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Abstract—This paper presents the design of a reduced order
observer applied to a Linear Parameter Varying (LPV) system
with unknown input. This procedure is employed to develop
an actuator Fault Detection and Isolation (FDI) scheme. The
observer’s design and its stability conditions are guaranteed
in terms of a Linear Matrix Inequalities (LMI). Two typical
chemical industries processes examples are given to illustrate the
use and performance of such approach.

Index Terms—state estimation, linear matrix inequalities, fault
detection, fault diagnosis, nonlinear systems.

I. INTRODUCTION

In the last decades, the Fault Detection and Isolation (FDI)
methods, specifically their model-based approaches, have been
widely considered. Several contributions and theoretical ap-
proaches about its use on linear systems can be found in lit-
erature [1]–[5], among others. Besides, there is a considerable
amount of articles that involve the development of observers
applied to a non-linear system [6]–[8], but this problem is still
a challenge due to the trouble of dealing with non-linearities.

Because of the difficulty to design a non-linear observer,
many authors prefer to represent these systems by a Linear
Parameter Varying (LPV) approach [9], [10]. The idea of this
approach is to represent the system as an interpolation of
ith affine local models. That is, the interpolation technique
presents a good method to schedule a set of linear models by
a convex weighting function. The LPV modelling framework
is powerful since it allows the application of well-known linear
design tools to a wide range of non-linear models.

For the above mentioned reasons, this paper presents the
design of a Reduced-order Unknown Input Observer applied
to an LPV system (LPV-RUIO). The observer design and its
stability conditions are based on the resolution of a Linear
Matrix Inequalities (LMI) problem that was solved using
MATLAB LMI toolbox [11]. In addition, to perform the states
estimation and their consequential residue generation, in order
to detect and isolate the actuators faults, the proposed observer
is used as part of a bank of dedicated observers.

With the purpose to highlight the behavior of the proposed
observer, a numerical simulation of two typical chemical
industries processes is given. They are a two tanks non-

interacting liquid level process and the highly non-linear
Continuous Stirred Tank Reactor (CSTR) process.

This paper is organized as follows. In Section II, the
polytopic representation of an affine LPV system is provided.
Section III presents the design proposal and stability condi-
tions of an LPV-RUIO. In Section IV a briefly explanation of
the detection and isolation methodology is introduced. Subse-
quently, in Section V and VI, two numerical simulations are
provided to show the performance of the proposed approach.
Finally, concluding remarks are made in the last section.

II. LPV SYSTEM REPRESENTATION

Consider a non-linear system with an unknown input de-
scribed by the following equation,{

ẋ(t) = f(x(t), u(t), d(t))

y(t) = g(x(t), u(t))
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, d(t) ∈ Rq , y(t) ∈ Rp are the
state vector, the known input vector, the unknown input vector
and the output vector, respectively.

Under the assumption that functions f(x(t), u(t), d(t)) and
g(x(t), u(t)) are continuously differentiable, it is possible to
approximate, or even represent, the dynamic behavior of the
system (1) in different operating points through a convex set
of M affine models dependent on a variable parameter ζ(t).
That is, the polytopic representation of affine LPV system is,

ẋ(t) =

M∑
i=1

µi (ζ(t)) {Aix(t) +Biu(t) + ∆xi +Did(t)}

y(t) = Cx(t)
(2)

where Ai, Bi, ∆xi, Di and C are constant matrices of
appropriate dimensions, and the weighting functions µi(.)
depend on a variable parameter ζ(t) assumed to depend on
a measurable variable (inputs or outputs). In addition µi(ζ(t))
satisfies,

µi (ζ(t)) ≥ 0;

M∑
i=1

µi(ζ(t)) = 1. (3)



III. DESIGN OF THE LPV-RUIO

Following the development of the observer for linear sys-
tems with unknown input introduced by Hou and Muller [1],
and under the assumption that rank Di = q, a set of non-
singular matrices is selected,

Ti =
[
Ni Di

]
, Ni ∈ Rn×(n−q). (4)

Thus, the system (2) is equivalent to,

˙̄x(t) =

M∑
i=1

µi(ζ(t))
{
Āix̄(t) + B̄iu(t) + ∆̄xi + D̄id(t)

}
(5a)

y(t) =

M∑
i=1

µi(ζ(t))
{
C̄ix̄(t)

}
(5b)

where

x(t) = Tix̄(t) = Ti

[
x̄1(t)
x̄2(t)

