/

PRYSMIAN GROUP. Cables, sistemas de energía y soluciones en tendido. Recuperado el 26 de septiembre de 2018 de: https://ar.prysmiangroup.com/

ELECTROCITY. Materiales eléctricos. Recuperado el 26 de septiembre de 2018 de: https://www.electrocity.com.ar/

SIKA COLOMBIA. Preparación de superficies metálicas. Recuperado el 01 de octubre de 2018 de: https://col.sika.com/

INGEMECANICA. Tratamiento y pintura de las superficies metálicas. Recuperado el 01 de octubre de 2018 de: https://ingemecanica.com/

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

PROYECTO FINAL DE CARRERA (P F C)

Ingeniería y diseño de grúa para elevar barcos.

Anexos I - Simulaciones.

Proyecto Nº: PFC 1805A

Autores: Lapalma, Guillermo.

Kautz, Diego.

Tutor: Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal

AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Descripción

A continuación se procederá con la simulación a carga máxima del mástil, el mismo se encuentra en la posición normal de trabajo.

Simulación del Mástil

Fecha: jueves, 30 de agosto de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático Mástil

Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	3
Unidades	3
Propiedades de material	4
Cargas y sujeciones	5
Información de contacto	6
Información de malla	7
Fuerzas resultantes	8
Resultados del estudio	c

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Redondeo1	Sólido	Masa:508.462 kg Volumen:0.0647722 m^3 Densidad:7850 kg/m^3 Peso:4982.92 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N

Propiedades de estudio

Nombre de estudio	Análisis estático Mástil
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material			
Referencia de modelo	Propie	edades	Componentes
, ************************************	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Tensión de von Mises máx. 2.5e+08 N/m^2 4e+08 N/m^2 2e+11 N/m^2 0.26 7850 kg/m^3 7.93e+10 N/m^2	Sólido 1(Redondeo1)(Megamastil-1)
Datos de curva:N/A			
↓	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente- Extruir3)(Perno unico-1)
Datos de curva:N/A			
, ·	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Cortar- Extruir5)(gancho tensor puntal-1), Sólido 1(Cortar- Extruir5)(gancho tensor puntal-2), Sólido 1(Cortar- Extruir5)(gancho tensor puntal-3)
Datos de curva:N/A			

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

401245 1 654(tdi.1165						
Componentes	X	Υ	Z	Resultante		
Fuerza de reacción(N)	-16828	87621.5	-0.215088	89222.8		
Momento de reacción(N.m)	0	0	0	0		

Fijo-2

Entidades: 1 cara(s)
Tipo: Geometría fija

ì	_														
ı	Н	П	P	r7	a	r	6	٦Т	П	t	a	n	ıt	ρ	ς

- del Zus i esultalites				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	-9.63196	-5216.7	-1.66551	5216.71
Momento de reacción(N.m)	0	0	0	0

Bisagra fija-1

Entidades: 1 cara(s)
Tipo: Bisagra fija

Fuerzas resultantes

i dei zas resultantes				
Componentes	Х	Υ	Z	Resultante
Fuerza de reacción(N)	16836.4	25675.8	1.99535	30703.6
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Gravedad-1	A.	Referencia: Planta Valores: 0 0 -9.81 Unidades: m/s^2

Información de contacto

Contacto	lmagen del contacto	Propiedades del contacto	
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s Opciones: Mallado compatible	s)

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	38.6435 mm
Tolerancia	1.93217 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

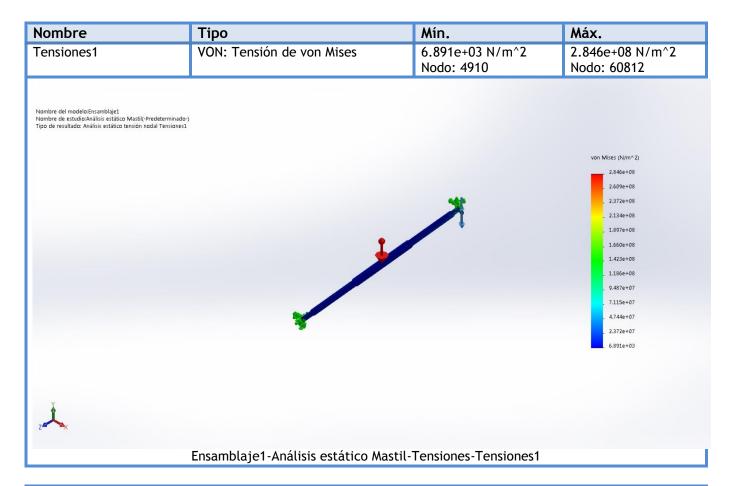
Número total de nodos	61151
Número total de elementos	30792
Cociente máximo de aspecto	70.057
% de elementos cuyo cociente de aspecto es < 3	8.52
% de elementos cuyo cociente de aspecto es > 10	0.65
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:11
Nombre de computadora:	DIEGO-PC

Nombre de modécificambiga!
Nombre de modécificambiga!
Viga de multe Pulls védis

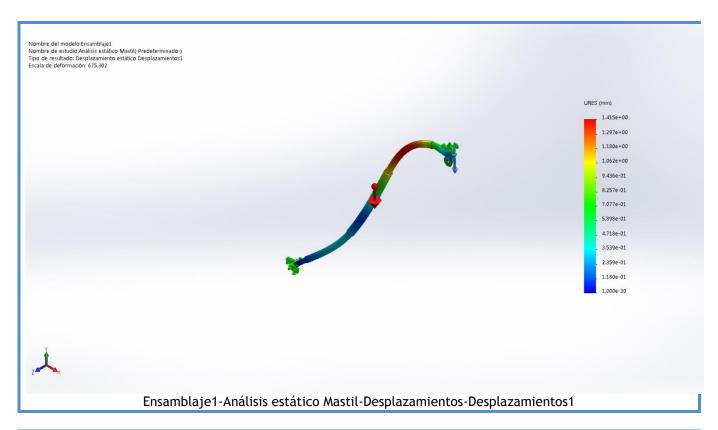
2

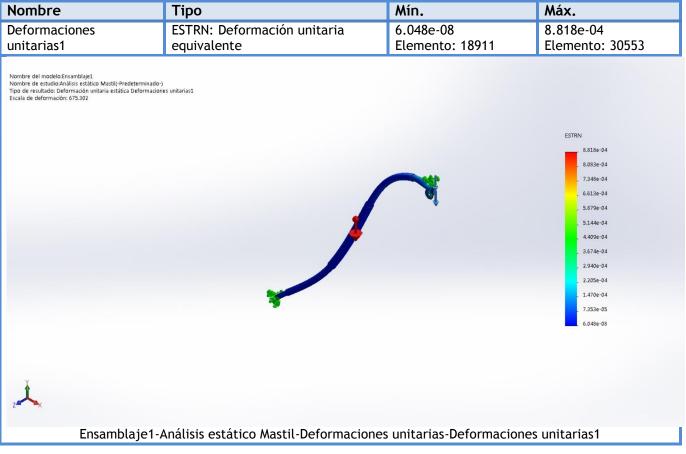
Fuerzas resultantes

Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-1.23047	108081	0.114502	108081

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0



Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+00 mm	1.415e+00 mm
	resultantes	Nodo: 60353	Nodo: 36341

Descripción

A continuación se procederá con la simulación a carga máxima del puntal, el mismo se encuentra en la posición normal de trabajo.

Simulación del Puntal

Fecha: miércoles, 05 de septiembre de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción 1
Información de modelo ¡Error! Marcador no definido.
Propiedades de estudio2
Unidades 2
Propiedades de material
Cargas y sujeciones 4
Información de contacto5
Información de malla6
Fuerzas resultantes 7
Resultados del estudio 8

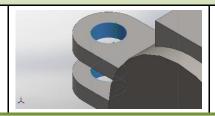
Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Referencia de modelo	Propie	edades	Componentes
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente- Extruir1)(Eje-1), Sólido 1(Saliente- Extruir1)(Eje-2)
Datos de curva:N/A			
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Tensión de von Mises máx. 2.5e+08 N/m^2 4e+08 N/m^2 2e+11 N/m^2 0.26 7850 kg/m^3 7.93e+10 N/m^2	Sólido 1(Saliente- Extruir3)(Piezaf-1)
Datos de curva:N/A	1		T .
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Saliente-Extruir15)(base pivote-1), Sólido 1(Saliente-Extruir15)(base pivote-2), Sólido 1(Redondeo2)(base superior-1), Sólido 1(Redondeo2)(base superior-2), Sólido 1(Cortar-Extruir9[2])(vientos rigidos 2-1), Sólido 2(Cortar-Extruir9[1])(vientos rigidos 2-1), Sólido 1(Cortar-Extruir9[2])(vientos rigidos 2-2), Sólido 2(Cortar-Extruir9[2])(vientos rigidos 2-2), Sólido 2(Cortar-Extruir9[1])(vientos rigidos 2-2),

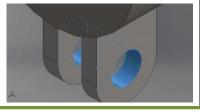

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

Componentes	Х	Y	Z	Resultante
Fuerza de reacción(N)	43.8873	94291.6	129922	160532
Momento de reacción(N.m)	0	0	0	0

Bisagra fija-2



Entidades: 2 cara(s)
Tipo: Bisagra fija

_							
С.		r	~ ~	~		+~.	1 +0c
ш	ue	ı Za	12	G2	uı	ιai	ntes

- acizas i esaltantes				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	-6084.21	24599.5	2852.09	25500.8
Momento de reacción(N.m)	0	0	0	0

Bisagra fija-1

Entidades: 2 cara(s)
Tipo: Bisagra fija

Fuerzas resultantes

i uei zas i esuitalites				
Componentes	Х	Υ	Z	Resultante
Fuerza de reacción(N)	6043.74	62927.9	-27539.5	68955.6
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Gravedad-1		Referencia: Alzado Valores: 0 0 -9.81 Unidades: m/s^2

Fuerza-1		
Fuerza-2	Entidades: Tipo: Valores:	1 cara(s) Aplicar fuerza ,, 13780 kgf

Información de contacto

Contacto	lmagen del contacto	Propiedades d	el contacto
Contacto global	X	Tipo: Componentes: Opciones:	Unión rígida 1 componente(s) Mallado compatible

Simulación del Puntal

Información de malla

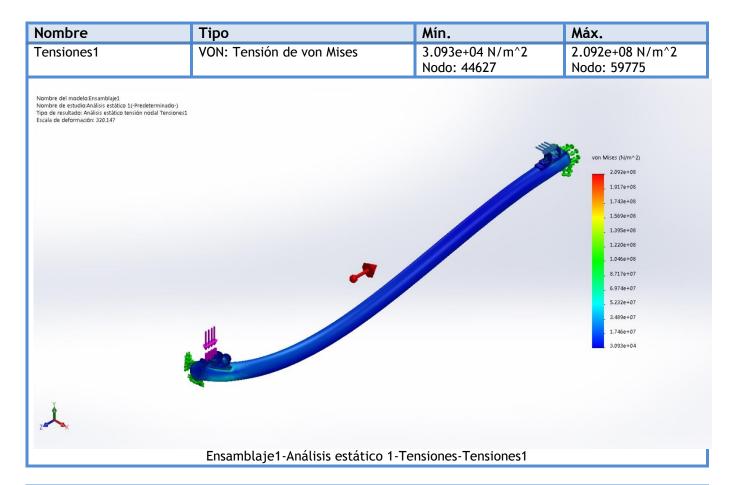
Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	39.8705 mm
Tolerancia	1.99352 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

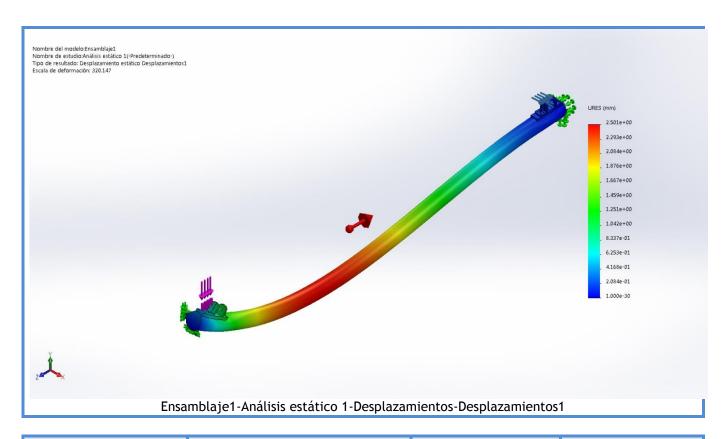
Número total de nodos	60136
Número total de elementos	30867
Cociente máximo de aspecto	16.163
% de elementos cuyo cociente de aspecto es < 3	13.8
% de elementos cuyo cociente de aspecto es > 10	0.47
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:14
Nombre de computadora:	DIEGO-PC

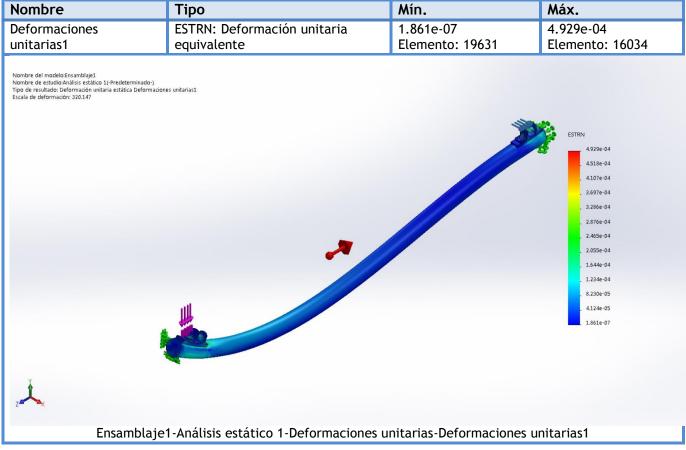
Fuerzas resultantes

Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	3.41766	181819	105235	210077

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0



Resultados del estudio

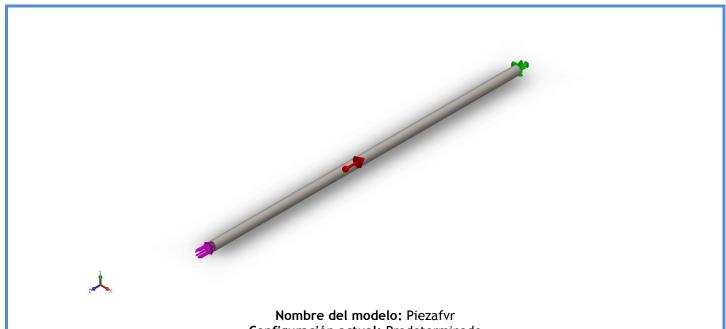
Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+00 mm	2.501e+00 mm
	resultantes	Nodo: 944	Nodo: 26135

Descripción

A continuación se procederá con la simulación a carga máxima de los vientos rígidos, el mismo se encuentra en la posición normal de trabajo.

