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Abstract—In this paper, it is presented the design and tuning
of a robust multi-objective regulator, with variable gain matrix
through Linear Matrix Inequalities (LMI). The tuning presented
here guarantees for an uncertain model under polytopic repre-
sentation to satisfy simultaneously multiple objectives such as,
asymptotic stability, minimization of the H2-norm, robustness
and restrictions imposed on the manipulated variable.

Finally, as an application example, this tuning is applied to a
Continuous Stirred Tank Reactor (CSTR) typical of the chemical
industry.

Index Terms—LMI, Optimal Control Multiobjectives, LTV
Systems, Variable Gain Matrix.

I. INTRODUCTION

It is well known, in classical process control [1]–[3] among
others, that the non-linear nature and the extremely slow
dynamic responses of the industrial processes forces to tune
controllers/regulators that guarantee a certain robustness to the
control system, in order to overcome the uncertainties in the
modeling. The situation is even more complicated when, in
addition to the above, the restrictions of the process are added.

The response of traditional process control to this problem
is to tune industrial controllers, using traditional techniques,
resulting in extremely conservative dynamic responses.

Some authors such as Cao and Fang [4] propose a new
approach by analyzing Lyapunov’s function dependent on
parameters related to uncetainty and saturation, to reduce con-
servatism in the stability analysis for polytopic systems subject
to saturation input, via LMI. On the other hand, Henrion
et al. [5] studied the output feedback robust stabilization of
uncertain linear systems with saturating controls and, Henrion
and Tarbouriech [6] studied the LMI relaxations to achieve the
objectives mentioned before. It is important to remark that, the
mentioned works implement a gain matrix by mean of offline
calculus.

To achieve the desired objectives with less conservative
results than those obtained by traditional process control
techniques, it is proposed in this work the design of the
multi-objectives optimal regulator by full-state feedback with
variable gain matrix. Furthermore, the design specifications
are written by means of Linear Matrix Inequalities (LMI), the
uncertainties system are modeled through a polytopic model,

and implementing a variable feedback gain vector which is
calculated by time intervals.

In order to highlight the benefits of the proposed regulator,
the temperature control of a Continuous Stirred Tank Reactor
(CSTR) is taken as an example.

This work is organized as detailed below. In Section II, the
basic concepts of the LQR regulator via LMI are presented.
The analysis applies to a nominal LTI system as well as to
uncertain systems with polytopic representation. In Section
III, the design proposal of the nominal LQR controller for
generalized systems with restrictions is introduced. At the end
of this section, a discretization procedure to obtain a state
feedback with variable gain matrix is presented. In Section
IV, a comparison is presented through numerical simulations
that show the benefits of the proposed regulator. Finally, in
Section V, the conclusions of this work are presented.

II. PRELIMINARY CONCEPTS

A. Optimal Regulator. H2-Norm Minimization
According to the optimal control theory, it is known that

the control signal u(t) = −Kx(t), where K is the optimal
state feedback gain matrix, which is obtained by means of the
algebraic equation of Riccati [7], it minimizes the H2-norm of
the system. Alternatively, if a system with linear state-feedback
is considered, the same result can be obtained when the energy
of an auxiliary output signal z2(t), defined according to Fig. 1
(Cappelletti, [8]), is minimized.
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Fig. 1. State feedback with auxiliary output and disturbance of the initial
state condition.



Notice that, based on the above mentioned figure,

ẋ(t) = Ax(t) + x0δ(t) +B2u(t),
z2(t) = C2x(t) +D22u(t),

u(t) = −Kx(t),
y(t) = Cx(t).

(1)

where x0 is a state disturbance applied to the initial condition
of the system.

If C2 and D22 are chosen as orthonormal matrices, and they
are defined as C2 = R

1/2
x , and D22 = R

1/2
u , the spent energy

of z2(t) signal

||z2||22 =

∫ ∞
0

(x′Rxx+ u′Ruu) dt = J(x, u), (2)

is minimal, if the following optimization problem is satisfied
according to Scherer et al. [9].

min
Q, Y

σ (3)

s.t. (
1 x′0
x0 Q

)
� 0, Q � 0, (4)

 QA′ +AQ− Y ′B′2 −B2Y Q Y ′

Q −σR−1
x 0

Y 0 −σR−1
u

 ≺ 0, (5)

where K = Y Q−1 is the optimal state-feedback gain matrix
and σ a higher bound for J(x, u).

Notice that, to the previous restrictions established to
achieve an optimum gain matrix K, it is possible to add
other ones, as process model uncertainties. Although, by
increasing the number of restrictions, the feasible region is
reduced, nevertheless the convexity keeps guaranteeing that
the optimum found, if it exists, this one is unique and global.