]
; ∆̄xi = T−1

i ∆xi =

[
∆̄xi1
∆̄xi2

]

Āi = T−1
i ĀiTi =

[
Āi11 Āi12

Āi21 Āi22

]
; B̄i = T−1

i Bi =

[
B̄i1

B̄i2

]

C̄i = CTi = [CNi CDi]; D̄i = T−1
i Di =

[
0
Iq

]
(6)

with x̄1(t) ∈ Rn−q , x̄2(t) ∈ Rq .
Because of (6) it is observed that (5a) involves directly the

unknown input in the state x̄2(t). Then, it is possible to drop
this state and rewrite the system (5) without the unknown input
as, [

In−q 0
]

˙̄x(t) =

M∑
i=1

µi(ζ(t))
{

[Āi11 Āi12 ]x̄(t)

+ B̄i1u(t) + ∆̄xi1

} (7a)

y(t) =

M∑
i=1

µi(ζ(t)) {[CNi CDi]x̄(t)} . (7b)

Assuming that x̄2(t) is obtained from y(t) and, if the matrix[
CDi

]
has full column rank, then there exists a non-singular

matrix

Ui =
[
CDi Qi

]
, Qi ∈ Rn×(n−q) (8)

being

U−1
i =

[
Ui1

Ui2

]
, Ui1 ∈ Rq×n, Ui2 ∈ R(n−q)×n (9)

multiplying both sides of (7b) by U−1
i and isolating,

x̄2(t) =

M∑
i=1

µi(ζ(t)) {Ui1y(t)− Ui1CNix̄1(t)} (10a)

y(t) =

M∑
i=1

µi(ζ(t)) {CNix̄1(t)} (10b)

afterwards, substituting (10a) into (7a) and combining it with
(10b) derive in (2) transform to,

˙̄x1(t) =

M∑
i=1

µi(ζ(t))
{
Ãi1 x̄1(t) + Ei1y(t)

+ B̄i1u(t) + ∆̄xi1

} (11a)

y(t) =

M∑
i=1

µi(ζ(t))
{
C̃i1 x̄1(t)

}
(11b)

where C̃i1 = CNi, Ãi1 = Āi11 − Āi12Ui1CNi and Ei1 =
Āi12Ui1 .

At this point, if the pair {Ãi1 , C̃i1} is observable, following
the conventional Luenberger observer design procedure [12],
it is possible to design a reduced-order observer for a system
free of unknown inputs (11) as,

Φ̇(t) =

M∑
i=1

µi(ζ(t))
{
KiΦ(t) + B̄i1u(t) + ∆̄xi1 + L∗

i y(t)
}

(12)

with Φ(t) ∈ R(n−q), L∗
i = Li + Ei1 and Ki = Ãi1 − LiC̃i1 .

Where Li ∈ R(n−q)×(p−q) is the gain of the observer to be
designed.

For that, the state estimation error is defined as,

e(t) = x̄1(t)− Φ(t) (13)

therefore, the estimation error dynamics is

ė(t) = ˙̄x1(t)− Φ̇(t)

=

M∑
i=1

µi(ζ(t))
{
Ãi1 x̄1(t)−KiΦ(t)− Liy(t)

}
=

M∑
i=1

µi(ζ(t)) {Ki(x̄1(t)− Φ(t))}

(14)

becomes,

ė(t) =

M∑
i=1

µi(ζ(t))Kie(t) (15)

in this way, if Ki is Hurwitz, ė(t)→ 0 asymptotically.
Theorem 1: If there exists a symmetric matrix X � 0

and Wi, such that the following conditions hold ∀i ∈
{1, 2, 3, . . . ,M}:

(XÃi1 −WiC̃i1)T + (XÃi1 −WiC̃i1) + 2αX ≺ 0 (16)

then the observer (12) is a Linear Parameter Varying Reduced-
order Unknown Input Observer (LPV-RUIO). That is, e(t)
towards zero asymptotically for any initial state e(0).

Proof: From (13), and choosing a Lyapunov function with
a symmetric matrix X � 0.