Simulación de Vientos rígidos

Fecha: miércoles, 12 de septiembre de 2018


Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	3
Unidades	3
Propiedades de material	4
Cargas y sujeciones	5
Información de malla	6
Fuerzas resultantes	7
Resultados del estudio	8

Información de modelo

Configuración actual: Predeterminado

Sólidos			
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación
Cortar-Extruir3	Sólido	Masa:554.673 kg Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N	C:\Users\Diego\Desktop\pi eza\Piezafvr.SLDPRT Sep 8 15:27:57 2018

Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

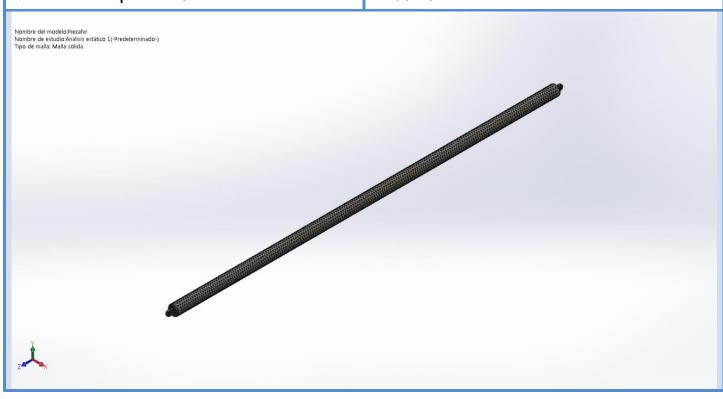
Referencia de modelo	Propiedades		Componentes
Å	Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson:	4e+08 N/m ² 2e+11 N/m ² 0.26 7850 kg/m ³	Sólido 1(Cortar- Extruir3)(Piezafvr)
Datos de curva:N/A			

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción			
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija			
Fuorzas resultantes					

Fuerzas resultantes

Ш	acizas i coateanico						
	Componentes	X	Υ	Z	Resultante		
	Fuerza de reacción(N)	-0.0971903	-2.52631	208167	208167		
	Momento de reacción(N.m)	0	0	0	0		


Nombre de carga	Cargar imagen	Detalles de c	carga
Gravedad-1		Referencia: A Valores: 0 Unidades: n	0 0 -9.81
Fuerza-3			1 cara(s) Aplicar fuerza normal 20672 kgf

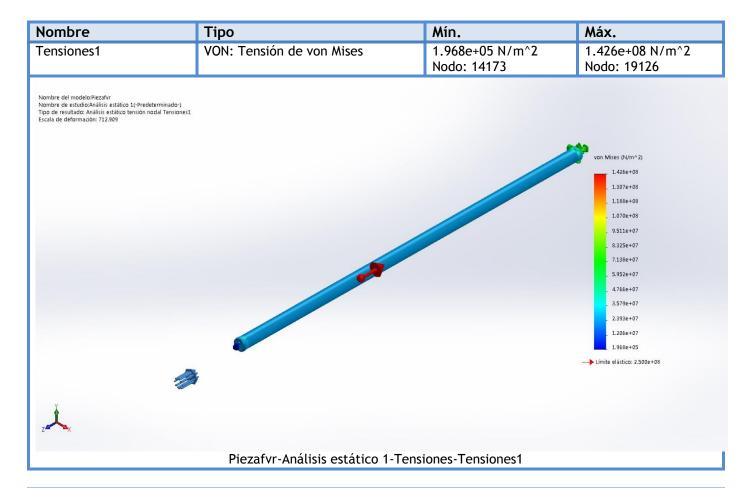
Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	44.6386 mm
Tolerancia	2.23193 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

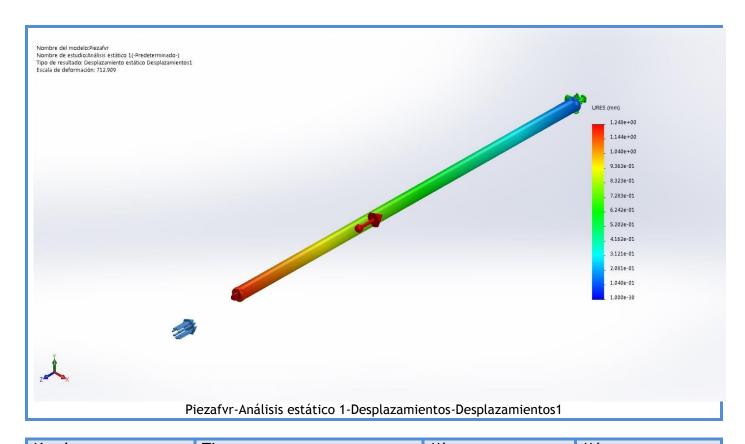
Información de malla - Detalles

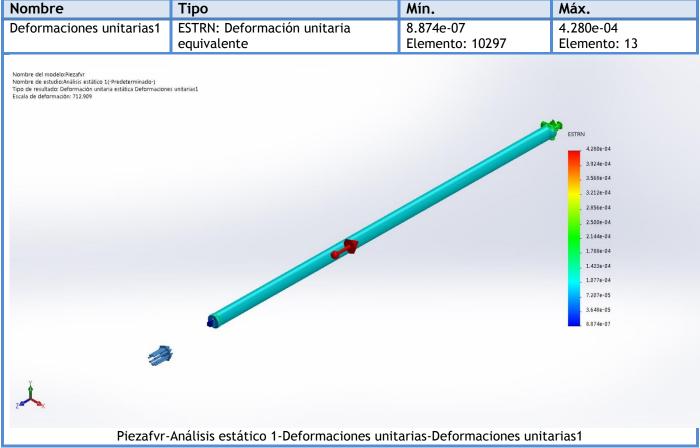
Número total de nodos	34256
Número total de elementos	17110
Cociente máximo de aspecto	5.6925
% de elementos cuyo cociente de aspecto es < 3	2.86
% de elementos cuyo cociente de aspecto es > 10	0
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:04
Nombre de computadora:	DIEGO-PC

Fuerzas resultantes

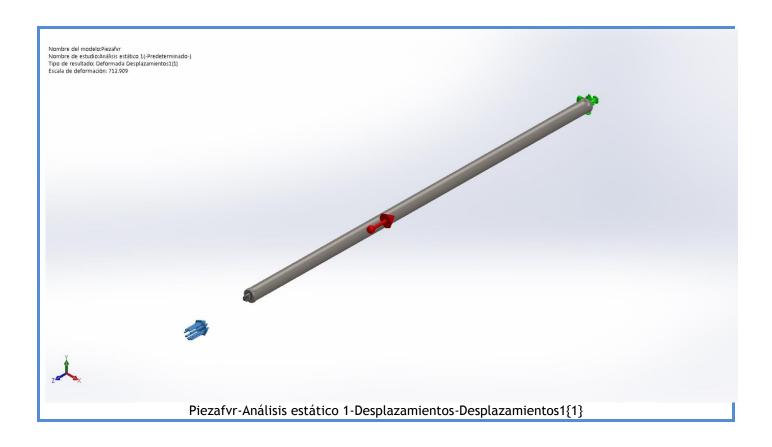

Fuerzas de reacción

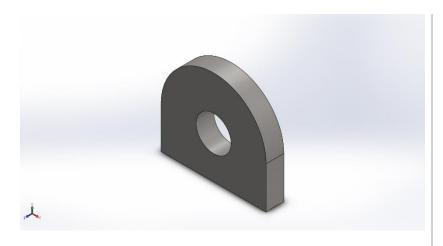
Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-0.0971903	-2.52631	208167	208167


Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Resultados del estudio


Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+00 mm	1.248e+00 mm
	resultantes	Nodo: 69	Nodo: 19026



Nombre	Tipo
Desplazamientos1{1}	Deformada

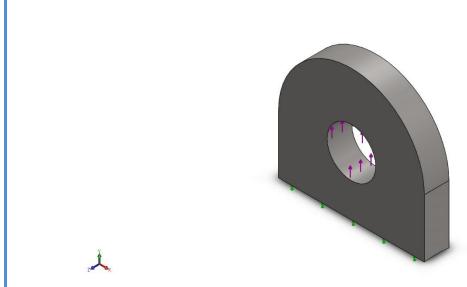
Descripción

Se realizará la simulación del herraje que une el mástil con el polipasto y el mástil con el cable tensor, la simulación se realizará bajo carga máxima.

Analizado con SOLIDWORKS Simulation

Simulación del Gancho **Tensor - Puntal**

Fecha: miércoles, 05 de septiembre de 2018


Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	3
Unidades	3
Propiedades de material	4
Cargas y sujeciones	4
Información de malla	5
Fuerzas resultantes	6
Resultados del estudio	7

Información de modelo

Nombre del modelo: gancho tensor puntal Configuración actual: Predeterminado

Sólidos			
Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/Fecha de modificación
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N	C:\Users\Diego\Desktop\pi eza\herrajes\gancho tensor puntal.SLDPRT Aug 30 18:11:48 2018

Propiedades de estudio

Nombre de estudio	Análisis estático 2
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Referencia de modelo	Propie	Componentes	
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2	Sólido 1(Cortar- Extruir5)(gancho tensor puntal)
	Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	

Cargas y sujeciones

Momento de

reacción(N.m)

l	sujeción	lmag	en de sujeción Detalles de sujeción					
	Fijo-1			Entidades: 1 cara(s) Tipo: Geometría fija				
ı	Fuerzas resultantes							
ı	Component	tes	X	Y	Z	Resultante		
1	Fuerza de reacción(N) 0.012414		-102970	0.0302544	102970			

0

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1		Entidades: 1 cara(s) Referencia: Arista< 1 > Tipo: Aplicar fuerza Valores:,, -10500 kgf

0

0

0


Información de malla

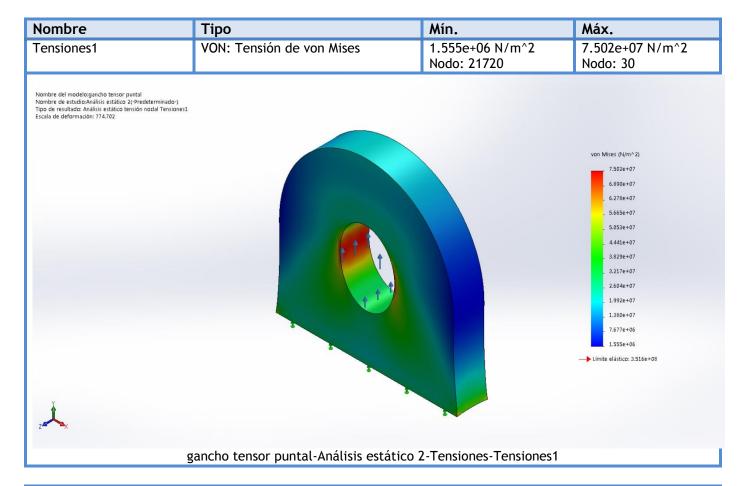
Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	4.88555 mm
Tolerancia	0.244278 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden

Información de malla - Detalles

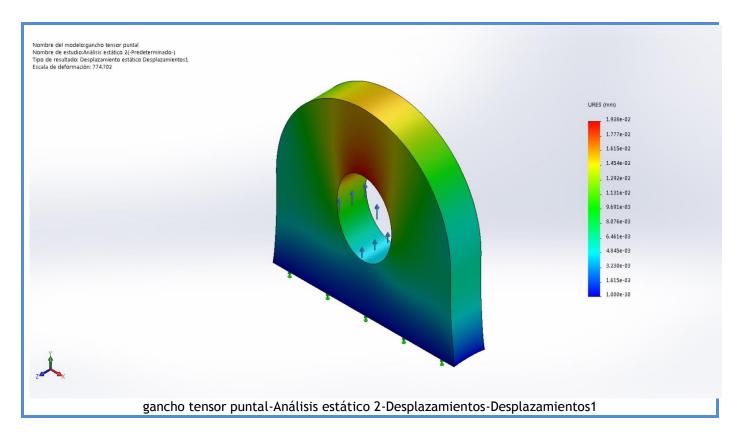
Número total de nodos	33966
Número total de elementos	22430
Cociente máximo de aspecto	3.6587
% de elementos cuyo cociente de aspecto es < 3	99.9
% de elementos cuyo cociente de aspecto es > 10	0
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:02
Nombre de computadora:	DIEGO-PC

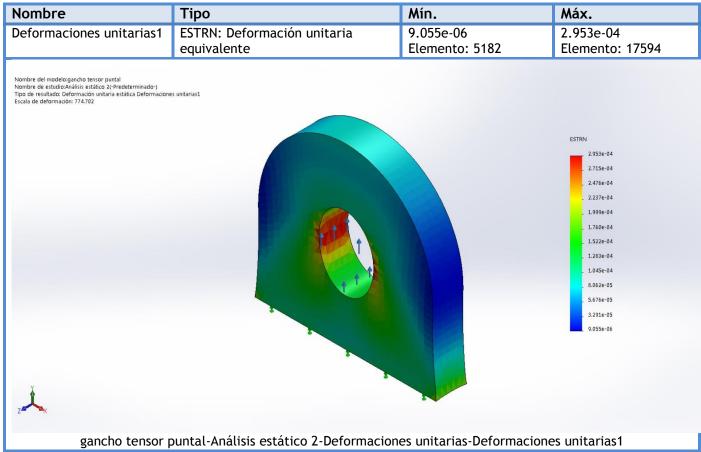
Nombre del modelo:gancho tensor puntal Nombre de estudio:Análisis estático 2(-Predeterminado-) Tipo de malla: Malla sólida

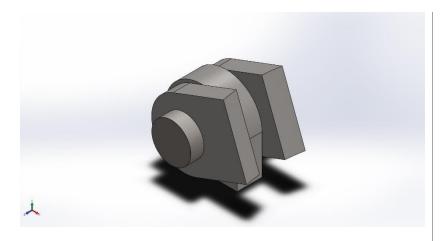
Fuerzas resultantes


Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	0.012414	-102970	0.0302544	102970


Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0


Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos	0.000e+00 mm	1.938e-02 mm
	resultantes	Nodo: 288	Nodo: 1054

Descripción

A continuación se procederá con la simulación a carga máxima del herraje de unión de los vientos rígidos con el puntal, el mismo se encuentra en la posición normal de trabajo.

Simulación del herraje viento - puntal.

