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ABSTRACT  

The objective of this article is to introduce a practical procedure for determining analytical 

solutions to free vibration and instability problems related to plane frames, by means of 

extended power series method. Transfer conditions are applied in order to guarantee 

geometric continuity and simultaneous equilibrium of knots or conexions. This procedure 

leads to an important reduction in the number of unknowns to be handled. In the problem of 

eigenvalue calculation of a frame (both in dynamics or statics), the solution corresponds to the 

nullity of a determinant whose order is substantially smaller compared to the one found by 

other ways (e.g. finite element method). In order to attain better presición, other procedures 

require an increase in the quantity of unknowns, however in the case of power series, only the 

degree of power is increased without enlarging the number of unknowns. A number of 

examples are presented in order to show the advantages of the present procedure. Moreover 

comparisons of computational costs are included in the examples. 

Key words: natural vibrations, power series, second order theory, plane frames. 

 

INTRODUCTION 

In structural mechanics, it is a common practice to apply approximate methods of superior 

analysis, such as variational approaches, the mesh method and the power series among other. 

Although the Finite Element Method (FEM), among others, is widely and successfully 

employed in the numerical calculation of structural problems, it has to be recognized that the 

Method of Power Series (MPS) may cover a more general context [1-3], because its 

utilization in structural problems overcomes many difficulties of mathematical models of 

structures, particularly in the case of planar frames with complex boundary conditions. 

Moreover, the MPS has been used for a long time in the resolution of complex systems of 

differential equations as well.  

In recent years several investigations have been presented in the calculation of plane 

frames using other methods than FEM or MPS. Rezaiee-Pajand et al. [4] studied the problem 

of free vibrations in plane frames, by applying the differential transformation method (DTM). 

These authors paid special attention to the derivation of governing differential equations 

together with the boundary conditions and the compatibility of the problem. Lee [5] analyzed 

the vibration performance of simple plane frame modeled with beams and columns. Typical 

examples of this kind of frames are often found in many architectural structures as well as 

industrial support facilities. In the dynamic analysis, the axial and longitudinal displacements 

of the beams are taken into account. Mei [6] derived an analytical solution using a wave-

based method in order to study vibrations of plane frames. Under this criterion, the motion is 

described as waves propagating along a uniform structural element; so the waves are reflected 

and transmitted through discontinuities, such as structural joints. Ma [7], on the basis of exact 
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solutions for axial vibration of elastic bars, evaluated the dynamics of elastic compex frame 

structures. Some of these authors managed to find exact solutions for free vibration and 

harmonic analysis in non-trivial cases. Moreover they introduced new beam elements by 

enhancing shape functions for the coupled transverse displacement field using the solutions of 

the homogeneous governing equations.  

 

Tsai [8] proposed that, in the exact dynamic analysis of the flat plane frames, the effect of 

the distribution of the mass in the beam elements must be considered. This is achieved using 

the method of dynamic rigidity. Galvao et al. [9] developed a finite element scheme for the 

non-linear analysis of buckling and vibration of thin elastic structures with semirigid 

connections. These authors paid special attention to the influence of static preload on natural 

frequencies and modal shapes, non-linear frequency-amplitude relationships and resonance 

curves. Moreover, they analyzed structural systems with important practical applications: an 

L-shaped plane frame, shallow archs and a plane frame with inclined roof. Their results show 

the importance of the static preload and the rigidity of the semirigid connections in the 

buckling and vibration behavior of this type of structures. Rezaiee-Pajand and Khajavi [10] 

analyzed the vibrations in flat lattices, in which stiffness and mass matrices are optimized to 

obtain better performance in the eigenvalue calculation for free vibrations of plane frames. 

The matrices obtained are easily parameterized due to their simple structure. In this study 

both Bernoulli-Euler and Timoshenko beams elements were implemented. Dias and Alves 

[11] developed a dynamic stiffness matrix approach in order to solve the nonlinear eigenvalue 

problem of plane frames with end complexities modeled with Timoshenko beam theories. 

They calculated the natural frequencies and corresponding modal shapes for different 

combinations of boundary conditions and different arrangements of the bars. Mei [12] 

performed a free vibration analysis of flat single-story multi-bay planar frames by means of 

closed form solutions. The motion of the structure was described as waves propagating along 

uniform structural elements and reflecting and transmitting through structural discontinuities. 

These works took into account the coupling effects between bending and longitudinal 

vibrations.  