B. Polytopic Formulation for Uncertain Systems
Consider the following model that represents a linear and

time variant (LTV) system,

ẋ(t) = A(t) x(t) +B2(t) u(t) + x0δ(t),

[A(t) B2(t)] ∈ Ω.
(6)

Here Ω represents a set to which belongs the linear model
family that describes the behavior of the system at different
time instants.

If the set Ω is represented by a polytope written as:

Ω = Co{[A1 B1], [A2 B2], ..., [AL BL]}, (7)

where Co means convex hull, and the pairs [Ai Bi] with
i = 1, 2, ...L are the vertices.

That is, a polytope is a polyhedron with L LTI models at
its vertices. The real system represented in Eq. (6) is within
the polytope, and although there exists infinite plants within
it, each of them can be represented as a convex combination
of its L vertex, as follows:

[A(t) B(t)] =
∑L
i=1 λi[Ai Bi], where

∑L
i=1 λi = 1. (8)

L = 1 corresponds to the nominal LTI model.
It is important to point out that the polytopical representa-

tion does not only consider the LTV systems, but also includes

the linear systems with uncertainties in their parameters, and
the non-linear systems, modeled by

ẋ(t) = f(x(t), u(t), t), (9)

as long as its Jacobian matrices [ δfδx
δf
δu ] calculated in the

different operation points, are within the uncertainties set Ω.

III. ROBUST CONTROL

In this section, it is presented a robust regulator formulation
that takes into account the model uncertainties in under
polytopic representation as shown in the previous section.

In particular, the minimization of the classic nominal LQR
objective function will be modified, to minimize an objective
function that represents the worst case scenario.

Considering now the system described by Eq. (6) with an
uncertainty associated with a set Ω, the minimization of the
robust objective function is written as follows:

min
u(t) ∈ L2

max
[A(t) B(t)] ∈ Ω

J(x, u), (10)

where

J(x, u) =

∫ ∞
0

(x′(t)Rxx(t) + u′(t)Ruu(t)) dt. (11)

The maximization made on the set Ω corresponds to the
choice of that plant [A(t) B(t)] ∈ Ω and ∀t ≥ 0, such that
if it is used as a representation model, it leads to the highest
value of the objective function J(x, u), known as the worst
case. Notice that, the result of the minimization corresponds
to the choice of that control action u(t) of square integrable
that minimizes the worst case.

Clearly, this is a min-max problem that although convex,
is computationally very expensive [10]. As an alternative,
following the same approach of the previous section, an upper
bound for the robust objective function Eq. (11) will be looked
for, and then, that upper bound will be minimized by using a
control law by state-feedback via LMI.

A. Robust Control without Restrictions
Consider the system modeled by Eq. (6), where the set Ω

is represented by the polytope (7). Each LTI model vertex of
the polytope, is represented by

ẋ(t) = Aix(t) + x0δ(t) +B2iu(t),
with i = 1, 2, ..., L,

(12)

where an auxiliary output and a control action are defined
as,

z2(t) = C2x(t) +D22u(t),
u(t) = −Kx(t),

(13)

as in the nominal case of the subsection II-A, but now applied
to each vertex.

If an upper bound is chosen for the objective functions of all
LTI models that conform the convex hull of the uncertainty
polytope, then any plant can be represented from a convex
combination of them. Therefore, following the development
of the subsection II-A, the problem of robust minimization is
posed as:

min
σ,Y,Q�0

σ (14)



s.t. (
1 x′0
x0 Q

)
� 0,

 QA′i +AiQ− Y ′B′2i −B2iY Q Y ′

Q −σR−1
x 0

Y 0 −σR−1
u

 ≺ 0,

with i = 1, 2, ..., L.
(15)

obtaining the robust feedback gain matrix

Kopt = YoptQ
−1
opt. (16)

1) Robust Asymptotic Stability: Next, the lemma of the
invariant ellipsoid according to Kotare et al. [10] will be used
to show that the robust control law obtained as a solution to
the minimization problem (14), stabilizes asymptotically the
system with uncertainties.

Lemma Consider the system (6) and a set of associated
uncertainties Ω. Let Ω be a polytope described by Eq. (7).
Suppose that there exists at the instant t = 0, Q−1 � 0,
σ > 0 and K = Y Q−1 such that (15) satisfied. Suppose also
that u(t) = Kx(t). So if t = 0, it is satisfied

x′0 Q
−1x0 < 1, then (17)

max
[A(t) B(t)] ∈ Ω, ∀t≥0

x(t)′Q−1x(t) < 1, ∀t ≥ 0. (18)

That is, the inequality (17) is an invariant ellipsoid for all the
states of the uncertain system.