V (t) = e(t)TXe(t) (17)

thus, the exponential convergence of the estimation error is
guaranteed if,

V̇ (t) + 2αV (t) < 0 (18)



where α is the decay rate constant [13]. Then, using (15) and
(17) it is obtained,

V̇ (t) =ėT (t)Xe(t) + e(t)XėT (t)

=

M∑
i=1

µi(ζ(t))eT (t)KT
i Xe(t)

+

M∑
i=1

µi(ζ(t))eT (t)XKie(t)

=

M∑
i=1

µi(ζ(t))
{
eT (t)

(
KT

i X +XKi

)
e(t)

}
(19)

hence, replacing (17) and (19) in (18) it results,
M∑
i=1

µi(ζ(t))
{
eT (t)

(
KT

i X +XKi + 2αX
)
e(t)

}
< 0 (20)

notice that (KT
i X+XKi+2αX) ≺ 0, ∀i ∈ {1, 2, 3, . . . ,M},

implies that e(t) towards zero asymptotically for any initial
state e(0).

As defined Ki = Ãi1 − LiC̃i1 . Therefore, replacing the
previous inequality,

(Ãi1 − LiC̃i1)TX +X(Ãi1 − LiC̃i1) + 2αX ≺ 0

ÃT
i1X − C̃

T
i1L

T
i X +XÃi1 −XLiC̃i1 + 2αX ≺ 0.

(21)

Moreover, to eliminate the non-existing linearities, it is defined
Wi = XLi. Resulting,

(XÃi1 −WiC̃i1)T + (XÃi1 −WiC̃i1) + 2αX ≺ 0 (22)

Remark 1: The theorem 1 shows that the LPV-RUIO design
is solved through the LMI (16). For that, the LMI Lab [11]
package of MATLAB software is used.

Thereby, from (12), with Φ(t) → ˆ̄x1(t) according to t →
∞, getting

x̂ =

M∑
i=1

µi(ζ(t))Ti ˆ̄x

=

M∑
i=1

µi(ζ(t))Ti

[
Φ(t)

Ui1y(t)− Ui1CNiΦ(t)

] (23)

with x̂(t)→ x(t), according to t→∞.

IV. ACTUATOR FAULT DETECTION USING LPV-RUIO
If the LPV-RUIO given by (12) can be designed such that

e(t) tends to zero when there is no fault and defining r(t) =
|ŷ(t)− y(t)| = |Ce(t)|, then r(t) also tends to zero when the
system is fault free. Based on this observation and following
the classical FDI schemes [3], the fault detection is achieved
as:

Fault =

{
False if r(t) ≤ rth
True if r(t) > rth

(24)

where rth is a fixed detection threshold. Besides, according to
the existing schemes ([4], [5]) it is possible to construct a bank
of observers and from analyzing their residues the actuator
faults can be isolated.

V. ILLUSTRATIVE EXAMPLE I

Consider the model of a two tanks non-interacting liquid
level process, represented in Fig. 1, its physical and operational
parameter values appear in Table I.

T1
From
storage

T2

From
process

To
process

LTLC

LT

q1

q2

Kv1

Kv2

FDI
ALG

Fig. 1. Diagram of a two tanks non-interacting process.

TABLE I
SYSTEM PARAMETERS OF TWO TANKS NON-INTERACTING PROCESS

Parameter Description Value
h1max , h2max Maximum height 0.6 m
d1, d2 Tanks diameter 0.04 m
q1max , q2max Maximum flow rate 6 l min−1

Kv1 Flow coefficient 1 0.9 × 10−4 m3 s−1 bar−1

Kv2 Flow coefficient 2 1 × 10−4 m3 s−1 bar−1

The non-linear model equations of the two tanks non-
interacting liquid level process are defined as:

A1
dh1(t)

dt
= q1(t)−Kv1

√
h1(t)

A2
dh2(t)

dt
= q2(t) +Kv1

√
h1(t)−Kv2

√
h2(t).

(25)

Finally, according to Fig. 1, the state variable h2 is controlled
by the storage feed flow rate q1 and the process flow rate q2.

A. LPV-RUIO Design

Using the Parameterized Jacobian Linearization (PJL) tech-
nique [9], it is possible to rewrite (25) like an LPV model. For
that, the variable parameters vector, with dimension N = 2,
was defined depending on the outputs, ζ(t) :=

[
h1(t) h2(t)

]
.