 

Chen and Ma [13] based on the general solution for the homogeneous governing equation 

for the linear buckling analysis of the Euler beam, constructed new shape functions and a new 

finite element. Zhang et al. [14] studied the phenomenon of buckling by means of the method 

of quadrature elements in flat plane frames. This method begins approximating the integrands 

of the variational formulation of a problem. Neither the nodes nor the number of nodes in a 

quadrature element are fixed, so they are adjusted according to convergence requirements. It 

is shown that the proposed method is suitable for the buckling analysis of flat structures with 

variable or constant cross sections. Lee and Han [15] presented the post-buckling analysis of a 

semi-rigid elasto-plastic spatial plane frame with finite rotation. The structural componentes 

had symmetrical cross sections and semi-rigid joints. The effect of the axial forces on the 

bending moment and lateral buckling was considered. The Eulerian equations for a beam-

column with finite rotation were taken into account. The tilting effects are adopted for an 

elastic system and then extended to an inelastic system with the plastic hinge concept. Non-

linear buckling analyzes were performed for the spatial plane frame, in order to demonstrate 

the potential of the developed method in terms of precision and efficiency. Rezaiee-Pajand et 

al. [16] analyzed the buckling of steel frames with conical members and flexible connections. 

The method is based on finding the exact solutions of the governing differential equations for 

the stability of a plane frame with cross sections of standard I-shapes. For several particular 

cases, commonly used, the influences of different variables were studied, e.g. the shape factor, 
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the conicity ratio, the lenght relation, the flexibility of the connections, the elastic restrictions 

of rotation and translation in the critical load, in addition to the corresponding equivalent 

effective length coefficient. Under other approaches [17] the buckling loads are calculated by 

increasing the parametrized eigenvalue incorporated in the determinant of the system matrix. 

In this work, the bending of plane frames and beams was modeled with finite elements, and 

the non-linear equilibrium equations were solved using the Newton-Raphson method. A 

model of finite elements for the analysis of buckling in plane frames was constructed by Sena 

Cardoso and Rasmussen [18]. The model was constructed on the basis of shell elements that 

add geometric imperfections and the semi-rigid behavior of the joints. The geometric 

imperfections were incorporated by projection of the buckling modal shapes in the further 

motion of the structure.  

According to the previous context, the numerical approximations to solve the dynamic and 

instability problems of plane frame mechanics are extensively employed although with an 

important computational effort in order to attain good convergence, particularly in the 

presence of complexities in the structure such as non-inearities, special boundary conditions 

or irregular internal parts among other. These circumstances stimulate the use of methods that 

offer the possibility to get a closed form solution or exact solution with arbitrary precision, in 

the type of aforementioned structural problems. Filipich and coworkers [1-3,19,20] developed 

iterative and reductive procedures of the MPS applied to many structural problems with 

several complexities. The main focus of their contributions lays in getting affordable models 

and solutions for structural calculations. 

In the present article, the MPS is employed to calculate the exact (or at east with arbitrary 

precision) eigenvalues for vibration or buckling of general plane frames. An iterative 

methodology is proposed to reduce the number of unknowns, tending to save computational 

effort. Moreover the buckling of planar frames whose members are modeled according to 

second order theory is also analyzed. The use of the MPS in generalized planar frames is 

explained and the iterative procedure for shrinking nodal unknowns is particularly detailed. 

Several studies are carried out in order to show the accuracy and practical effectiveness of the 

present methodology. Some comparisons with former finite element approaches, as well as 

shell finite elements of the commercial programs are performed, as well. 

 

METHODOLOGY 

POWER SERIES APPLIED TO CLASSICAL PLANE FRAMES THEORIES 

The problem of natural vibrations of plane frame is linear and to solve it with computational 

approaches (e.g. finite elements, differential quadrature, among others), each bar or part must 

be divided into elements with a given polynomical approach. However, in order to reach to a 

greater precision, the number of subdivisions and, consequently, the number of unknowns 

should be increased. The use of series of powers to simulate the modal form of each section 

without approximations, that is, with arbitrary precision, has the advantage that it only 

requires static and geometric continuity in nodes of consecutive sections [1-3]. 

Figure 1 shows a closed planar plane frame, referred to a coordinate system of reference X-Y. 

The nomenclature used is the following: 

nb   is the total number of bars. 

nn  is the total number of nodes. 

j   is the subscript that denotes the bar, j = 1, 2, …, nb. 

n  is the subscript that denotes the node, n = 1, 2, …, nn. 
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The numbering of the bars and the nodes can be done arbitrarily (Figure 1), since as part of 

the investigation; an algorithm has been designed to re-number them conveniently. 