Then, it will be shown that each vertex of the polytope (7)
satisfies Eq. (18).

Defining Acli = Ai − B2iK and Ccl = C2 − KD22,
and using the Schur complement, the second LMI in (15) is
equivalent to the following matrix inequality:

A′cliQ
−1 +Q−1Acli ≺ −C

′
clCcl

σ
. (19)

Then, pre and post multiplying the inequality (19) by x′i(t)
and xi(t) respectively, it is arrived at,

x′i(t)A
′
cli︸ ︷︷ ︸

ẋi′(t)

Q−1xi(t) + x′i(t)Q
−1 Aclixi(t)︸ ︷︷ ︸

ẋi(t)

< −x
′
i(t)C

′
clCclxi(t)

σ
,

ẋi
′(t)Q−1xi(t) + x′i(t)Q

−1ẋi(t) < − (x′i(t)Rxxi(t)+u
′
i(t)Ruui(t))

σ
.

(20)
Integrating between t = 0 and t∗ ∈ (0,∞), results

x′i(t)Q
−1xi(t) |t

∗
0 < − 1

σ

∫ t∗

0

(x′i(t)Rxxi(t) + u′i(t)Ruui(t))dt︸ ︷︷ ︸
(>0, ∀xi(t)6=0)

,

x′i(t
∗)Q−1xi(t

∗)− x′0Q−1x0 < 0, ∀i = 1, 2, ..., L.
(21)

Therefore, for any system within the polytope Ω and ∀t > 0,
one has

x′(t)Q−1x(t) < x′0Q
−1x0 < 1. (22)

The function V (x(t)) = x′(t)Q−1x(t), is a Lyapunov func-
tion for all systems represented by the model (6) feedbacked
by u(t), it is easy to see that this function decreases as
time increases, which indicates the asymptotic stability of the
feedback system, since x(t)→ 0 for t→∞.

B. Robust control with restriction in the manipulated variable

In the subsection III-A the minimization problem of a robust
objective function without restrictions was formulated, and an
upper bound σ was fixed for it. This subsection shows how to
incorporate in this problem a restriction on the amplitude of
u(t) including an LMI.

Being K = Y Q−1 then,

|u(t)|2 = x(t)′Q−1Y ′Y Q−1x(t). (23)

Defining
v(t) = Q−1/2x(t),

H = Y Q−1/2,
(24)

Notice that, the Eq. (18) can be written as

|u(t)|2 = v(t)′H ′H v(t), (25)

where the matrix H ′H is a symmetric matrix, and therefore
it can be diagonalized orthogonally as

H ′H = T ′ΛT. (26)

Defining
q(t) = Tv(t), (27)

and being n the number of states, we have

|u(t)|2 = q(t)′Λ q(t) =

n∑
k=1

λk q
2
k(t), (28)

where λk, with k = 1, ..., n, are the singular values of H , so
that the following inequality is verified:

|u(t)|2 ≤ λmax(H ′H) |q(t)|2. (29)

Taking into account that the T matrix only produces one
rotation,

|q(t)|2 = |v(t)|2 = x(t)′Q−1x(t), (30)

and that λk(H ′H) = λk(HH ′), the Eq. (29) can be rewritten
as:

|u(t)|2 ≤ λmax(Y Q−1Y ′)(x(t)′Q−1x(t)). (31)

Since V (x(t)) = x(t)′Q−1x(t) has a maximum given by the
initial time

x(t)Q−1x(t) ≤ x′0Q−1x0 < 1, (32)

then, setting a bound for the maximum amplitude of the
manipulated variable, it can be written

|u(t)|2 < λmax(Y Q−1Y ′) < U2
max. (33)

So that, if it is satisfied

λmax(Y Q−1Y ′) < U2
max, (34)

it is guaranteed that

|u(t)| < Umax ∀t. (35)

Finally, using the Schur complement the inequality (34) can
be rewritten as (

U2
max Y

Y ′ Q

)
� 0. (36)

The LMI (36) is a new convex region that intersects with the
convex regions represented by the LMIs (15), and the found
gain matrix value Kopt = YoptQ

−1
opt, produces uopt(t) that



stabilizes the uncertain system (6), and its amplitude does not
exceed Umax .

However, this is a conservative approach since for a sys-
tem with uncertainties, even without restrictions and with an
objective function integrated in an infinite interval, the matrix
Kopt is not necessarily constant.