To obtain a proper representation of the non-linear system,
L = 3 linearization points per parameter were used. That is,

ρj,1 = min{ζj(t)}
ρj,2 = mid{ζj(t)}
ρj,3 = max{ζj(t)}

(26)



with j ∈
[
1, . . . , N

]
and k ∈

[
1, . . . , L

]
. As a result, we get

Ai =

− Kv1

2A1

√
h1i

0

Kv1

2A2

√
h1i

− Kv2

2A2

√
h2i


Bi =

[
1
A1

0

0 1
A2

]
, C =

[
1 0

0 1

] (27)

and ∆xi = xi − {Aixi +Biui}, where the variable indi-
cated with a subscript i corresponds to its value at the ith
linearization point. Next, we obtain membership functions of
each parameter

Mj,1(ζj(t)) =
ρj,1 − ζj(t)
ρj,2 − ρj,1

Mj,2(ζj(t)) =
ρj,2 − ζj(t)
ρj,1 − ρj,3

Mj,3(ζj(t)) =
ζj(t)− ρj,3
ρj,3 − ρj,2

.

(28)

Taking everything into account, the M = LN = 9 weighting
functions corresponding to each lineal model was defined

µ1(ζ(t)) = M1,1(ζ1(t))M2,1(ζ2(t))

µ2(ζ(t)) = M1,1(ζ1(t))M2,2(ζ2(t))

µ3(ζ(t)) = M1,1(ζ1(t))M2,3(ζ2(t))

µ4(ζ(t)) = M1,2(ζ1(t))M2,1(ζ2(t))

µ5(ζ(t)) = M1,2(ζ1(t))M2,2(ζ2(t))

µ6(ζ(t)) = M1,2(ζ1(t))M2,3(ζ2(t))

µ7(ζ(t)) = M1,3(ζ1(t))M2,1(ζ2(t))

µ8(ζ(t)) = M1,3(ζ1(t))M2,2(ζ2(t))

µ9(ζ(t)) = M1,3(ζ1(t))M2,3(ζ2(t))

(29)

At last, defining Di =
[

1
A1

0
]T

and solving the LMI (16),
we get the matrices to construct the observer (12) that was used
to detect and isolate the failure of the valve q2. On the other
hand, defining Di =

[
0 1

A2

]T
, and repeating the previous

procedure, we construct the observer to detect and isolate the
failure of the valve q1.

B. Numerical Simulation

To evaluate the performance and effectiveness of the pro-
posed LPV-RUIO, the presented FDI scheme was simulated
on the system (25). Firstly, two set-point step changes from
the initial condition h2 = 0.4 m were applied h2 = 0.3 m
at t = 200 s and h2 = 0.25 m at t = 400 s to show the
observer state estimation tracking capacity. Secondly, between
t = 400 s and t = 900 s an incipient gain degradation up to
10% from q1max

flow rate is introduced. Thirdly, an abrupt
fault with 10% from q2max

magnitude, occurred on valve q2
between t = 1000 s and t = 1500 s. Finally, at t > 1200 s an
abrupt fault occurred on valve q1 with a magnitude of 10%
from q1max

was injected.
It is important to note that to build a more realistic simula-

tion, a white measurement noise was added.

The proposed observer and the non-linear system (25) out-
puts are depicted in the Fig. 2. As can be seen, the performance
and tracking capacity exhibited in the fault-free operation
mode is correct. Besides, the Fig. 3 shows the residues
obtained from the difference between the real and estimate
states, which, when comparing this value with a constant
threshold, according to (24), it is possible to appreciate the
fault occurrence. At last, the Fig. 4 exhibits the behavior of
the weighting functions.
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Fig. 2. Liquid levels.
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Fig. 3. Residuals.

VI. ILLUSTRATIVE EXAMPLE II

Consider the model of a CSTR process, represented in
Fig. 5, its physical and operational parameter values appear
in Table II. This model is a modified version of the CSTR
example presented by Morningred et al. [14]. In the original
model, the system operates to constant volume.

Therefore, the CSTR process consists of an irreversible,
exothermic reaction, A → B, in a variable volume reactor



Fig. 4. Weighting functions.
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Fig. 5. Diagram of a Continuous Stirred Tank Reactor process.

cooled by a single coolant stream which can be modeled by
the following equations:

dV (t)

dt
= qe − qs(t)

dCA(t)

dt
=

qe
V (t)

(CAe − CA(t))− k0e
−E

RT (t)CA(t)

dT (t)

dt
=

qe
V (t)

(Te − T (t))− k1e
−E

RT (t)CA(t)

+
qc(t)

V (t)
k2(1− e

−k3
qc(t) )(Tce − T (t))

(30)

TABLE II
SYSTEM PARAMETERS OF CSTR PROCESS.