Fecha: jueves, 30 de agosto de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático Perno

vientos

Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	3
Unidades	3
Propiedades de material	_
Cargas y sujeciones	_
Información de contacto	5
Información de malla	6
Fuerzas resultantes	7
Resultados del estudio	8

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Cortar-Extruir9[2]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Saliente-Extruir3	Sólido	Masa:2.27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N
Saliente-Extruir1	Sólido	Masa:2.82574 kg Volumen:0.000357689 m^3 Densidad:7900 kg/m^3 Peso:27.6923 N

Propiedades de estudio

Nombre de estudio	Análisis estático Perno vientos
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material

Lím /	Nombre: Tipo de modelo: Criterio de error credeterminado: Límite elástico: nite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de	0.29 7900 kg/m^3	Sólido 1(Cortar- Extruir9[2])(vientos rigidos 2- 1), Sólido 2(Cortar- Extruir9[1])(vientos rigidos 2- 1), Sólido 1(Saliente- Extruir1)(vientos rigidos-1)
l dila	atacion termica:		
Datos de curva:N/A			
Lím /	Nombre: Tipo de modelo: Criterio de error credeterminado: Límite elástico: nite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Coeficiente de Coeficiente de Addulo cortante: Coeficiente de atación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente- Extruir3)(vientos rigidos 3-1)

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 2 cara(s) Tipo: Geometría fija

Fuerzas resultantes				
Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	-2.0166	202810	0.10437	202810
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Gravedad-1		Referencia: Planta Valores: 0 0 -9.81 Unidades: m/s^2
Fuerza-1	A STATE OF THE STA	Entidades: 1 cara(s) Tipo: Aplicar fuerza normal Valor: -20672 kgf

Información de contacto

Contacto	Imagen del contacto	Propiedades del contacto	
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible	

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	7.34679 mm
Tolerancia	0.367339 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	32996
Número total de elementos	21916
Cociente máximo de aspecto	66.317
% de elementos cuyo cociente de aspecto es < 3	98.4
% de elementos cuyo cociente de aspecto es > 10	0.338
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:02
Nombre de computadora:	DIEGO-PC

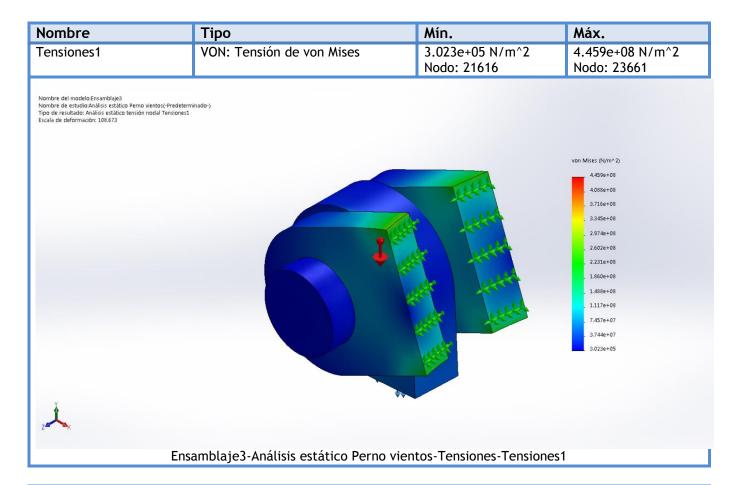
Nombre of incides Essandaria
Nombre of incides Essandaria
Nombre of mala Malla colids
Tgo de mala Malla colids

Tgo de mala Malla colids

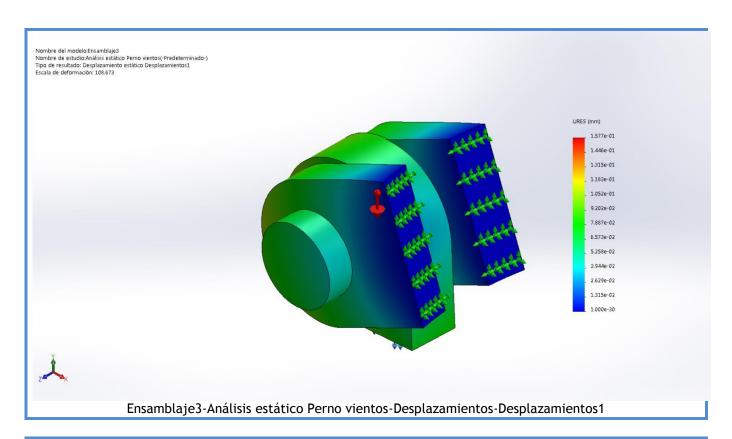
2

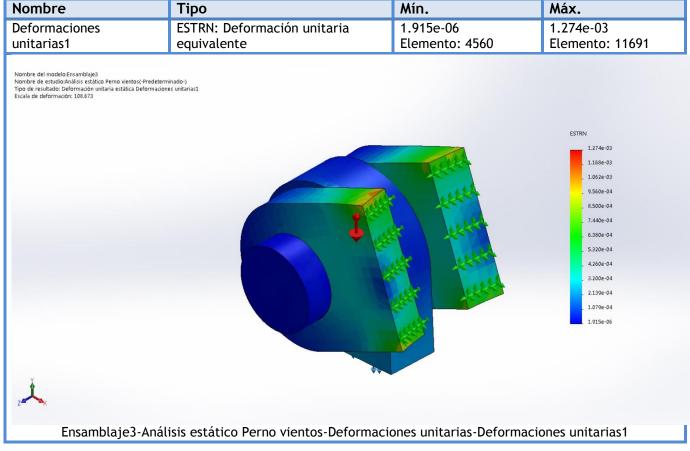
Fuerzas resultantes

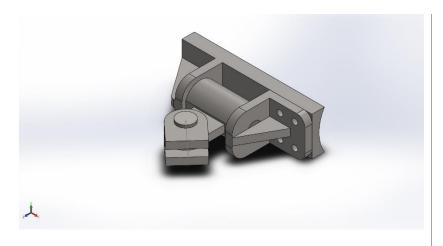
Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-2.0166	202810	0.10437	202810

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0




Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+00 mm Nodo: 52	1.577e-01 mm Nodo: 23816

Descripción

A continuación se procederá con la simulación a carga máxima del herraje de unión del mástil con el puntal, el mismo se encuentra en la posición normal de trabajo.

Simulación del herraje Mástil - Puntal.

Fecha: miércoles, 05 de septiembre de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático 2 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción
Información de modelo
Propiedades de estudio3
Unidades 3
Propiedades de material
Cargas y sujeciones 5
Información de contacto5
Información de malla6
Detalles del sensor
Fuerzas resultantes
Resultados del estudio

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir14	Sólido	Masa;21,8047 kg Volumen;0.00276009 m^3 Densidad;7900 kg/m^3 Peso;213,687 N
Redondeo2	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo1	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N
Redondeo2	Sólido	Masa:2.43564 kg Volumen:0.000308309 m^3 Densidad:7900 kg/m^3 Peso:23.8693 N
Redondeo1	Sólido	Masa:2.43564 kg Volumen:0.000308309 m^3 Densidad:7900 kg/m^3 Peso:23.8693 N

Propiedades de estudio

Nombre de estudio	Análisis estático 2	
Tipo de análisis	Análisis estático	
Tipo de malla	Malla sólida	
Efecto térmico:	Activar	
Opción térmica	Incluir cargas térmicas	
Temperatura a tensión cero	298 Kelvin	
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar	
Tipo de solver	FFEPlus	
Efecto de rigidización por tensión (Inplane):	Desactivar	
Muelle blando:	Desactivar	
Desahogo inercial:	Desactivar	
Opciones de unión rígida incompatibles	Automático	
Gran desplazamiento	Desactivar	
Calcular fuerzas de cuerpo libre	Activar	
Fricción	Desactivar	
Utilizar método adaptativo:	Desactivar	
Carpeta de resultados	Documento de SOLIDWORKS	
Tipo de solver Efecto de rigidización por tensión (Inplane): Muelle blando: Desahogo inercial: Opciones de unión rígida incompatibles Gran desplazamiento Calcular fuerzas de cuerpo libre Fricción Utilizar método adaptativo:	Desactivar Desactivar Automático Desactivar Activar Desactivar Desactivar Desactivar	

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Simulación de Ensamblaje simulacion herraje

Propiedades de material

Referencia de modelo	Propie	edades	Componentes
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente- Extruir1)(Eje-1), Sólido 1(Saliente- Extruir3)(Perno unico-1)
Datos de curva:N/A			
	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Saliente- Extruir14)(base pivote-1), Sólido 1(Redondeo2)(base superior-1), Sólido 1(Redondeo1)(cuerpo1-1), Sólido 1(Redondeo2)(herraje mastil-1), Sólido 2(Redondeo1)(herraje mastil-1)

Cargas y sujeciones

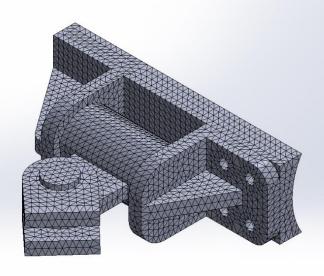
Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes					
Componentes	Х	Υ	Z	Resultante	
Fuerza de reacción(N)	100135	-471.453	92239	136144	
Momento de reacción(N.m)	0	0	0	0	

Nombre de carga	Cargar imagen	Detalles de carga
Fuerza-1		Entidades: 2 cara(s) Tipo: Aplicar fuerza normal Valor: 13882.8 kgf

Información de contacto

Contacto	lmagen del contacto	Propiedades del contacto
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible


Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	10.8005 mm
Tolerancia	0.540026 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	62928
Número total de elementos	41183
Cociente máximo de aspecto	46.948
% de elementos cuyo cociente de aspecto es < 3	99.2
% de elementos cuyo cociente de aspecto es > 10	0.141
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:03
Nombre de computadora:	DIEGO-PC

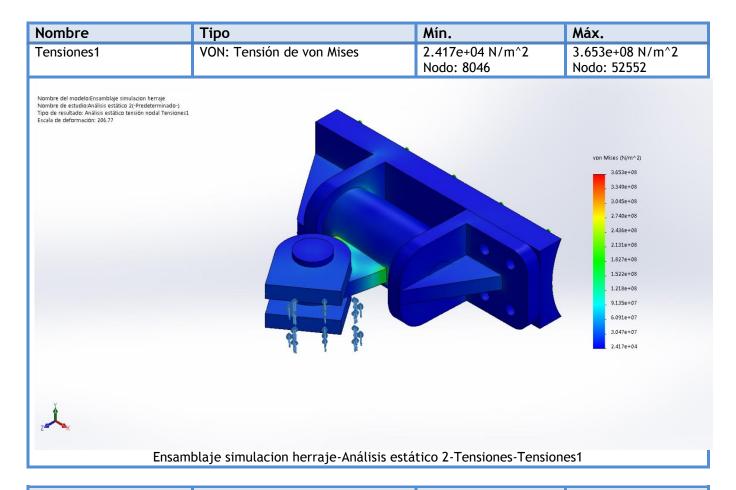
Nombre del modelo:Ensamblaje simulacion herraje Nombre de estudio:Análisis estático 2(-Predeterminado-) Tipo de malla: Malla sólida

Detalles del sensor

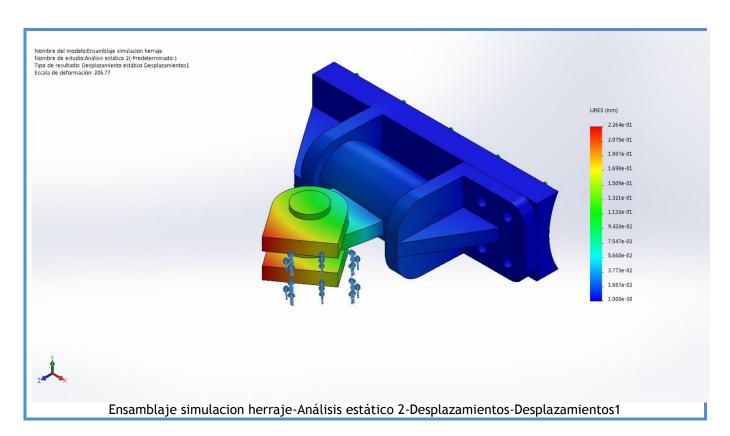
No hay datos

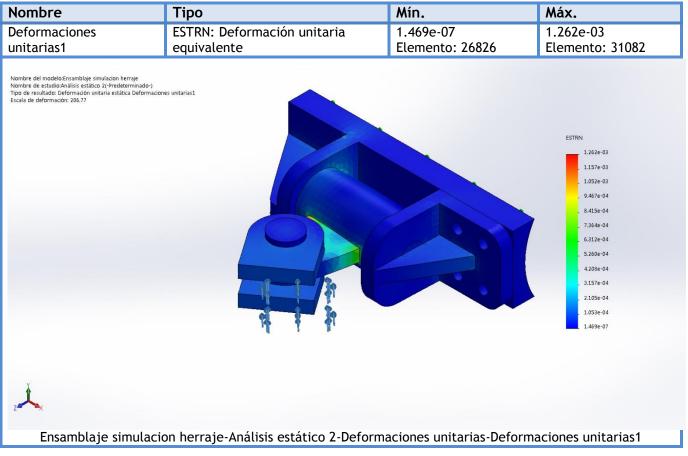
Fuerzas resultantes

Fuerzas de reacción


Conjunto d selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el mode	elo N	100135	-471.453	92239	136144

Momentos de reacción


	junto de ecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo	o el modelo	N.m	0	0	0	0



Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+00 mm Nodo: 8030	2.264e-01 mm Nodo: 60173

Descripción

A continuación se realizará la simulación de la grúa en la posición de 90°, el mismo se realiza bajo carga máxima.