The characteristics of each bar are the following: 

Ej  Young's module of the j-bar. 

𝜌𝑗   Uniform density of j-bar. 

Fj   Area of the cross section of j-bar. 

Jj  Moment of Inertia of the j-bar  

αj  Angle between the j-bar and the abscissa axis. 

αj,k   Relative angle between j-bar and k-bar (Figure 2). 

aj Length of j-bar. 

X-Y   Global coordinates system. 

xj Local coordinate of the j-bar. 

The units that are used are the ones that each user selects, in the examples that are shown, the 

MKS system has been used. 

 

 

Figure. 1: General scheme of a plane frame in study. Figure 2: Location of the angles in the bars. 

 

Energy formulation 

A local coordinate system xj is considered in each bar j, where each point, when the be bar is 

vibrating or it is loaded, will have a transverse displacement vj (xj) and an axial displacement 

uj (xj), as shown in Figure 3. 

 

 

Figure 3: Displacements and local coordinates of each j-bar. 

The potential forces of deformation U and kinetic energy K of the gantry will be the sum of 

those of each member. All of these depending on the displacements, that is: 
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1
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j

j
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

  (1a, b) 

In which the potential energy (2) will be depending on moments and normal stresses: 
2 2

0 0

( ) ( )1

2

j ja a

j j

j j j

j j j j

M x N x
U dx dx

E J E F

 
  

  
   (2) 

The Kinetic Energy (3), accepting normal modes of vibration, is expressed as a function of  

(circular frequency of vibration of the frame), in addition to the transverse and axial 

displacements. 

2 2 2

0

1
( ) ( )

2

ja

j j j j j jK F v x u x dx       (3) 

The expressions corresponding to the bending moments M and the normal stresses N are 

indicated below: 

 ( )j j j j jM x E J v x                   ( )j j j j jN x E F u x  (4a, b) 

Where: 

( )
( )

jx

 
 


 (5) 

According to the Hamilton's Theorem [17-19]: 

( ) 0U K    (6) 

substituting expressions (1) in (6) and taking into account the expressions (2), (3) and (4a, b) 

results: 

     
2 2
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2
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a a
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j j j j j j j j
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
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
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 

 



     

  



 (7) 

For arbitrary variations, in all the bars (j = 1, 2,..., nb), one arrives at the differential 

equations: 

  2 ( ) 0j j j j j j j jE J v x F v x         

   2 ( ) 0j j j j j j j jE F u x F u x     

(8a, b) 

The equations are transformed in a non-dimentional form by means of the following change 

of variables: 

0 j jx a            0 1
j

j

x

a
              

j

j

j

x

a
   (9) 

Henceforth, the apostrophe, indicated in (5), refers to the derivative with respect to the new 

variable: 

( )
( )

j

 
 


 

 

Then, the differential equations (8a) and (8b) are written as: 
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that can be rewritten in the following non-dimensional form: 

  

  2 ( ) 0j j j j jv v                       
2
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j
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where: 
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a
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Development of solutions in power series 

It is proposed, for the solution of the differential equations (12a, b), a development in power 

series for the unknown functions of the transverse and axial displacements of each bar [4-7, 

20-23] with the following expressions: 

  ,
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m
i

j j j i j

i
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

             ,

0

m
i
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i
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

  (14a, b) 

where, their corresponding derivatives (of order r), can be written in the following way: 
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with: 

𝜑𝑟,𝑖 =
(𝑖 + 𝑟)!

𝑟!
 (16) 

Returning to the differential equations that govern our problem (12a)-(12b), using the 

solutions proposed in series of powers: 
4
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By equalizing the coefficients of equal power in both developments, for bar j, the following 

recurrence equations are deduced: 
2

,

, 4
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j j i
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i
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( i = 0, 1, …, m-4) (19) 
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( i = 0, 1, …, m-2) (20) 
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As one can see in equation (19), the coefficients Aj,i+4 are linked with the Aj,i, and in equation 

(20), the Bj, i + 2 with the Bj, i what results, in principle , each bar with a total of 6 unknowns, 

namely: Aj,0,  Aj,1,   Aj,2,   Aj,3,  Bj,0  y  Bj,1.  

 

Conditions of geometric compatibility, essential or primary 

In each node where there are m bars, m-1 must be considered as conditions of geometric 

continuity, essential or primary. 