Parameter Description Value
qe Feed flow rate 100 l min−1

Te Feed temperature 350 K
CAe Feed concentration 1 mol l−1

Tce Inlet coolant temperature 350 K
E/R Activation energy term 1 × 104 K
∆H Heat of reaction −2 × 105 cal mol−1

Cp, Cpc Specific heats 1 cal g−1 K
ρ, ρc Liquid densities 1 × 103 g l−1

hA Heat transfer term 7 × 105 cal min−1 K
k0 Reaction rate constant 7.2 × 1010 l min−1

qsmax Maximum output flow rate 110 l min−1

qcmax Maximum coolant flow rate 110 l min−1

where

k1 =
∆Hk0
ρCp

, k2 =
ρCpc

ρcCp
, k3 =

hA
ρcCpc

. (31)

Finally, according to Fig. 5, the state variables V and CA are
controlled by the process flow rate qs and the coolant flow rate
qc, respectively. It should be clarified that the state variable CA

is controlled indirectly from the state T .

A. LPV-RUIO Design

Following the design procedure used in the previous ex-
ample, we defined the variables parameters vector, with di-
mension N = 2, like ζ(t) :=

[
V (t) T (t)

]
, and then we

performed the PJL in L = 3 points per parameter. That is,

Ai =


0 0 0

qe(CAi
−CAe)

V 2
i

− qe
Vi
− k0e

−E
RTi −ECAi

k0e
−E
RTi

RT 2
i

A31 −k1e
−E
RTi A33


Bi =

−1 0

0 0
0 B32

 , C =

1 0 0
0 1 0
0 0 1


(32)

and ∆xi = xi − {Aixi +Biui}, where

A31 =
qe(Ti − Te)

V 2
i

− k2qci(e
−k3
qci − 1)(Ti − Tce)

V 2
i

A33 =
k2qci(e

−k3
qci − 1)

Vi
− qe
Vi
− ECAi

k1e
−E
RTi

RT 2
i

B32 =

k2(Ti − Tce)
(
e

−k3
qci − 1

)
Vi

+
k2k3(Ti − Tce)e

−k3
qci

Vi
.

At last, defining Di =
[
−1 0 0

]T
and solving the LMI

(16), we get the matrices to construct the observer (12) that
was used to detect and isolate the failure of the valve qs. On
the other hand, defining Di =

[
0 0 B32

]T
, and repeating

the previous procedure, we construct the observer to detect
and isolate the failure of the valve qc.

B. Numerical Simulation

Again, following the procedure of the previous example to
evaluate the performance and effectiveness of the proposed
LPV-RUIO, the presented FDI scheme was simulated on the
system (30). Firstly, three set-point changes from the initial
condition CA = 0.9 mol l−1 and V = 100 l were applied
CA = 0.12 mol l−1 at t = 25 s, CA = 0.7 mol l−1 at t = 50 s,
V = 98 l at t = 100 s and V = 102 l at t = 250 s to show the
observer state estimation tracking. Secondly, between t = 50 s
and t = 150 s, it is introduced an incipient gain degradation
up to 5% from qsmax

. Thirdly, an abrupt fault, with magnitude
of 5% from qsmax

, occurred on valve qs between t = 200 s
and t = 350 s. Finally, at t > 250 s an abrupt fault occurred
on valve qc with a magnitude of 5% from qcmax

was injected.
Adding a white measurement noise as well.



The proposed observer and the non-linear system (30) are
depicted in the Fig. 6. Besides the Fig. 7 shows the fault
occurrence. At last, the Fig. 8 exhibits the behavior of the
weighting functions.
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Fig. 6. Volume and Temperature.
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VII. CONCLUSION

In this paper, it is presented an FDI scheme designed
using a reduced order observer applied to an LPV system
with unknown input. The proposed observer and its stability
conditions are based on the resolution of an LMI problem that
had been performed using MATLAB LMI toolbox.

It is important to note that the main proposal of this work is
the design of an LPV-RUIO from the linear-like design tools
and the proposition of an LMI problem. Therefore, it allows
the development of a particular observer bank to diagnose and
identify specific faults.

In addition, with the purpose to highlight the behavior of
the proposed observer, a numerical simulation of two typical

Fig. 8. Weighting functions.

chemical industries processes were given. Consequently, the
simulation results confirm the robustness and effectiveness of
the proposed scheme for the actuator fault detection over a
non-linear system in the presence of external disturbance.

Based on the results of the paper, interesting future studies
may extend the proposed technique to develop a fault estima-
tion schemes or even a fault tolerant control system.
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