Simulación de Ensamblaje 90°

Fecha: miércoles, 12 de septiembre de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	5
Unidades	5
Propiedades de material	6
Cargas y sujeciones	8
Información de contacto	9
Información de malla	10
Fuerzas resultantes	11
Posultados del estudio	12

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Redondeo1	Sólido	Masa:508.462 kg Volumen:0.0647722 m^3 Densidad:7850 kg/m^3 Peso:4982.92 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N

Saliente-Extruir3	Sólido	Masa:515.571 kg Volumen:0.0656779 m^3 Densidad:7850 kg/m^3 Peso:5052.6 N
Cortar-Extruir3	Sólido	Masa:554.673 kg Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Cortar-Extruir3	Sólido	Masa:554.673 kg Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Saliente-Extruir14	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Saliente-Extruir14	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Redondeo2	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo2	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo1	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N

Redondeo1		
i.	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N
Cortar-Extruir4	Sólido	Masa:223.11 kg Volumen:0.0284217 m^3 Densidad:7850 kg/m^3 Peso:2186.48 N
Cortar-Extruir9[2]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[2]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Saliente-Extruir3	Sólido	Masa:2.27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N
Saliente-Extruir3	Sólido	Masa:2.27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N

Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material				
Referencia de modelo	Propie	Propiedades		
<u></u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente-Extruir1)(Eje-1), Sólido 1(Saliente-Extruir1)(Eje-2), Sólido 1(Saliente-Extruir3)(Perno unico-1), Sólido 1(Saliente-Extruir3)(Perno unico-2), Sólido 1(Saliente-Extruir3)(Perno unico-3), Sólido 1(Cortar-Extruir4)(similcable-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-2)	
Datos de curva:N/A				
1	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Tensión de von Mises máx. 2.5e+08 N/m^2 4e+08 N/m^2 2e+11 N/m^2 0.26 7850 kg/m^3 7.93e+10 N/m^2	Sólido 1(Redondeo1)(Mastil- 1/Megamastil-1), Sólido 1(Saliente- Extruir3)(Piezaf-2), Sólido 1(Cortar- Extruir3)(Piezafvr-1), Sólido 1(Cortar- Extruir3)(Piezafvr-2)	
Datos de curva:N/A				
<u></u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-1), Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-2), Sólido 1(Saliente-Extruir14)(base pivote-1), Sólido 1(Saliente-Extruir14)(base pivote-2), Sólido 1(Redondeo2)(base superior-1), Sólido 1(Redondeo2)(base superior-2), Sólido 1(Redondeo1)(cuerpo1-1), Sólido 1(Redondeo1)(cuerpo1-2), Sólido 1(Cortar-Extruir9[2])(vientos rigidos 2-1), Sólido 2(Cortar-	

	Extruir9[1])(vientos rigidos 2- 1), Sólido 1(Cortar- Extruir9[2])(vientos rigidos 2- 2), Sólido 2(Cortar- Extruir9[1])(vientos rigidos 2- 2)
Datos de curva:N/A	

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción	
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija	

Fuerzas resultantes

Componentes	Х	Y	Z	Resultante
Fuerza de reacción(N)	81777.2	346212	-48197.1	358989
Momento de reacción(N.m)	0	0	0	0

Fijo-2

Entidades: 2 cara(s)
Tipo: Geometría fija

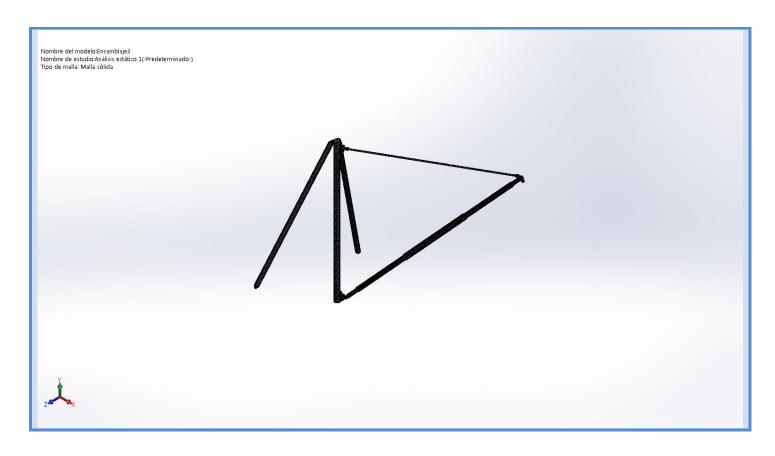
_								
-	114	2r7	26	res	ш	Ita	nt	Δc

Componentes X Y Z Resultar	ato.
- Totalia	ite
Fuerza de reacción(N) -81781.9 -216512 48196.3 23640	8
Momento de reacción(N.m) 0 0 0	

Nombre de carga	Cargar imagen	Detalles de	carga
Gravedad-1	*	Referencia: Valores: Unidades:	0 0 -9.81
Fuerza-1		Entidades: Referencia: Tipo: Valores:	

Información de contacto

Contacto	lmagen del contacto	Propiedades del contacto
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s) Opciones: Mallado compatible


Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	72.9326 mm
Tolerancia	3.64663 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

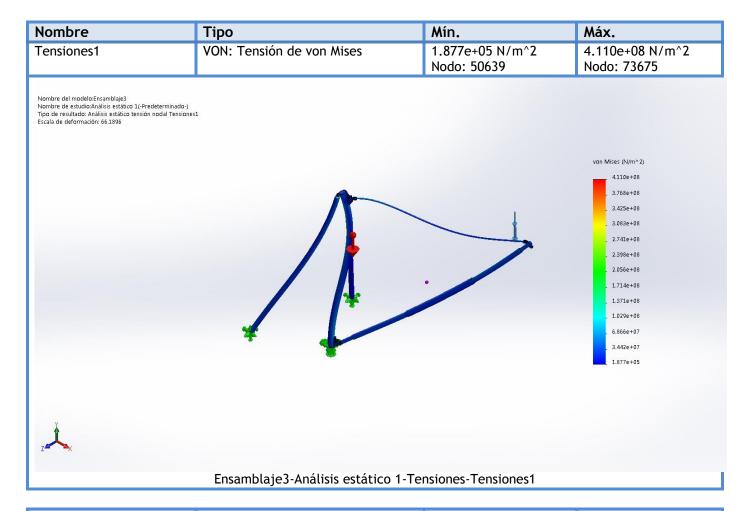
Número total de nodos	100216
Número total de elementos	51802
Cociente máximo de aspecto	240.29
% de elementos cuyo cociente de aspecto es < 3	13.4
% de elementos cuyo cociente de aspecto es > 10	4.28
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:16
Nombre de computadora:	DIEGO-PC

Información sobre el control de malla:

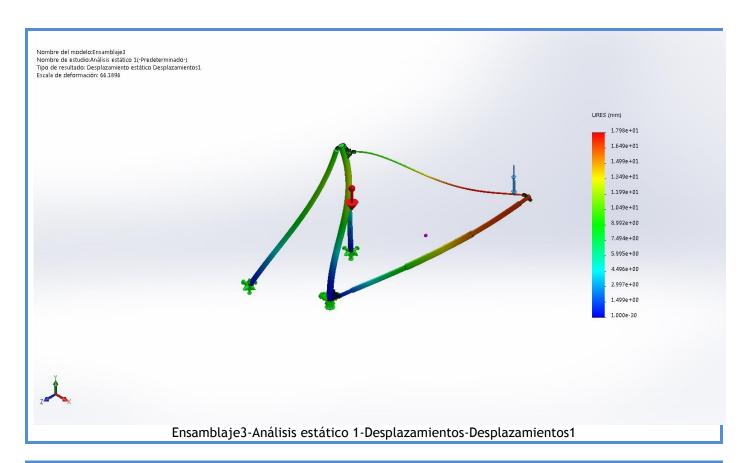
Nombre del control de malla	Imagen del control de malla	Detalles del control de malla
Control-1	With a standard and a standard with a standard	Entidades: 1 Sólido(s) Unidades: mm Tamaño: 48.3178 Coeficiente: 1.5

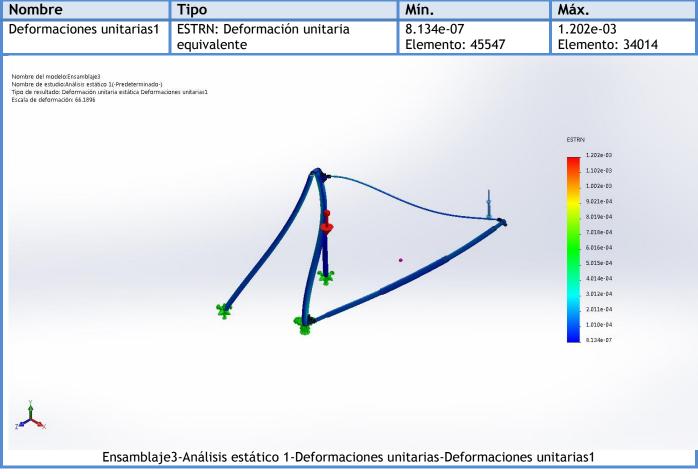
Fuerzas resultantes

Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-4.68478	129700	-0.740234	129700

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0



Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+00 mm Nodo: 43879	1.798e+01 mm Nodo: 94885

Descripción

A continuación se realizará la simulación de la grúa en la posición de 180°, el mismo se realiza bajo carga máxima.

Simulación de Ensamblaje 180°

Fecha: miércoles, 12 de septiembre de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	5
Unidades	5
Propiedades de material	6
Cargas y sujeciones	
Información de contacto	9
Información de malla	9
Fuerzas resultantes	10
Resultados del estudio	11

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Redondeo1	Sólido	Masa:508.462 kg Volumen:0.0647722 m^3 Densidad:7850 kg/m^3 Peso:4982.92 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N

Saliente-Extruir3		
	Sólido	Masa:515.571 kg Volumen:0.0656779 m^3 Densidad:7850 kg/m^3 Peso:5052.6 N
Cortar-Extruir3	Sólido	Masa:554.673 kg Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Cortar-Extruir3	Sólido	Masa:554.673 kg Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Saliente-Extruir14	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Saliente-Extruir14	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Redondeo2	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo2	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo1	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N

Redondeo1		
i kedondeo 1	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N
Cortar-Extruir4		
	Sólido	Masa:223.11 kg Volumen:0.0284217 m^3 Densidad:7850 kg/m^3 Peso:2186.48 N
Cortar-Extruir9[2]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[2]	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]		
	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Saliente-Extruir3		Maca:2 27502 km
	Sólido	Masa:2.27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N
Saliente-Extruir3	Sólido	Masa:2,27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22,2952 N

Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (C:\Users\Diego\Desktop\pieza\herrajes)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material			
Referencia de modelo	Propie	edades	Componentes
<u>.</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente-Extruir1)(Eje-1), Sólido 1(Saliente-Extruir1)(Eje-2), Sólido 1(Saliente-Extruir3)(Perno unico-1), Sólido 1(Saliente-Extruir3)(Perno unico-2), Sólido 1(Saliente-Extruir3)(Perno unico-3), Sólido 1(Saliente-Extruir4)(similcable-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-2)
Datos de curva:N/A			
<u>.</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Tensión de von Mises máx. 2.5e+08 N/m^2 4e+08 N/m^2 2e+11 N/m^2 0.26 7850 kg/m^3 7.93e+10 N/m^2	Sólido 1(Redondeo1)(Mastil- 1/Megamastil-1), Sólido 1(Saliente- Extruir3)(Piezaf-2), Sólido 1(Cortar- Extruir3)(Piezafvr-1), Sólido 1(Cortar- Extruir3)(Piezafvr-2)
Datos de curva:N/A			· .
<u>.</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-1), Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-2), Sólido 1(Saliente-Extruir14)(base pivote-1), Sólido 1(Saliente-Extruir14)(base pivote-2), Sólido 1(Redondeo2)(base superior-1), Sólido 1(Redondeo2)(base superior-2), Sólido 1(Redondeo1)(cuerpo1-1), Sólido 1(Redondeo1)(cuerpo1-2), Sólido 1(Cortar-Extruir9[2])(vientos rigidos 2-1), Sólido 2(Cortar-

	1 S E 2 S	Extruir9[1])(vientos rigidos 2- 1), Sólido 1(Cortar- Extruir9[2])(vientos rigidos 2- 2), Sólido 2(Cortar- Extruir9[1])(vientos rigidos 2- 2)
Datos de curva:N/A		

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

Componentes	Х	Υ	Z	Resultante
Fuerza de reacción(N)	-47960.1	-101246	-82770.1	139290
Momento de reacción(N.m)	0	0	0	0

Fijo-2

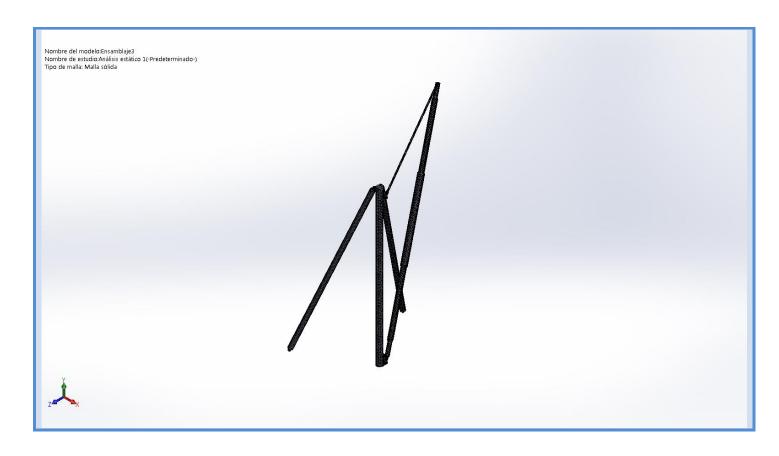
Entidades: 2 cara(s)
Tipo: Geometría fija

	-								
H	• 1	10	17	ac	re	CII	Ita	nt	29

i dei zas i esultantes				
Componentes	Х	Υ	Z	Resultante
Fuerza de reacción(N)	47947.7	230970	82772.1	249995
Momento de reacción(N.m)	0	0	0	0

Nombre de carga	Cargar imagen	Detalles de carga
Gravedad-1		Referencia: Planta Valores: 0 0 -9.81 Unidades: m/s^2
Fuerza-1	±	Entidades: 1 cara(s) Referencia: Arista< 1 > Tipo: Aplicar fuerza Valores:,, -10500 kgf

Información de contacto


Contacto	Imagen del contacto	Propiedades del contacto	
Contacto global		Tipo: Unión rígida Componentes: 1 componente(s Opciones: Mallado compatible	5)

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	72.9326 mm
Tolerancia	3.64663 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

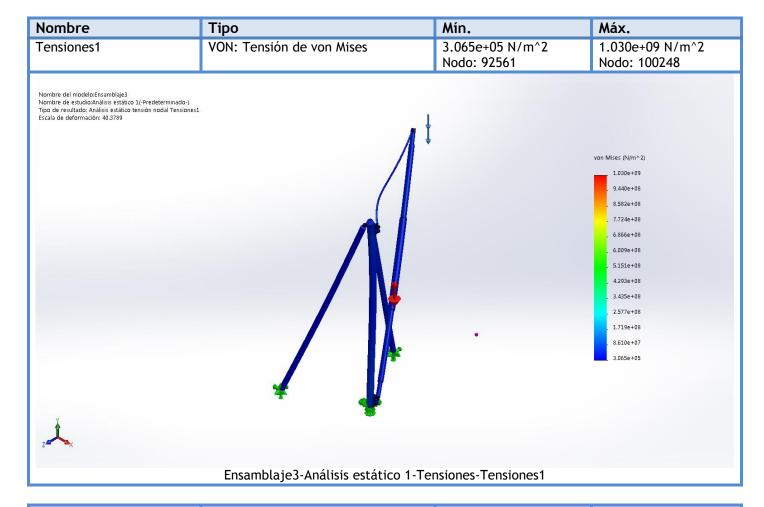
Número total de nodos	100315
Número total de elementos	51871
Cociente máximo de aspecto	331.3
% de elementos cuyo cociente de aspecto es < 3	13.3
% de elementos cuyo cociente de aspecto es > 10	4.36
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:17
Nombre de computadora:	DIEGO-PC

Información sobre el control de malla:

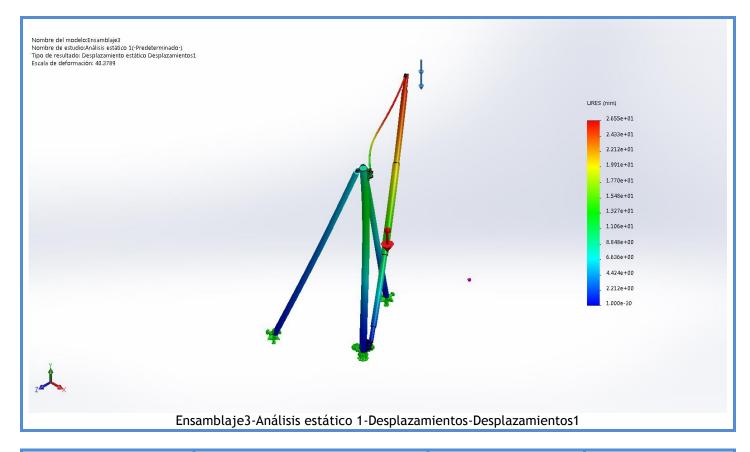
Nombre del control de malla	Imagen del control de malla	Detalles del control de malla
Control-1	The control of the co	Entidades: 1 Sólido(s) Unidades: mm Tamaño: 48.3178 Coeficiente: 1.5

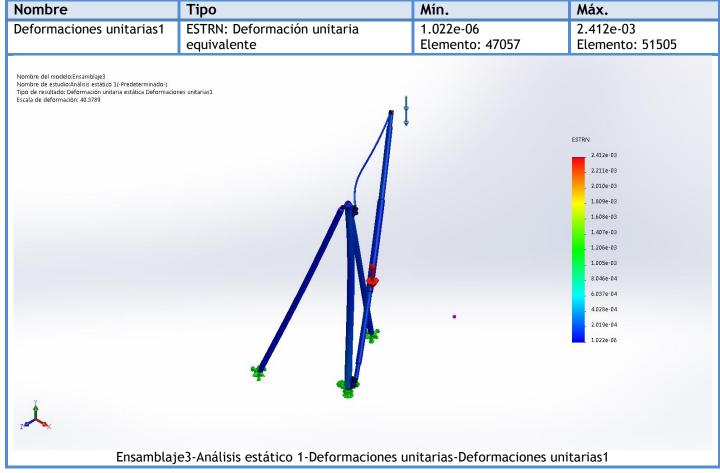
Fuerzas resultantes

Fuerzas de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-12.3873	129724	2.05547	129724

Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0



Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+00 mm Nodo: 44025	2.655e+01 mm Nodo: 95183

Descripción

A continuación se realizará la simulación de la grúa en la posición de 0° , el mismo se realiza bajo carga máxima.

Simulación de Ensamblaje 0°

Fecha: miércoles, 12 de septiembre de 2018

Diseñador: Solidworks

Nombre de estudio: Análisis estático 1 Tipo de análisis: Análisis estático

Tabla de contenidos

Descripción	1
Información de modelo	2
Propiedades de estudio	5
Unidades	5
Propiedades de material	6
Cargas y sujeciones	8
Información de contacto	9
Información de malla	9
Detalles del sensor	10
Fuerzas resultantes	11
Pecultados del estudio	12

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Saliente-Extruir1	Sólido	Masa:3.40329 kg Volumen:0.00043354 m^3 Densidad:7850 kg/m^3 Peso:33.3522 N
Redondeo1	Sólido	Masa:508.462 kg Volumen:0.0647722 m^3 Densidad:7850 kg/m^3 Peso:4982.92 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Cortar-Extruir5	Sólido	Masa:3.1657 kg Volumen:0.000400722 m^3 Densidad:7900 kg/m^3 Peso:31.0239 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N
Saliente-Extruir3	Sólido	Masa:1.62149 kg Volumen:0.00020656 m^3 Densidad:7850 kg/m^3 Peso:15.8906 N

Saliente-Extruir3		
A .	Sólido	Masa:515.571 kg Volumen:0.0656779 m^3 Densidad:7850 kg/m^3 Peso:5052.6 N
Cortar-Extruir3		Masa:554.673 kg
	Sólido	Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Cortar-Extruir3		Masa:554.673 kg
	Sólido	Volumen:0.070659 m^3 Densidad:7850 kg/m^3 Peso:5435.8 N
Saliente-Extruir14		Maca: 24 9047 La
↓	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Saliente-Extruir14		
	Sólido	Masa:21.8047 kg Volumen:0.00276009 m^3 Densidad:7900 kg/m^3 Peso:213.687 N
Redondeo2		
↓	Sólido	Masa:8.13097 kg Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo2		Masa:8.13097 kg
	Sólido	Volumen:0.00102924 m^3 Densidad:7900 kg/m^3 Peso:79.6836 N
Redondeo1		Masa:12.4648 kg
	Sólido	Masa: 12,4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N
٨.		

Redondeo1		
i.	Sólido	Masa:12.4648 kg Volumen:0.00157783 m^3 Densidad:7900 kg/m^3 Peso:122.155 N
Cortar-Extruir4		Masa:223.11 kg
<u>.</u>	Sólido	Volumen:0.0284217 m^3 Densidad:7850 kg/m^3 Peso:2186.48 N
Cortar-Extruir9[2]		Masa:2.00591 kg
<u>.</u>	Sólido	Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]		Masa:2.00591 kg
<u>.</u>	Sólido	Nasa,2.00391 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[2]		
	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Cortar-Extruir9[1]		Maga: 2 00504 kg
	Sólido	Masa:2.00591 kg Volumen:0.000253913 m^3 Densidad:7900 kg/m^3 Peso:19.6579 N
Saliente-Extruir3		Maga: 2 27502 kg
<u>.</u>	Sólido	Masa:2.27502 kg Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N
Saliente-Extruir3		Masa:2.27502 kg
	Sólido	Volumen:0.000289812 m^3 Densidad:7850 kg/m^3 Peso:22.2952 N
,		

Propiedades de estudio

Nombre de estudio	Análisis estático 1
Tipo de análisis	Análisis estático
Tipo de malla	Malla sólida
Efecto térmico:	Activar
Opción térmica	Incluir cargas térmicas
Temperatura a tensión cero	298 Kelvin
Incluir los efectos de la presión de fluidos desde SOLIDWORKS Flow Simulation	Desactivar
Tipo de solver	FFEPlus
Efecto de rigidización por tensión (Inplane):	Desactivar
Muelle blando:	Desactivar
Desahogo inercial:	Desactivar
Opciones de unión rígida incompatibles	Automático
Gran desplazamiento	Desactivar
Calcular fuerzas de cuerpo libre	Activar
Fricción	Desactivar
Utilizar método adaptativo:	Desactivar
Carpeta de resultados	Documento de SOLIDWORKS (C:\Users\Diego\Desktop\pieza\herrajes)

Unidades

Sistema de unidades:	Métrico (MKS)
Longitud/Desplazamiento	mm
Temperatura	Kelvin
Velocidad angular	Rad/seg
Presión/Tensión	N/m^2

Propiedades de material			
Referencia de modelo	Propie	edades	Componentes
<u>.</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1045 Acero estirado en frío Isotrópico elástico lineal Tensión de von Mises máx. 5.3e+08 N/m^2 6.25e+08 N/m^2 2.05e+11 N/m^2 0.29 7850 kg/m^3 8e+10 N/m^2 1.15e-05 /Kelvin	Sólido 1(Saliente-Extruir1)(Eje-1), Sólido 1(Saliente-Extruir1)(Eje-2), Sólido 1(Saliente-Extruir3)(Perno unico-1), Sólido 1(Saliente-Extruir3)(Perno unico-2), Sólido 1(Saliente-Extruir3)(Perno unico-3), Sólido 1(Cortar-Extruir4)(similcable-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-1), Sólido 1(Saliente-Extruir3)(vientos rigidos 3-2)
Datos de curva:N/A			
<u>.</u>	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante:	ASTM A36 Acero Isotrópico elástico lineal Tensión de von Mises máx. 2.5e+08 N/m^2 4e+08 N/m^2 2e+11 N/m^2 0.26 7850 kg/m^3 7.93e+10 N/m^2	Sólido 1(Redondeo1)(Mastil- 1/Megamastil-1), Sólido 1(Saliente- Extruir3)(Piezaf-2), Sólido 1(Cortar- Extruir3)(Piezafvr-1), Sólido 1(Cortar- Extruir3)(Piezafvr-2)
Datos de curva:N/A			
★	Nombre: Tipo de modelo: Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson: Densidad: Módulo cortante: Coeficiente de dilatación térmica:	AISI 1020 Isotrópico elástico lineal Tensión de von Mises máx. 3.51571e+08 N/m^2 4.20507e+08 N/m^2 2e+11 N/m^2 0.29 7900 kg/m^3 7.7e+10 N/m^2 1.5e-05 /Kelvin	Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-1), Sólido 1(Cortar-Extruir5)(Mastil-1/gancho tensor puntal-2), Sólido 1(Saliente-Extruir14)(base pivote-1), Sólido 1(Saliente-Extruir14)(base pivote-2), Sólido 1(Redondeo2)(base superior-1), Sólido 1(Redondeo2)(base superior-2), Sólido 1(Redondeo1)(cuerpo1-1), Sólido 1(Redondeo1)(cuerpo1-2), Sólido 1(Cortar-Extruir9[2])(vientos rigidos 2-1), Sólido 2(Cortar-

	Extruir9[1])(vier 1), Sólido 1(Cortar- Extruir9[2])(vier 2), Sólido 2(Cortar- Extruir9[1])(vier 2)	ntos rigidos 2-
Datos de curva:N/A		

Cargas y sujeciones

Nombre de sujeción	lmagen de sujeción	Detalles de sujeción
Fijo-1		Entidades: 1 cara(s) Tipo: Geometría fija

Fuerzas resultantes

Componentes	X	Υ	Z	Resultante
Fuerza de reacción(N)	48044.8	346622	82205.2	359462
Momento de reacción(N.m)	0	0	0	0

Fijo-2

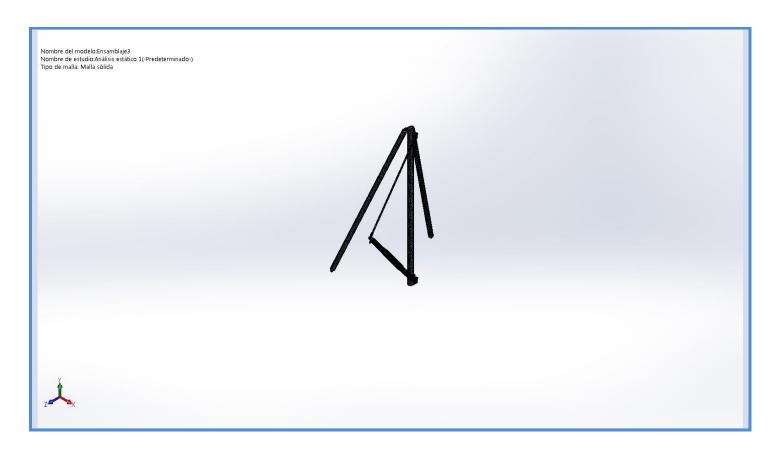
Entidades: 2 cara(s)
Tipo: Geometría fija

Ī	F		6	rza	26	re	25	ιıl	lta	n	te	2
ı		ч			13		-61	u				-

der zus resultantes						
Componentes >	(Υ	Z	Resultante		
Fuerza de reacción(N) -480	53.7	-216896	-82208.2	236878		
Momento de reacción(N.m))	0	0	0		

Nombre de carga	Cargar imagen	Detalles de carga
Gravedad-1	1	Referencia: Planta Valores: 0 0 -9.81 Unidades: m/s^2
Fuerza-1		Entidades: 1 cara(s) Referencia: Arista< 1 > Tipo: Aplicar fuerza Valores:,10500 kgf

Información de contacto


Contacto	lmagen del contacto	Propiedades del contacto	
Contacto global		Tipo: Componentes: Opciones:	Unión rígida 1 componente(s) Mallado compatible

Información de malla

Tipo de malla	Malla sólida
Mallador utilizado:	Malla estándar
Transición automática:	Desactivar
Incluir bucles automáticos de malla:	Desactivar
Puntos jacobianos	4 Puntos
Tamaño de elementos	72.9326 mm
Tolerancia	3.64663 mm
Trazado de calidad de malla	Elementos cuadráticos de alto orden
Regenerar la malla de piezas fallidas con malla incompatible	Desactivar

Información de malla - Detalles

Número total de nodos	100468
Número total de elementos	51982
Cociente máximo de aspecto	432.87
% de elementos cuyo cociente de aspecto es < 3	13.5
% de elementos cuyo cociente de aspecto es > 10	4.48
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh;mm;ss):	00:00:16
Nombre de computadora:	DIEGO-PC

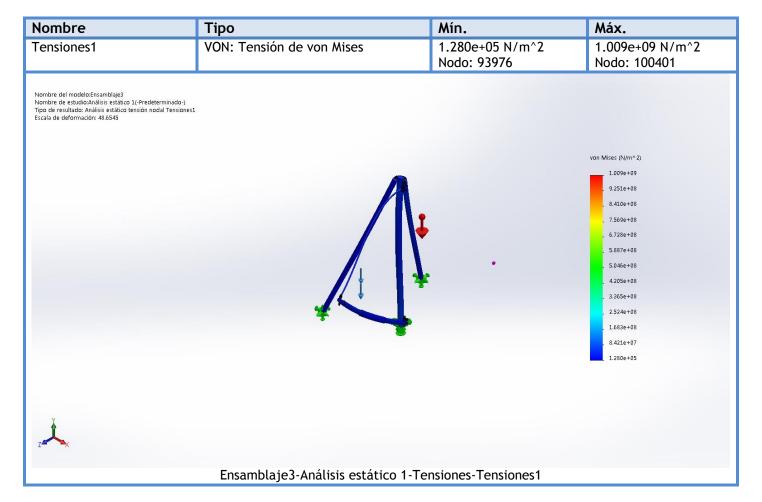
Información sobre el control de malla:

Nombre del control de malla Imagen del control de malla		Detalles del control de malla
Control-1	White of condition of a second condition of the condition	Entidades: 1 Sólido(s) Unidades: mm Tamaño: 48.3178 Coeficiente: 1.5