C. Obtaining a variable feedback gain matrix KK by recal-
culating its value at different time intervals

One way to increase the response speed without compro-
mising the stability and restrictions imposed on the original
problem is to recalculate the controller gain matrix at different
times instead of using a single gain for the whole regulation
process.

To demonstrate that this methodology maintains the robust
stability of the feedback system, consider the minimization
problem (14), with the constraints (15) and (36).

According to the invariant ellipsoid lemma [11], if the
optimization problem is feasible at t = 0, it will also be
at some later time t = TM , where TM is some given time
interval. That is to say, if the states of the system are measured
at that moment, the restriction has to be

x′(tM )Q−1x(tM ) < x′0Q
−1x0 < 1, (37)

or equivalently, the LMI(
1 x′(TM )
x(TM ) Q

)
� 0, (38)

it is feasible. Furthermore, this is the only LMI that explic-
itly depends on the states measurement in the minimization
problem.

Therefore, taking the state x(TM ) as the initial condition,
now the following optimization problem is posed:

min
σ,Y,Q�0

σ (39)

s.t. (
1 x′(TM )
x(TM ) Q

)
� 0,

 QA′i +AiQ− Y ′B′2i −B2iY Q Y ′

Q −R−1
x 0

Y 0 −R−1
u

 ≺ 0,

with i = 1, 2, ..., L.(
U2
max Y

Y ′ Q

)
� 0.

(40)
The solution to this problem are the optimal values of Q and
Y , which will be defined as QTM

and YTM
respectively, which

due to the model uncertainty and the constraints imposed
on the manipulated variable, it will probably have different
values from the optimal values (Q and Y ) obtained from the
minimization problem with initial ondition x0.

Similar to what was stated before, the value of the gain
KTM

= YTM
Q−1TM

, minimizes the robust objective function
(10), which is now defined as JTM

(x, u), and its minimum
value will be:

JTM (xopt, uopt) = x′(TM ) PTM x(TM ) < σ. (41)

The key here, is to note that

x′(TM ) Q−1
TM

x(TM ) ≤ x′(tM ) Q−1 x(TM ), (42)

due to Q−1TM is optimal, while Q−1 is only feasible at time
t = TM [10]. Therefore, and using the inequality (37), we
have

x′(0) Q−1 x(0)︸ ︷︷ ︸
optimal t = 0

> x′(TM ) Q−1 x(TM )︸ ︷︷ ︸
feasible in t = TM

≥ x′(TM ) Q−1
TM

x(TM )︸ ︷︷ ︸
optimal in t = TM

.

(43)
Now, the previous development made between the instants of

time t = 0 y t = TM , can be repeated between the time’s
instants t = kTM and t = (k + 1)TM with k = 1, 2, ...,∞.

Without loss of generality doing TM = 1, and defining
x(kTM ) = x(k) = xk, it can be written,

x′k+1 Q
−1
k+1 xk+1 < x′k Q

−1
k xk,

∀k = 0, 1, 2, ...,∞.
(44)

Notice that, in every moment of time t = kTM a convex op-
timization problem is solved, so every minimum (x′k Q

−1
k xk)

obtained, it is unique and corresponds to the optimal solution
for that moment.

Therefore, V (xk) = x′k Q
−1
k xk, with k = 1, 2, ...,∞, it

is a strictly decreasing Lyapunov function for the uncertain
system (6) with restrictions. Being σV (xk) the upper bound
of the robust objective function (10), which is reduced at each
recalculation instant.

IV. EXAMPLE. REGULATION OF A CSTR
In this section, the tuning technique here presented is ap-

plied to a CSTR proposed by Morningred et al. [12], where the
reactant A becomes the product B by means of an exotermic
chemical reaction, modeled by the following equations:

ĊA(t) =
qe
V

(CAe − CA(t))− k0e
−ER
T (t) CA(t)

Ṫ (t) =
qe
V

(Te − T (t)) + k1e
−ER
T (t) CA(t)

+
qc(t)

V

(
1− e

−k3
qc(t)

)
(Tce − T (t))

(45)

The parameters of the model are reported by Morningred and
co-workers [12].

The reaction takes place in a stirred cylindrical tank, as
shown in Fig. 2. Also, the CSTR operates at constant volume.

Furthermore, the reactant concentration CA and the reac-
tor temperature T are considered measured variables. This
reactant concentration is indirectly controlled, manipulating
by means of the single coolant stream qc(t) that circulates
through a serpentine.

1) Design Objectives: The proposed objectives controller
design for this problem are,
• to guarantee the stability of the non-linear system,
• to minimize both measurement and process noises,
• to satisfy an amplitude restriction in the manipulated

stream whose operating range is

85 ≤ qc(t) ≤ 116 L min−1. (46)
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Fig. 2. An illustrative diagram of the CSTR control.