As shown in Figure 4, the relationships between displacements of a bar k starting from the 

node with another bar j arriving at the same node, are the following: 

     , ,0 1 1k j j k j j ku u cos v sin    (21) 

     , ,0 1 1k j j k j j kv v cos u sin    (22) 

   10 jk

k j

vv

a a


  (23) 

being the bar j that arrives at the node, according to the direction of circulation (and it is 

evaluated at its final end, ξj = 1) and k one of the bars that leaves the node (being evaluated at 

its beginning, ξk = 0). The lengths of the bars j and k are aj and ak respectively. The angle αj,k 

is the relative between the bar j and the k. For the purpose of simplifying writing, the sine and 

cosine trigonometric relations are called between bars k, j as follows: 

, , , ,j k j k j k j kC cos S sin  
 

 

 

  

 

Figure 4: Scheme of displacements between two consecutive bars. 

 

Replacing the transversal and axial displacement functions, due to their corresponding 

development in power series, and taking into account that, for example, for bar j it is: 
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The geometric conditions are expressed as follows: 
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1

,1 1, , 1

0

m
k

k i j i

ij

a
A A

a








   (26) 

Then, the coefficients Ak,0, Ak,1 and Bk,0  of the bar k are calculateed as a function of the j-bar. 

Taking into account the order in which the calculation process is performed, the bar j is 

analyzed before the bar k. 

 

Geometric, essential or primary compatibility equations 

There are situations in which two or more bars, with known coefficients, converge in a given 

node. For example, this is illustrated in node 8 of Figure 1, where bars 8, 10 and 11 have 

already been calculated if the path has started in bar 1. Under these circumnstances, the 

geometric compatibility equations must be considered in the bars with known coefficients in 

the development in series. This situation adds 3 more equations for each bar in the context 

described above. This procedure turns out to be one of the main advances of the present 

investigation since, with this methodology, it is possible to go from open frames (in which 

only two bars to each node concur), previously studied by other authors [4, 5, 7], to closed 

plane frames (in which more than two bars arrive at the nodes). 

The geometric compatibility equations are expressed as follows: 

, , , , ,

0 0 0

0
m m m

k i j k j i j k j i

i i i

B C B S A
  

 
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    (27) 

, , , , ,
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0
m m m

k i j k j i j k j i

i i i

A C A S B
  

 
   
 

    (28) 

1 1

1, , 1 1, , 1

0 0

0
m m

j i k i k i j i

i i

a A a A 
 

 

 

    (29) 

 
𝑎𝑗  𝐴𝑘,1 − 𝑎𝑘  𝐴𝑗,1 = 0 (30) 

It must be emphasized that, in these equations, the bar k is evaluated at its end: ξk = 1, 

resulting in a summation of the coefficients of the power series of Eq. (27)-(29). The special 

case of Eq. (30) is when both bars are evaluated at their origin: ξk = 0. 

Therefore, with the conditions of geometrical compatibility, essential or primary, one can 

calculate coefficients of a given bar from the coefficients of bars that precede the 

development and that concur to the same node.  

 

 

Nodal Static equilibrium or natural or secondary conditions 

In each node that belongs to more tan one bar, the static equilibrium equations should be 

proposed, that is two sums of forces and a sum of moments (or stress resultants in other 

words).  In the following expressions one can see, for a generic bar k, the equation of shear 

forces (31), the equation of bending moments (32) and the equation of normal forces (33). 

This generic bar k, has its origin in the node (ξk = 0). These three strees resultants are defined 

in terms of the nbs bars that have their origin in the same node (and evaluated as ξj = 0) and 

the nbe bars that end in the same node, and evaluated as ξj = 1. 
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           
1

0 1 1 0 0
nbe nbs

k j kj j kj j kj j kj

j j

N N C Q S Q S N C


      (32)  

     0 1 0
nbe nbs

k j j

j j

M M M    (33) 

Now introducing the following expressions: 

2, 2

j j

j

j

E J
J

a
             3, 3

j j

j

j

E J
J

a
           1,

j j

j

j

E F
F

a
  (34a,b,c) 

Taking into account that:  

 1,j j j jN F u          3,j j j jQ J v           2,j j j jM J v    (35a,b,c) 

It is posible to find the three coefficients of the bar k in terms of the coefficients of the 

precedeng bars: 

 
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1 0 03, 3,0
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 (36)  
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  
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 (37) 
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,2 2, 2, , 2 2, 2,0 ,2

1 0 12, 2,0

1 nbe m nbs

k b i b i b b

b i bk

A J A J A
J

 






  

   
    

  
    (38) 

These above expressions allow the recurrence calculation for a given number of bar that 

concur or leaves from a given node. 