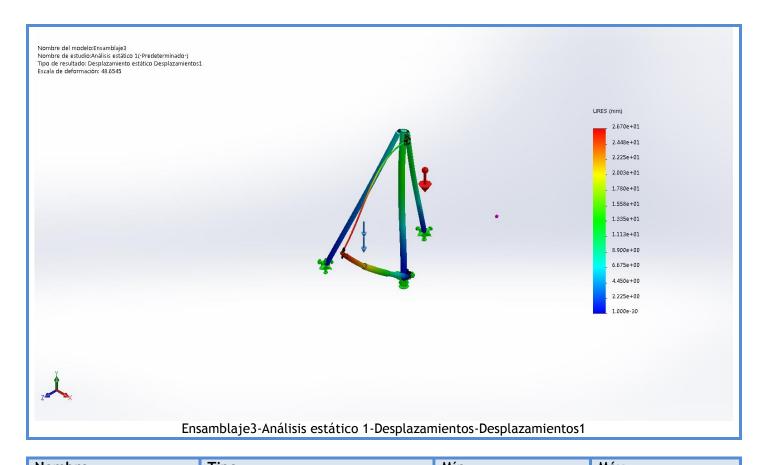
Detalles del sensor

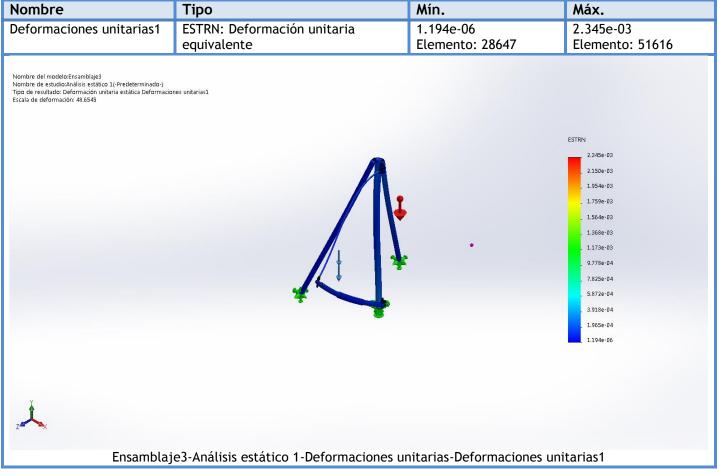
No hay datos

Fuerzas resultantes


Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-8.8468	129727	-3.05864	129727


Momentos de reacción


Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Desplazamientos1	URES: Desplazamientos resultantes	0.000e+00 mm Nodo: 44206	2.670e+01 mm Nodo: 97221

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Concepción del Uruguay INGENIERIA ELECTROMECANICA

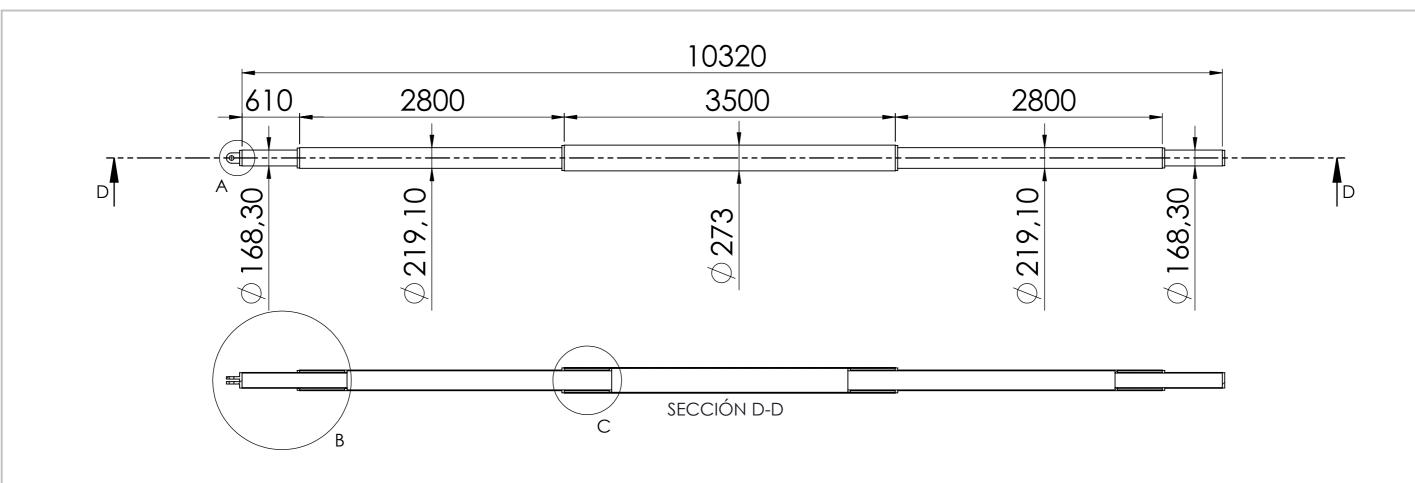
PROYECTO FINAL DE CARRERA (P F C)

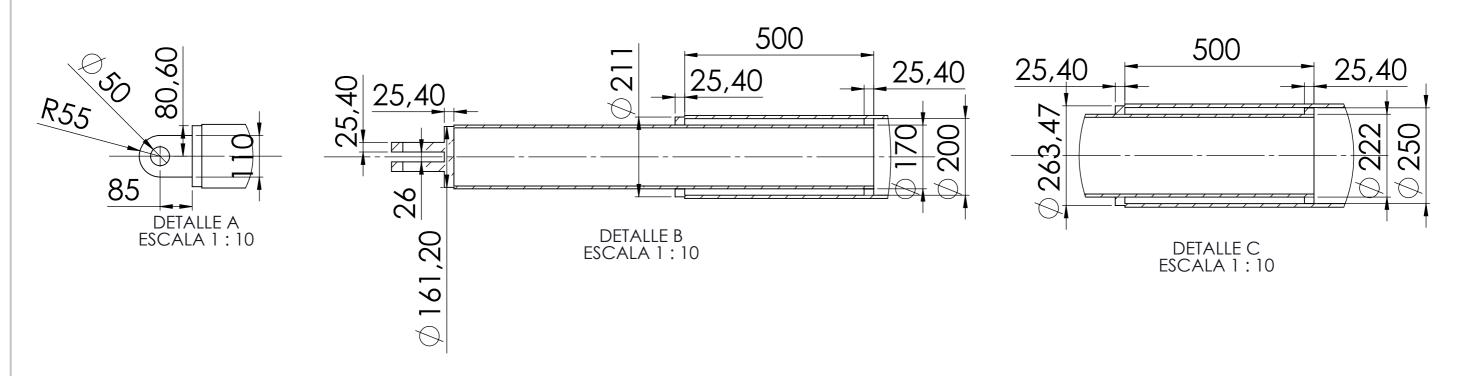
Ingeniería y diseño de grúa para elevar barcos.

Anexos II - Planos.

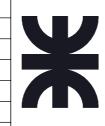
Proyecto Nº: PFC 1805A

Autores: Lapalma, Guillermo.


Kautz, Diego.


Tutor: Reynoso, Guillermo

Dirección de Proyectos: Ing. Puente, Gustavo Ing. De Carli, Carlos Aníbal


AÑO 2018

Ing. Pereira 676 –C. del Uruguay (3260) – Entre Ríos – Argentina Tel. / Fax: 03442 – 425541 / 423803 - Correo Electrónico: frcu@frcu.utn.edu.ar

Listado de materiales.					
Elemento	Material	Cantidad	Cortes [mm]		
Caño 10" Sch40	ASTM A53	1	3500		
Caño 8" Sch40	ASTM A53	2	3300		
Caño 6" Sch40	ASTM A53	2	1110		
Tapa 1"	S.A.E 1020	2	Plasma		
Rodaja 1"	S.A.E 1020	8	Plasma		
Planchuela 1"	S.A.E 1020	2	Plasma		

Rev.	De Ca
Apr.	
1:40	
+	

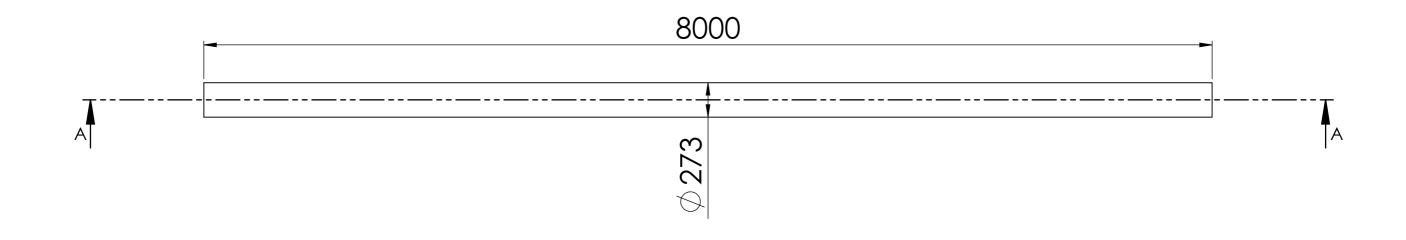
Fecha

09/2018

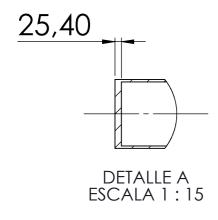
Nombre

Puerto de Colón.

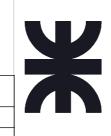
Cliente:


Grupo: Kautz, Diego. Lapalma, Guillermo.

Proy:
PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

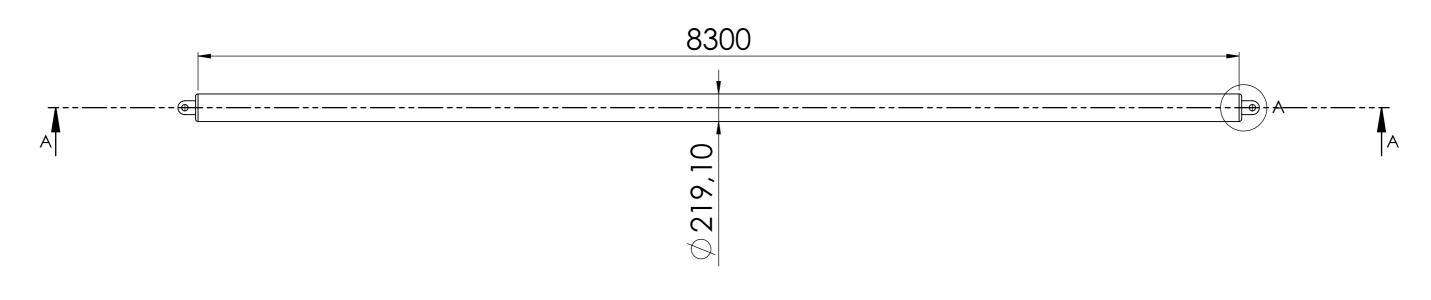

Mástil

Plano N°: PH-PFC1805A-PM1

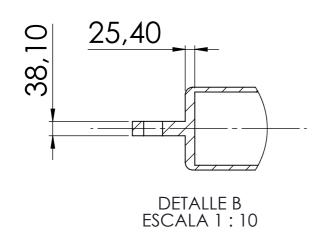

Reemp. a:

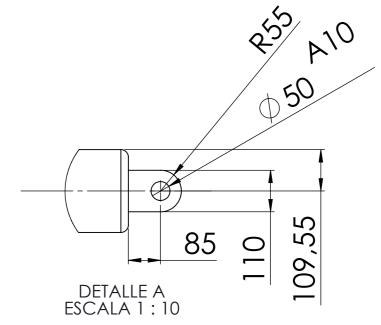
	Listado de materiales.						
Elemento Material Cantidad Cortes [m							
	Caño 10" Sch40	ASTM A53	1	8000			
	Planchuela 1"	S.A.E 1020	2	Tapa de caño			

	Fecha	Nombre	Cliente:
Dib.	09/2018	Puente, G.	
Rev.		De Carli, A.	Puerto c
Apr.			
Fsc.			


Cliente:

Grupo:
Kautz, Diego.
Lapalma, Guillermo.


Proy:
PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.


Puntal

Plano N°: PH-PFC1805A-PM2

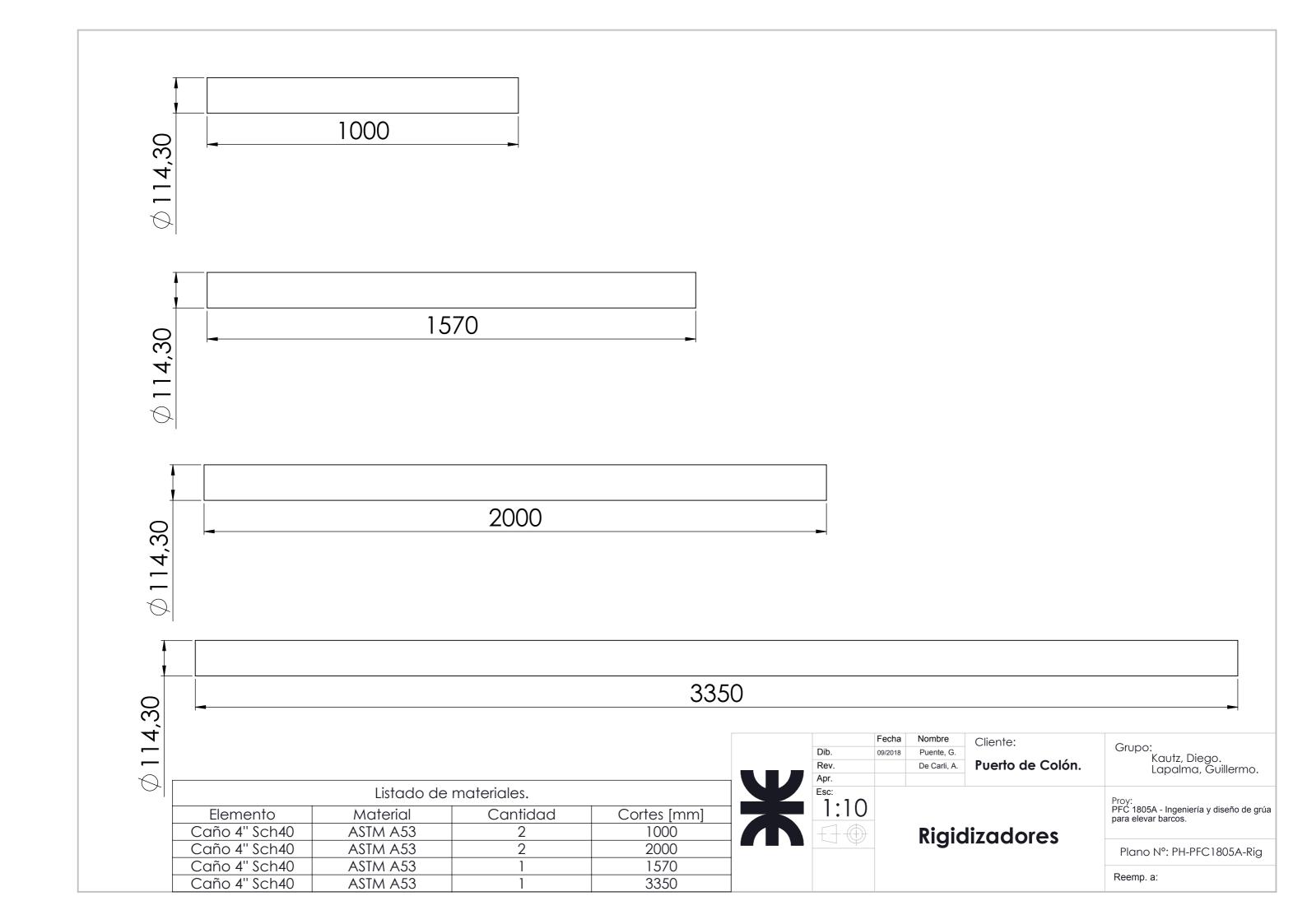
Listado de materiales.					
Elemento Material Cantidad Cortes [mm]					
Caño 8" Sch80	ASTM A53	2	8300		
Planchuela 1-1/2"	S.A.E 1020	4	Tapa de caño		

