Extending low-coherence interferometry dynamic range using heterodyne detection

Leslie Judith Cusato^{a,b,*}, Santiago Cerrotta^a, Jorge Román Torga^{a,c}, Eneas Nicolás Morel^{a,c}

^a Grupo de Fotónica Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martin 1171, Campana, Buenos Aires B2804GBW, Argentina ^b Comisión de Investigaciones Científicas, CIC, Argentina

^c Consejo Nacional de Investigaciones Científicas y Tecnológicas, CONICET, Argentina

Low-coherence interferometry (LCI) technique is generating considerable interest in industrial applications where there is a need for larger measurements with high resolution. Conventional Fourier domain systems reach a limiting depth of around 3 mm, mainly due to the spectrometers used as detectors. In this work, we present an optical detection system that performs the Fourier transform of the LCI signals, based on a spatial heterodyne spectrometer. This device avoids the fall-off effect of the spectrometer, allowing to reach measurable optical depths of almost 5 cm without losing resolution. We describe the theory underlying this detection system and present experimental results which are in great accordance