 

Equilibrium equations, natural or secondary in the nodes 

In case of arriving at a node where all the bars have already been defined, then it is the turn to 

work with the equilibrium equations in which all the bars’ coefficients are known. This 

situation adds 3 more equations. The above mentioned turns out to be another of the main 

advances product of the present investigation since, with this methodology. 

Equilibrium equations are expressed in the following way, if we consider that they are all 

incoming bars to the node, that is, their coefficients have already been calculated or they are 

unknowns of the problem. 
3 1

3, , 3, , 3 1, , 1, , 1

1 0 0

0
nbe m m

b k b i b i b k b i b i

b i i

J C A F S B 
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 

  

 
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 

    (39)  

3 1
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b i i
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 

 

  

 
  

 
    (40)  
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b i

J A




 
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   (41)  
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It must be emphasized that, in these equations, all bars are evaluated in ξj = 1 thus obtaining a 

sum in the coefficients of the power series. 

When an end of bar k is connected to the rest of the structure/ground by means of an 

articulation, it is necessary satisfy the nullity of bending moment in the node, consequently 

Eq. (41) can be written as follows: 
2

2, 2, , 2

0

0
m

k i k i

i

J A






  (42) 

 

 

THEORY OF SECOND ORDER PLANE FRAMES 

 

When a structure with axial forces is analyzed with second-order theory, it means that 

equilibrium is posed in its deformed position. The problem is non-linear. The remaining 

hypotheses of the linear analysis are maintained: mechanical and kinematic linearity. 

The problem of second order of plane frames is addressed, taking into account that structural 

engineering can be significantly important in flat roofs. In the metallic construction, 

especially for the final dimensioning, it is crucial to know the safety against the instability of 

the system under study, potentiality that with this theory can be approximated [21]. Second 

order theory should be considered as an indirect study of structural instability. In fact, when 

the load state, at least theoretically, approaches below to the critical state, the present theory 

will give rise to deformations/displacements beyond the admissible range. 

The resolution of frames with the aforementioned topics is based on the use of differential 

governing beam equations in axial and transverse displacements, where the flexural-axial 

effects are coupled. However, instead of working with non-linear differential equations (since 

the axial stress of each bar depends on the derivative of the axial displacement and multiplies 

the second derivative of the transverse displacement), an iterative process is carried out, 

where for each step the axial stresses produced by the linearization of the process are 

maintened. After a few iterations, the normal stresses in successive steps converge and the 

solution is completed.  

It should be noted that the consideration of the axial forces, within the differential equation of 

the flexional displacement, can lead to significant structural displacements that a first-order 

theory can not detect.  

In parts of the structure where general concentrated forces are located, it is necessary to create 

a node to apply them. These forces are illustrated in point 5 of Figure 1, where: H5, V5 are 

horizontal and vertical applied forces and and 5 is the applied moment.  

 

Governing equations of the problem 

 

The strain energy considering bending and axial contributions for each bar j, is written as: 

 
   2 2

1 0 0

1

2

j ja a
nb

j j

j j

j j j j j

M x N x
dx dx

E J E F

  
   
    

  U  (43)  

In this deduction and for simplification purposes, it is accepted that distributed axial loads are 

zero. Eventually, if theses loads have to be considered, equivalent nodal forces are 

incorporated to the model, in the usual way.  

The contribution of strain energy corresponding to the axial loads Nj in the bars (assumed 

constant in each iteration) and associated to second order terms, is written as: 
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   
2

1 0

1

2

ja
nb

j j j j

j

v x dx


  G N  (44)  

The energy S due to the forces applied in the nodes i.  

   
1

nn

i j j j j

i

H C u x S v x 



   
 S  

     i j j j j i j jV S u x C v x v x      
 

 

(45)  

In the previous expression, the subscript j refers to the bar j on which the stress is projected, 

with α being the angle between the bar and the global coordinate system, C and S are the 

values of cosine and sine. 