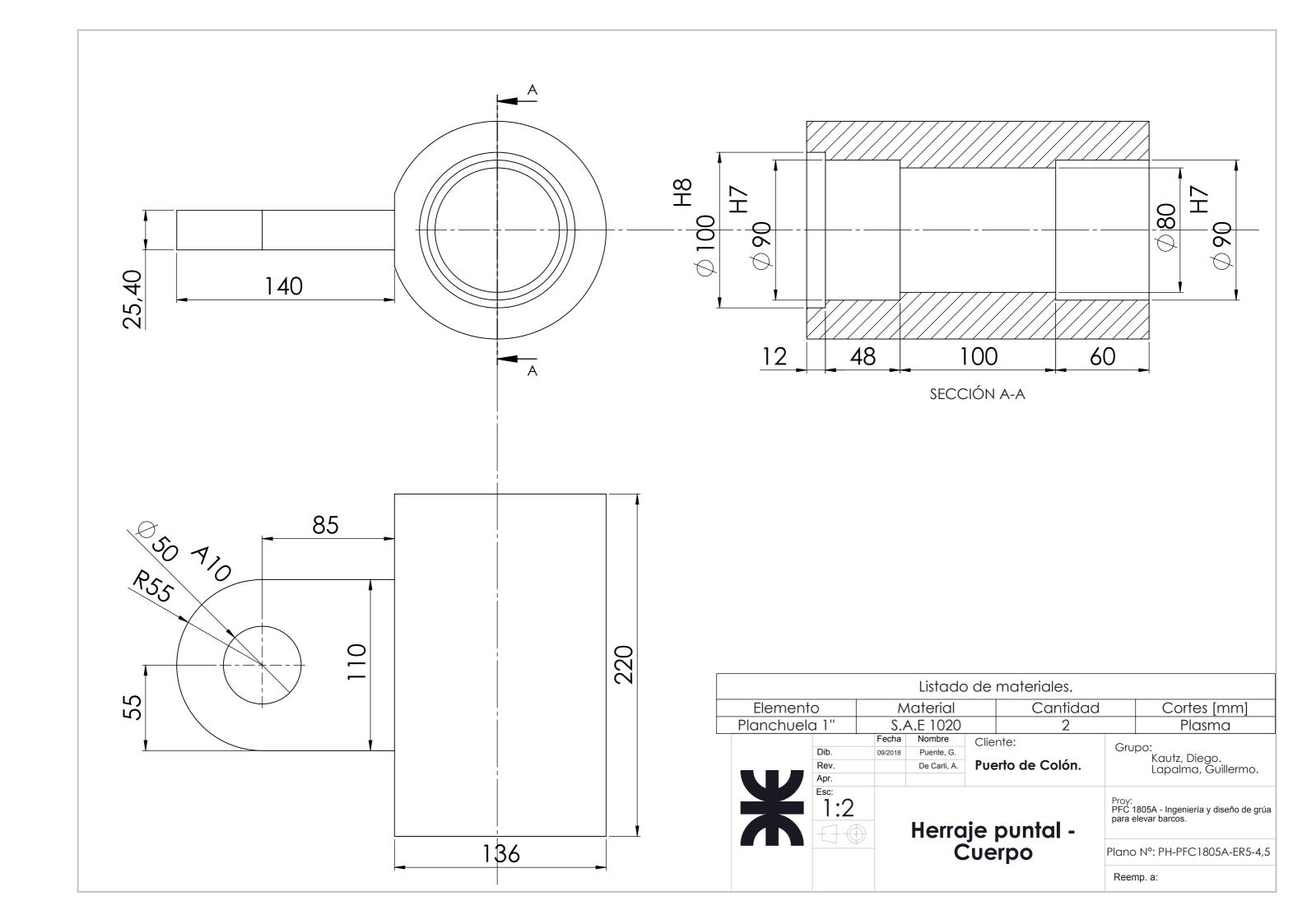
Fecha

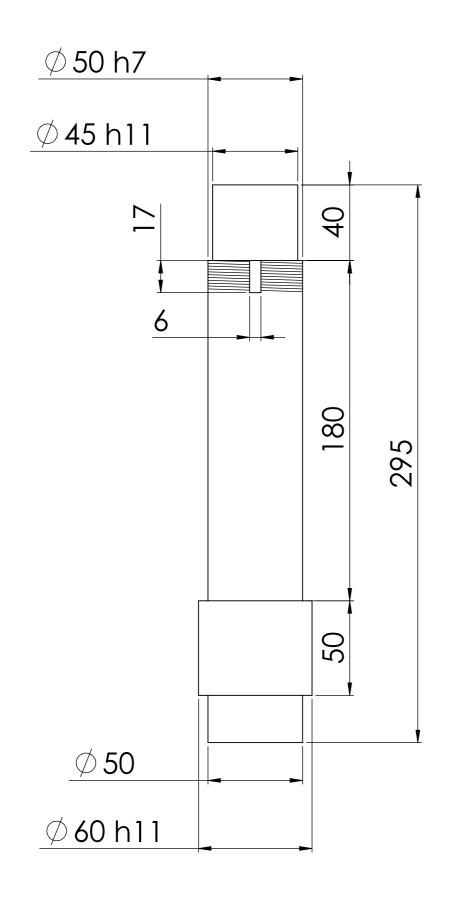
09/2018

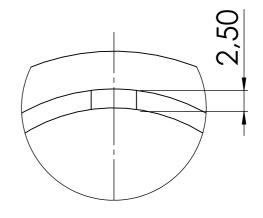
Nombre

Puente, G.

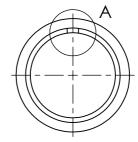

Cliente:


Puerto de Colón.


Grupo	o:
	Kautz, Diego.
	Lapalma, Guillermo.


Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

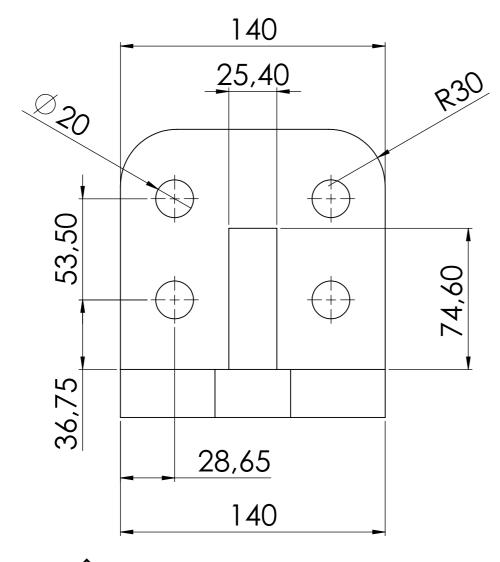
Plano N°: PH-PFC1805A-PM3

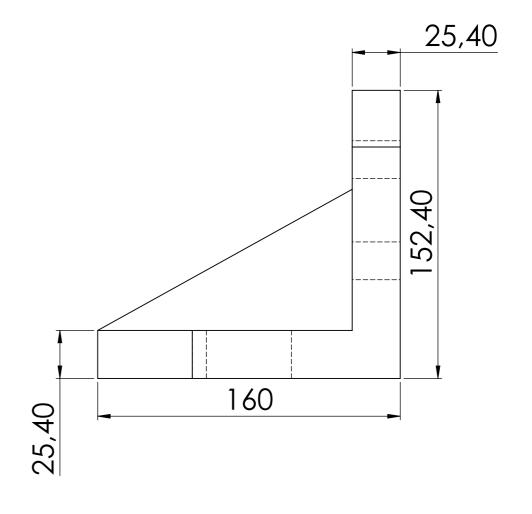


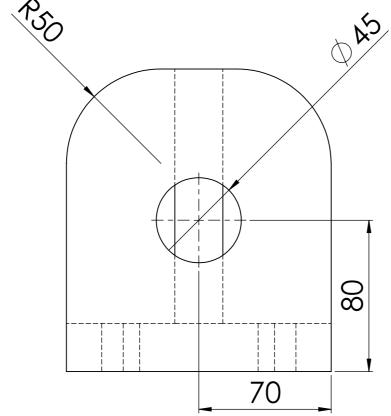
DETALLE A ESCALA 2 : 1

	Fecha	Nombre	Cl
Dib.	09/2018	Puente, G.	0.
Rev.		De Carli, A.	Pι
Apr.			

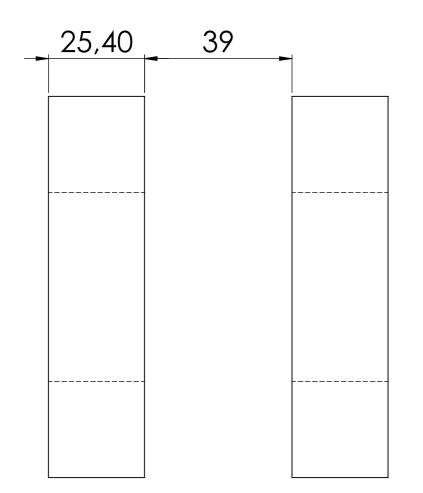
Cliente:

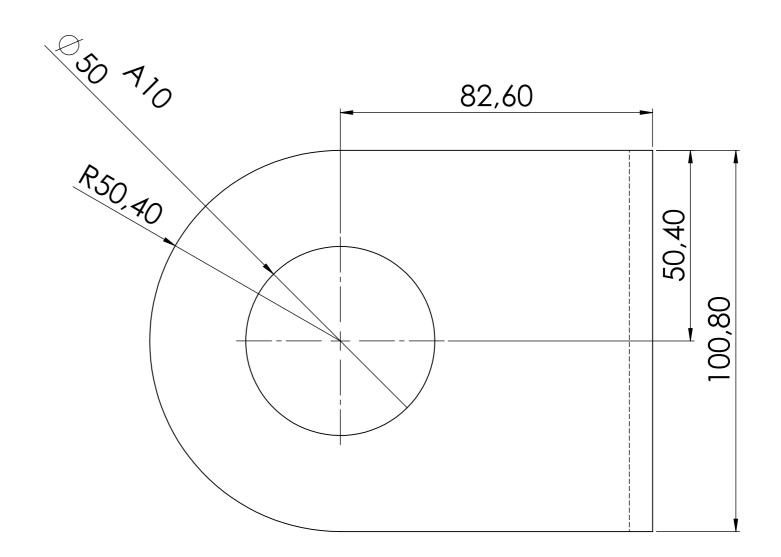

Puerto de Colón.


Grupo: Kautz, Diego. Lapalma, Guillermo.


Herraje puntal Perno Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

Plano N°: PH-PFC1805A-ER5-2


Listado de materiales.						
Elemento Material Cantidad Cortes [mm]						
Macizo 60 mm						



Listado de materiales.								
Elemento		Ν	1aterial		Cantidad		Cortes [mm]	
Planchuela 1	1"	S./	4.E 1020		2		Plasma	
	•	Fecha	Nombre	Clie	nte:			
Dit	b.	09/2018	Puente, G.	00	Allor III o.		po: Kautz, Diego.	
Re	Rev. De Carli, A. Puerto de Colón.		erto de Colón.		Lapalma, Guillermo.			
Ap	or.						Lapairia, Comorrio.	
1:2 Herraje puntal- Parte superior			805A - Ingeniería y diseño de grúa elevar barcos.					
	<u> </u>		Parte	Parte superior		Plan	o N°: PH-PFC1805A-ER5-6	
					Reen	np. a:		

Rev.	
Apr.	
Esc:	
1 • 1	
1.1	
114	

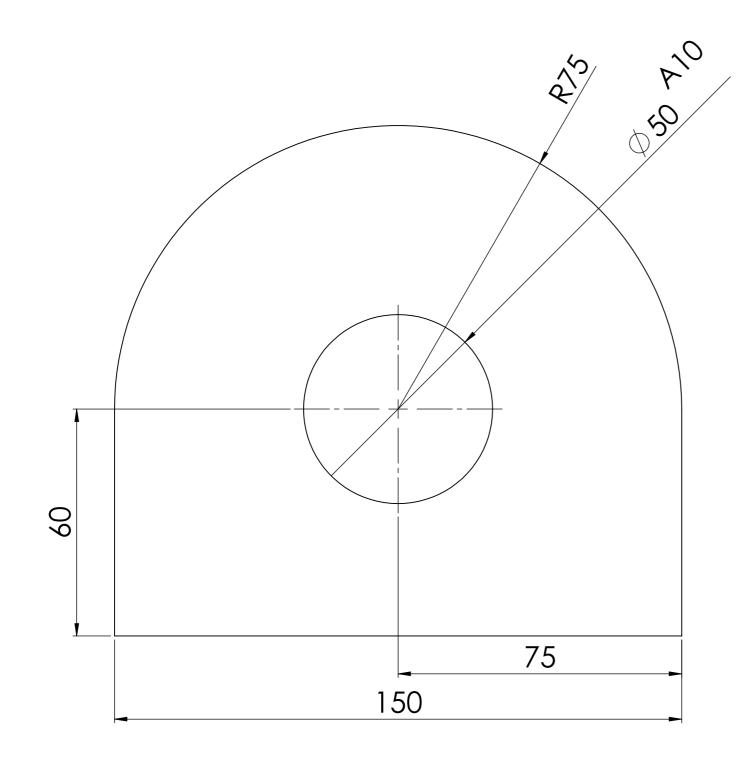
Dib.

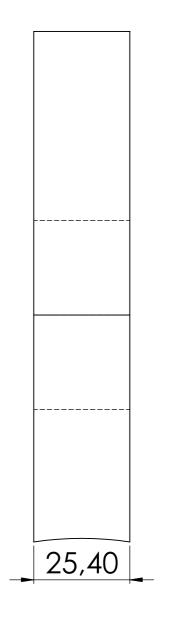
Fecha

09/2018

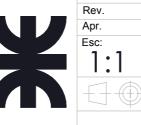
Nombre Cliente:

Puerto de Colón.


Grupo: Kautz, Diego. Lapalma, Guillermo.