Therefore, to obtain the variable feedback gain matrix Kk, that
satisfies the above objetives, the optimization problem (39)
subject to (40) is solved using the LMI Lab [13] package of
MATLAB software.

Fig. 3a shows the reaction curve and the energy dissipation
line. In addition, three points are included on the reaction
curve. There, the blue dot indicates the stationary point of
the system for a coolant stream qc = 111.72 L min−1, which
corresponds to a concentration CA = 0.14 mol L−1 and a
temperature T = 431.32 K.

In order to analyze the performance of the control system
with the proposed regulator, a disturbance is introduced,
leading the states to the following values: CA = 0.08 mol L−1

and T = 443.16 K. This perturbed state vector is represented
on the reaction curve by the red circle. Three simulations
are carried out, the first one is in open loop, the second one
implements a controller with a constant feedback gain and,
the third one includes a variable feedback gain matrix. Also,
for the last case, the gain matrix is updated every 6 seconds.
The evolution of these three systems is presented in the states
diagram of Fig. 3b.

Fig. 4 shows the response time of the states for the three
systems, in Fig. 4a the reactant concentration and in Fig. 4b
the reactor temperature is represented.

Fig. 5 shows the manipulated variable. This variable has
a restriction on its amplitude |∆qc| < 4, the maximum level
was chosen by making a difference between the maximum
available flow and the operating flow for the equilibrium point.
The Fig. 5a shows the increment ∆qc(t), while the Fig. 5b
shows the full range of qc(t).

Also, notice that dynamic responses have a discontinuity
both in the flow increment and in the manipulated flow. This
behavior is due to the recalculation of the gain matrix, at
this moment a new optimization problem with a new initial
condition is solved. In addition, it is noteworthy that although
the gain is constant during the interval, the manipulated flow
varies as the states change, something that does not happen in
the traditional discrete control.

Fig. 6 shows the gains calculated via LMI, for the design
of the controllers with constant gain matrix and variable gain
matrix.
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V. CONCLUSION

In this paper, it is presented a robust regulator design with
variable gain matrix for a system with a polytopic uncertainty
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Fig. 6. Variations of the gain matrix recalculated every 6 seconds.

representation, being able of satisfying multiple objectives,
through LMIs. It should be noted that, the main proposal
in this paper is that the regulator makes use of an LTV
model under continuous time representation of the process.
Consistent with this, both the linearization of the non-linear
model for the construction of the polytope and the LMIs are
done in continuous time, and only the optimal gain matrix
is recalculated, at pre-established time intervals. The main
advantage of this, is that the proposed regulator allows to
satisfy simultaneously with multiple objectives such as asymp-
totic stability, minimization of the standard H2, robustness and
restriction of a bound imposed on the manipulated variable,
with a significant reduction of conservatism.

As an example, a typical application of chemical engineer-
ing was chosen, as the chemical reactor. The simplicity of the
chosen problem aims to highlight, in this work, the benefits of
the proposed regulator along with its dynamic characteristics.
The comparison of the controllers with constant and variable
gain matrix shows a significant improvement in settling time
for this last case (at least three times faster), and this is due
to a better use of the coolant stream.

Finally, it should be noted that this proposal can be im-
plemented to a discrete system, adapting the LMIs under this
formulation. Also notice that, the recalculation of the gain
matrix is independent of the sampling period of the system,
and does not necessarily have to coincide.

REFERENCES

[1] K. J. Aström and R. H. Murray, Feedback Systems. An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

[2] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, and F. J. D. III, Process
Dynamic and Control. John Wiley & Sons, 2011.

[3] E. J. Adam, Instrumentacion y Control de Procesos. Ediciones UNL,
2014.

[4] Y. Cao and K. Fang, “Parameter-dependent lyapunov function approach
to stability analysis and design for polytopic systems with input satura-
tion,” Asian Journal of Control, vol. 9, no. 1, pp. 1–10, 2007.

[5] D. Henrion, S. Tarbouriech, and G. Garcia, “Output feedback robust
stabilization of uncertain linear systems with saturating controls: an lmi
approach,” IEEE Transactions on Automatic Control, vol. 44, 1999.

[6] D. Henrion and S. Tarbouriech, “LMI relaxations for robust stability of
linear systems with saturating controls,” Automatica, vol. 35, pp. 1599–
1604, September 1999.

[7] C. N. Rautenberg and C. E. D’attellis, Control Lineal Avanzado y Con-
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