The energy T due to transverse loads qj(x) distributed along each bar j, is written as: 

   
1 0

ja
nb

j j j j j

j

q x v x dx


 
  

 
 

 T  (46)  

To deduce the equilibrium equations, the following variational condition should be satisfied: 

  0    U G S T  (47)  

 

Substituting Eqs (43)-(40) into Eq. (47) the govering differential equations of the problem are 

obtained. 

     j j j j jj jj jE J v x qv xx  N      (48)  

where   '( )j j jj E F u xN   

  0j j j jE F u x   (49)  

And employing non-dimensional forms the equations are transformed in: 

 
   

2

4, 4,

0
j j

j j

j j j

j j jq
v

a J

v

J

 
  




N
               0j ju    (50a,b)  

As in previous deductions, quotes indentify derivation with respect to spatial variable: 

j

j

j

x

a
              

4, 4

j j

j

j

E J
J

a
             

2, 2

j j

j

j

E F
F

a
        (51a,b,c)  

Using the power series, in the way it has been previously stated, the expressions for 

recurrence are obtained by equalizing the coefficients of equal power: 

, 2, , 22

, 4

4, 4,

j i i j i

j

j i

j i

j
q A

a
A

J













N

 
(52)  

, 2 0j iB    (53)  

In Eq (52), the coefficients Aj,i + 4 are linked to the coefficients of the functions that represent 

the loads qj,i, with the compression forces in each bar Nj and with the previous coefficients in 

the series development of the transverse displacement Aj,i + 2. The Eq. (53) indicates that the 

function of the axial displacement is linear, since the coefficients in the series development 

greater than or equal to 2 are null. 

It is worth clarifying that the conditions and geometric compatibility equations, or first order, 

that arise in each node have not changed either. 
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Conditions and static equations of equilibrium in the nodes 

 

In the nodes to which more than one bar concur, the corresponding conditions of equilibrium 

should be considered, that is, two summations of stresses and one of moments, in the same 

way as was previously done  . With a similar analysis, we arrive at the following expressions 

for equilibrium conditions: 
2
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1 nbe m nbs
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    (54)  
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 (55)  
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 (56)  

Being, nbe and nbs the total number of incoming and outgoing bars respectively to the node n 

under study, k is the bar that takes values from the previous ones in the way of travel of the 

plane frame. 

In the case in which all the bars concur to a given node, the equations of equilibrium are 

analized as previously, arriving to the following expressions: 
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 (58)  
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 (59)  

For the cases in which there are generalized forces applied in a node, origin of a given bar, the 

expressions for calculating the variations, to the bar k in the node n, are the following: 
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DISCUSSION 

 

In order to illustrate the methodology proposed previously, some examples of plane frames 

are presented here, to which the first natural frequencies of vibration are calculated and in 

some cases their modal forms are shown. In the last examples there are plane frames where 

the second order theory is studied. 

The results, obtained with codes programmed within the Mathematica® platform [22], are 

compared with those calculated using the commercial code ALGOR for Finite Element 

Analysis and with those obtained through the use of Finite Element procedures developed for 

arches and frames by Auciello and De Rosa [23].  

 

Example 1 

The first five natural frequencies of the plane frame of Figure 5 are calculated, which has 12 

nodes and a total of 18 bars. 

It is possible to choose bars with different geometric and physical characteristics, but to 

simplify the loading of data in the programs used, in this example all equal bars are adopted, 

of uniform section F=0.12 m
2
, with modulus of elasticity E=2.1x10

11 
N/ m

2
, the bar lengths 

are mesured in meters, the moment of inertia J=0.0036 m
4
 and specific weight ρ=7850 Kg/m

3
. 

 

Figure 5: Plane frame analyzed with 18 bars and 12 nodes (coordinates in meters). 

 

Using the representation in power series, this plane frame is solved with only 33 unknowns. 

With the method of finite elements, at 10 elements per bar, add up to 540 unknowns. The 
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results of the first natural frequencies are shown in Table 1. In the same it can be seen that 

with grade 10, in power series, good results are achieved for the first three natural 

frequencies, requiring an increase in degree for better approximations in frequencies higher, 

which does not imply that the number of unknowns is increased for the resolution of this 

network. 

 

Mode 
Power series 

FEM Algor FEM [23] 
10 30 50 

1 69.803 69.803 69.803 69.802 69.8038 

2 551.361 551.961 551.961 551.469 552.196 

3 768.218 768.349 768.349 768.27 769.198 

4 1259.472 1308.517 1308.517 1308.291 1310.38 

5 1478.636 1506.147 1506.147 1505.922 1509.55 

Table 1: First 5 frequencies [rad/s] obtained with power series of degrees 10, 30 and 50, compared with those 

obtained using 10 elements per bar in the Algor Software and with other FEM procedures [23]. 