Herraje puntal-vientos

Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

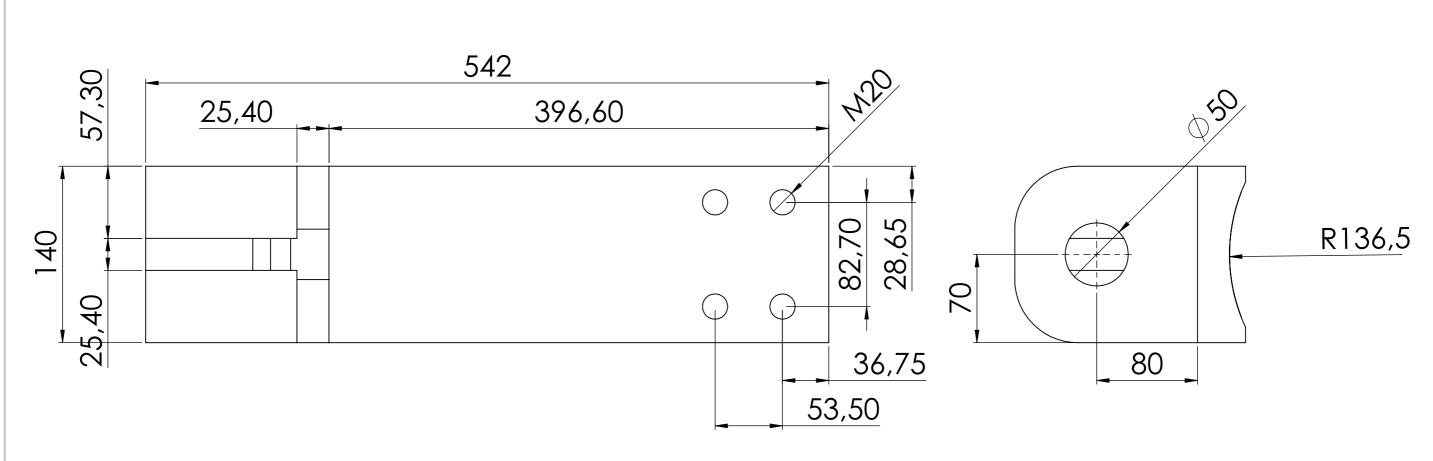

Plano N°: PH-PFC1805A-ER4

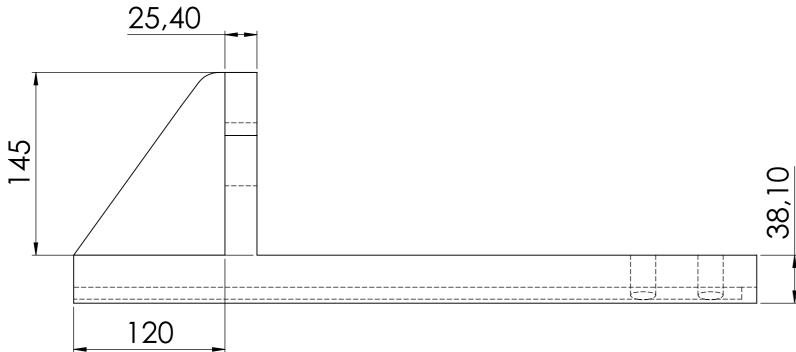
Listado de materiales.						
Elemento Material Cantidad Cortes [mm]						
Planchuela 1" S.A.E 1020 4 Plasmo						

Listado de materiales.					
Elemento	Material	Cantidad	Cortes [mm]		
Planchuela 1"	S.A.E 1020	2	Plasma		

Herraje Mástil

Puente, G.


Cliente:


Puerto de Colón.

Grupo: Kautz, Diego. Lapalma, Guillermo.

Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

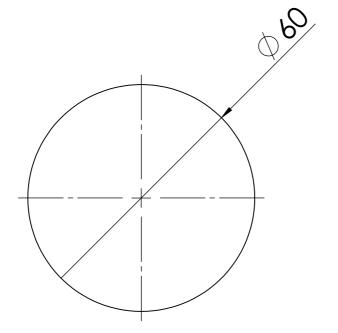
Plano N°: PH-PFC1805A-ER1

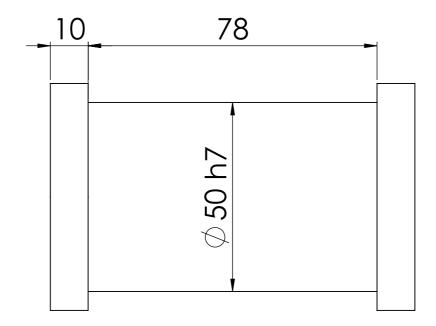
Listado de materiales.					
Elemento	Material	Cantidad	Cortes [mm]		
Planchuela 1"	S.A.E 1020	2	Plasma		
Planchuela 1-1/2"	S.A.E 1020	2	Plasma		

Dib.	09/2018	Puente, G
Rev.		De Carli,
Apr.		
Esc:		

Fecha

Herraje puntal Parte trasera

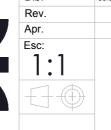

Cliente:


Puerto de Colón.

Grupo:
· Kautz, Diego.
Lanalma Guillermo

Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

Plano N°: PH-PFC1805A-ER5-1



S.A.E 1045 LF

Macizo 60 mm

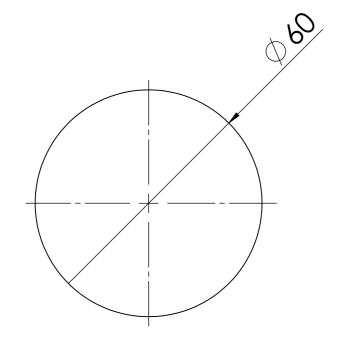
Dib.

Fecha

Puente, G.

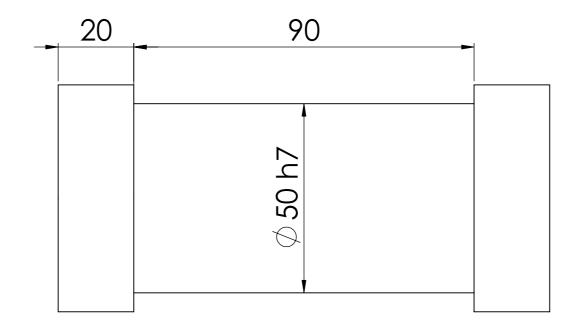
De Carli, A.

Puerto de Colón.


Cliente:

Grupo: Kautz, Diego. Lapalma, Guillermo.

Perno Mástil


Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

Plano N°: PH-PFC1805A-PE2

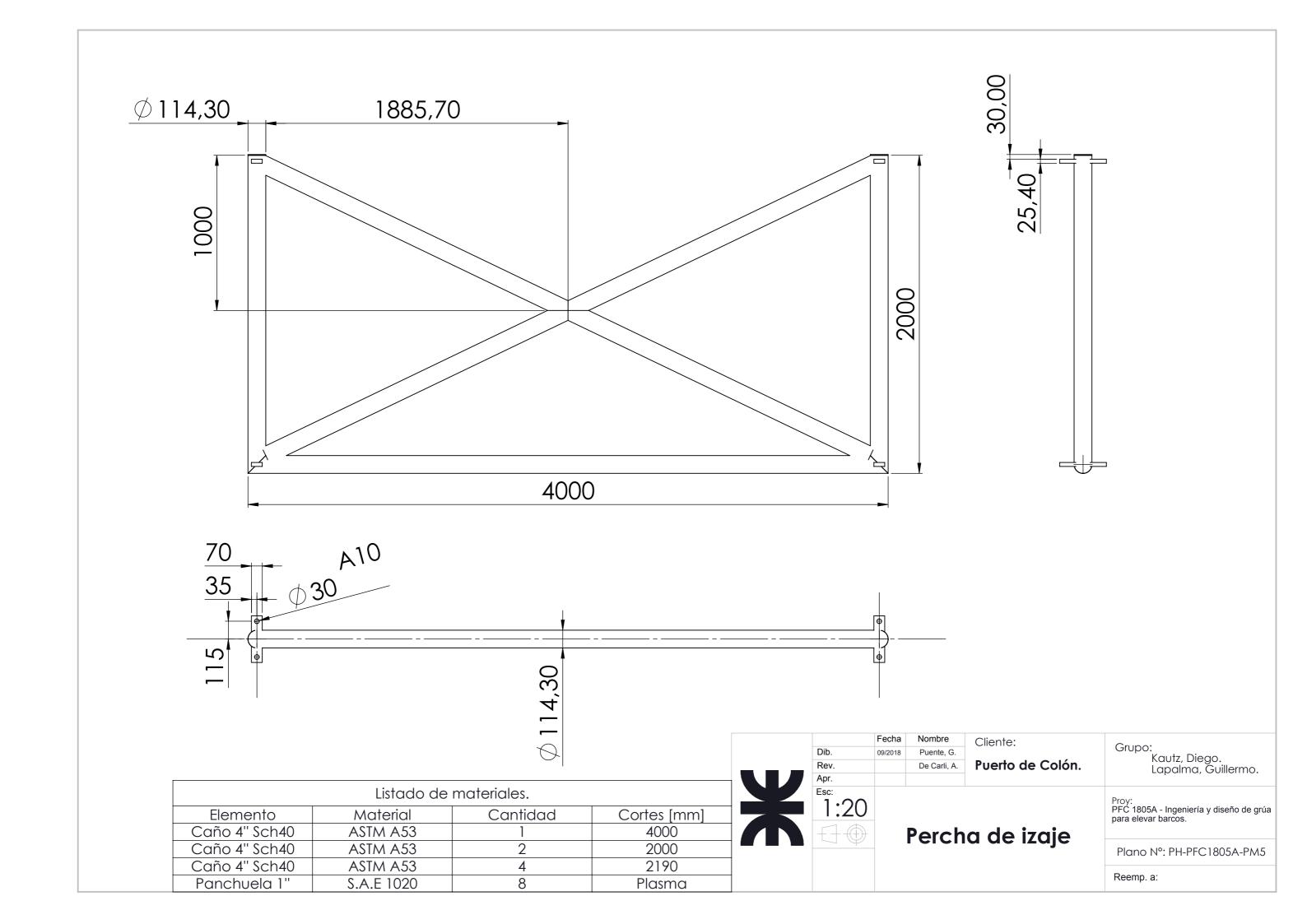
S.A.E 1045 LF

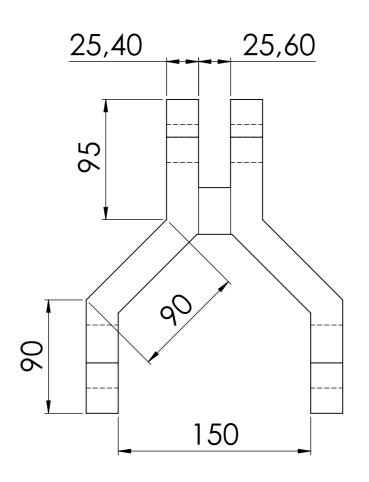
Macizo 60 mm

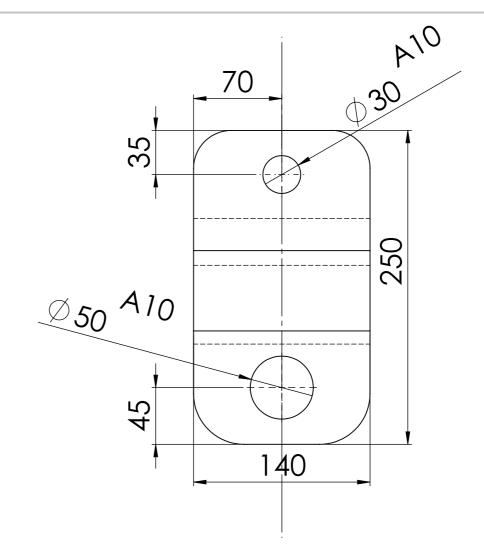
Dib.

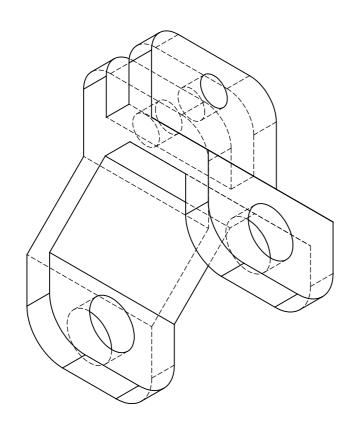
Perno vientos rígidos

Cliente:

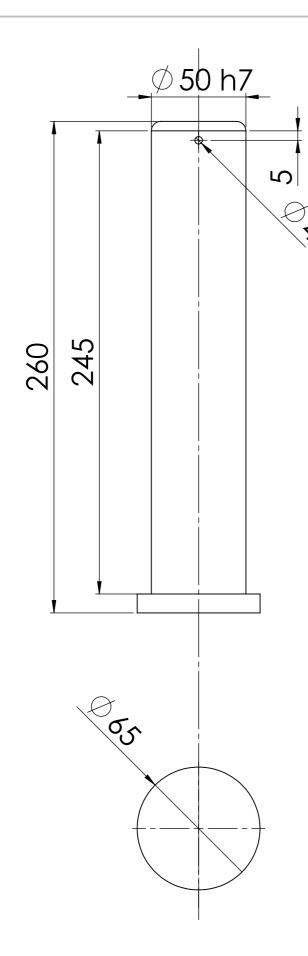

Puerto de Colón.

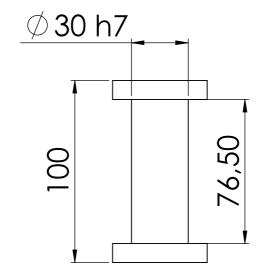

Puente, G.

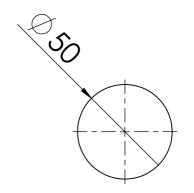

Grupo: Kautz, Diego. Lapalma, Guillermo.


Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

Plano N°: PH-PFC1805A-PE1







Listado de materiales.								
Elemento		٨	Material		Cantidad		Cortes [mm]	
Planchuela 1"		S.,	A.E 1020 4			Plasma		
			Fecha	Nombre	Cliente: Puerto de Colón.		Grupo: Kautz, Diego. Lapalma, Guillermo.	
		Dib.	09/2018	Puente, G.				
		Rev.		De Carli, A.				
		Apr.						
Esc: 1:		1:3		Manopla percha			805A - Ingeniería y diseño de grúa levar barcos.	
		Φ				Plai	no N°: PH-PFC1805A-ER8	
			Reen	пр. а:				

Listado de materiales.				
Elemento	Material	Cantidad	Cortes [mm]	
Macizo 50 mm	S.A.E 1045 LF	4		
Macizo 65 mm	Macizo 65 mm S.A.E 1045 LF			
	Fecha Nombre Clie	nte:	00.	

Puerto de Colón.

ib.	09/2018	Puente, G.
Rev.		De Carli, A
.pr.		
1:2		

Pernos Manopla

Grupo: Kautz, Diego. Lapalma, Guillermo.

Proy: PFC 1805A - Ingeniería y diseño de grúa para elevar barcos.

Plano N°: PH-PFC1805A-PE3, PE4