 

Example 2 

Asymmetrical portico extracted from the literature [10] shown in Figure 6. It has been 

constructed with beams (2, 4 and 7) using IPE 160 with cross-sectional area A = 20.1 cm
2
, 

inertia I = 869 cm
4
, columns (1, 3, 5, 6 and 8) with IPE 160, A = 40.2 cm

2
, inertia I = 1738 

cm
4
, specific weight of all bars: ρ = 7850 Kg / m

3
. 

 

 

Figure 6: Frame [10] conformed by IPN 160, measure in [m]. 

Mode 
Power series  

FEM [10] FEM [23] 
20 100 

1 8.98951 8.98951 8.9871 8.9971 

2 26.0328 26.0328 26.0078 26.1736 

3 40.0649 40.0649   

4 51.7715 51.7715   

5 64.1664 64.1664   

Table 2: First 5 frequencies [Hz] obtained with power series of degrees 20 and 100, compared with those 

obtained in reference [10] and calculated with FEM procedures [23]. 
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It is interesting to note in this example that, the eigenvalues determined by means of power 

series with maximum exponent 20 have no differences with the solution employing series 

with maximum power 100. Consequently, it is not necessary to increase the polynomial order 

to get better precision. In any case, whatever the maximum exponent used, the number of 

unknowns in this methodology is always 12 which in fact is quite helpful to make parametric 

evaluations or long term repetitive calculations for example in uncertainty quantification or 

optimization procedures. The graphics of Figure 7 show some of the modal forms obtained 

with power series of degrees 20 and 100, the same modes (second and sixth just as examples) 

are observed with their respective natural frequencies. 

 

 

 
a) n=20, ω2 = 26.0328 

 
b) n=100, ω2 = 26.0328 

 
c) n=20, ω6 = 88.7692  

d) n=100, ω6 = 88.7692 

Figure 7: Modal forms obtained with power series for grades 20 and 100. 

 

It clear that, the modes shown in Figure 7 have a magnified scale for illustrative purposes. 

 

Example 3  

A closed plane frame with an important degree of complexity is resolved, which is considered 

one of the main contributions in this work (Figure 8). Elastic solutions are sought considering 

the theory of second order, using series of powers, comparing then the results with those 

obtained by using a finite element program [2]. The plane frame consists of 10 bars, 9 nodes, 

embedded in nodes 1, 7 and 8. In the diagram there are 2 point loads, P3 and P4 (in N) located 

in nodes 3 and 4. In addition there are 4 uniformly distributed loads q2, q3, q4 and q10 (in N / 

m) located in bars 2, 3, 4 and 10 respectively. The coordinates of the nodes are indicated in a 

global system, with units in m. The bars have the following characteristics: I = 0.0036 [m
4
], 

E=2.1 x 10
11

 [N/m
2
]. 
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Figure 8: Plane frame of 10 bars with punctual and distributed loads.  

 

Two load states are solved (case 1 and case 2), in each of them, increasing all the loads with a 

factor f, which takes values 1, 100 and 1000. The elastic solution is sought using the second 

order theory with Power series, using the Mathematica software, comparing the results with 

the finite element method. Some of the results obtained are shown in Tables 3 and 4. It has 

been tabulated for node 3, the horizontal displacements v3 and vertical u3, the rotation 3 and 

the moment M3. The calculation time for each method used is also indicated. 

 

Case 1: P3 = 2 x 10
5
 [N], P4 = 0, q2 = 0, q3 = 0, q4 = 3 x 10

4
 [N/m] and q10 =0. 

 Power series FEM 

f =1 

time [sec] 8 32 

v3 [m] 3.048 x 10
-5 

3.0 x 10
-5

 

u3 [m] 5.38 x 10
-5

 5.4 x 10
-5

 

ɵ3 (°) 1.159 x 10
-3

 1.157 x 10
-3

 

M3 [Nm] 7846.35 7835.08 

f =10
2 

time [sec] 9 74 

v3 [m] 3.038 x 10
-3

 2.84 x 10
-3

 

u3 [m] 5.3798 x 10
-3

 5.3784 x 10
-3

 

ɵ3 [°] 0.1175 0.1157 

M3 [Nm] 776643 794408.6875 

f =10
3
 

time [sec] 11 302 

v3 [m] 2.4558 x 10
-2

 2.3061 x 10
-2

 

u3 [m] 5.3804 x 10
-2

 5.4085 x 10
-2

 

ɵ3 [°] 1.328 1.3508 

M3 [Nm] 6.8356 x 10
6
 6.94 x 10

6
 

Table 3:  Calculation time results, displacements and moments in node 3 for case 1 of loads. 
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Case 2: P3 = 0 N,   P4 = 5 x 10
5
 [N],   q2 = 2 x 10

3
 [N/m],    q3 = 4 x 10

4
 [N/m],  q4 = 0  and 

q10 = 5 x 10
4
 [N/m]. 

 

 Power series  FEM 

f =1 

time [sec] 9 22 

v3 [m] 3.792 x 10
-5 

3.1 x 10
-5

 

u3 [m] 2.88 x 10
-5

 2.9 x 10
-5

 

ɵ3 [°] 5.459 x 10
-3

 5.531 x 10
-3

 

M3 [Nm] 72695.8 73705.85 

f =10
2 

time [sec] 9 144 

v3 [m] 7.016 x 10
-3

 7.418 x 10
-3

 

u3 [m] 2.843 x 10
-3

 2.902 x 10
-3

 

ɵ3 [°] 0.568 0.562 

M3 [Nm] 7.07 x 10
6
 7.402 x 10

6
 

Table 4:  Calculation time results, displacements and moments in node 3 for case 2 of loads. 

 

It is observed from these tables that in general the values are of the same order, taking into 

account that the processes are totally different to arrive at them. In this plane frame, 20 

elements per bar have been used in finite elements, which makes a total of 600 unknowns. 

Using power series, they are only 15 unknowns. The information referring to the 

computational calculation time has also been added, observing a very large difference 

between the two methods, especially in the presence of loads that cause large deformations. 

 

 

Figure 9 - Moment diagram for Case 2 with f = 10. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



-18- 

Something that can be clearly reflected in this example is the very low computational time 

consumed using series of powers. Each situation has been solved in both programs using the 

same computer and under the same conditions. As the load state increases, the large 

deformations increase and the computational time increases enormously when using finite 

elements, the same does not happen if power series are used. This concludes in another of the 

great advantages of the proposed method. 

 

CONCLUSIONS 

The most relevant feature to be highlighted in the solution by power series to obtain the 

natural frequencies of a plane frame is the number of unknowns. It is always very small the 

amount of unknowns that solves the structural model, whatever the number of bars of the 

plane frame. In other methods one must necessarily pose three unknowns for each node. In 

general, it is necessary to subdivide each bar into small elements to guarantee a better result, 

which enforces the proliferation of nodes, increasing the number of unknowns of the problem 

to be solved. 

 

The solutions are completely based on the use of infinite series of integer powers. This form 

of infinite series, to be applied for practical purposes, must be truncated. Nevertheless, the 

exact solution (or with arbitrary precision) can be achieved, when the series’ degree tends to 

infinity in the limit and the response (numerical or in closed form) converges monotonically. 

The accuracy of the results is subject to the maximum power of the adopted series, so that 

there is always the possibility of improving the response by increasing the number of terms of 

the series, and thus achieving the required precision. When using series, the first natural 

frequencies require low power exponents, with powers up to order 10 there is an excellent 

precision. For higher frequencies, it is necessary to increase the degree in the polynomials, 

although with grade 20 also excellent results are obtained without additional difficulties and 

extra computing time. It should be taken into account that it is also necessary to increase the 

number of elements when using FEM, greatly increasing the number of unknowns and 

computing time, on the other hand when using powers series the number of unknowns is 

independent of the order of the polynomial used.  

 

While it is true that sophisticated programs of the finite element method are available, it is 

also true that most of them have closed codes that do not allow some modifications to model 

complex boundary conditions in structural problems. Under this context and given the need to 

solve more sophisticated frame problems (non-linear boundary conditions, restricted motion 

in the joints, etc), practitioners often make equivalent models, which leads to dangerously 

simplified representations. As a specific application in structural engineering, a solution in 

power series has been presented here by means of a systematic recurrence algorithm. This 

allows analyzing the structural behavior of plane frames, arriving at an elastic solution taking 

into account the theory of second order. 

 

A remarkable point in the solution of plane frames problems by means of MPS is the actual 

number of unknowns. Whatever the number of bars or members of the frame, the number of 

unknowns solved by the structural assembly is always very small, independently of the 

polynomial order of the series. In comparison the effective number of unknowns in MPS can 

be 20 to 100 times lower than in the case of other methods. This is not only reflected in the 

reduction of data but more importantly in the spare of computational time (between 3 to 10 

times faster that other methods for the same problem test). Low time consuming routines are 
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always of importance and extreme necessity in the case of uncertainty quatification, stochastic 

modelling and optimization procedeures. Further applications of the present methodology 

would be oriented in the aforementioned problems.   
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