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a b s t r a c t 

In the last years, the operational research on scheduling problems has been moving away from rigorous 

optimization approaches into solution strategies being capable of returning practical and fast solutions 

for large-scale industrial problems. Following this line, this paper proposes a novel MILP-based decompo- 

sition procedure for solving scheduling problems arising in flexible manufacturing environments, which 

generally involve multipurpose units and assembly operations. The solution strategy also considers re- 

design constraints with the goal of improving the efficiency of the production system, preventing bottle- 

necks and balancing the equipment utilization. The proposal is validated through the resolution of several 

instances derived from three real-world case-studies coming from different industrial sectors. The com- 

putational results show that the decomposition procedure is capable of generating high quality solutions, 

sometimes the optimal one, with minimum computational effort for all problem instances considered. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In the context of complex decision-making processes in indus-

ry, scheduling is defined as the problem of planning the manu-

acturing processes by allocating a set of operations to the avail-

ble resources over a given time horizon taking into account some

roduction targets ( Pinedo, 2016 ; Castro et al., 2018 ). An efficient

roduction schedule directly impacts on the productivity of the

hole manufacturing process, allowing achieving a given objective

ccording to the current needs of each industrial facility, such as

he profit maximization or the minimization of the total cost, ear-

iness and/or tardiness, changeover times or production downtime,

r the reduction of makespan. Hence, in order to improve their via-

ility in the current competitive environment, companies must in-

est in research and development, improving their production pro-

ramming tools ( Li and Ierapetritou, 2008 ; Harjunkoski et al., 2014 ;

guirre and Papageorgiou, 2018 ); . 

In the last two decades, the use of optimization techniques

ased on exact mathematical programming methods (LP, MILP, and

INLP), using different modeling concepts ( Kondili et al., 1993 ;

into and Grossmann, 1995 ; Cerdá et al., 1997 ; Méndez et al., 20 0 0 ,

001 ), has played an important role in the field of scheduling re-
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earch ( Liu et al., 2010 ; Kopanos et al., 2011 ; Maravelias, 2012 ).

wo extended reviews about scheduling problems and their so-

ution methods can be found in Méndez et al. (2006) and

arjunkoski et al. (2014) . This last one remarks that most of the

olution approaches developed for solving scheduling problems are

ften presented in the literature from a modeling point of view

nd they are mainly tested only on small or medium sized prob-

em instances. Due to the fact that all scheduling problems turn

ut to be NP-hard ( Garey et al., 1976 ), it is unlikely that indus-

rial instances can be solved efficiently through rigorous optimiza-

ion approaches. Similarly, Georgiadis et al. (2019) underlines that

 high interest from the Process System Engineering (PSE) com-

unity has been expressed for real-life industrial cases and con-

equently, several problem specific solutions have been generated

or real industrial facilities. Nevertheless, these authors remark that

here is still a significant gap between the academic research and

he industrial practice, as only a few contributions have been suc-

essfully applied in real-life scheduling problems. Although the ex-

ct mathematical methods can model the operational constraints

f complex production processes and efficiently solve small and

edium-sized instances of them, such a solution technique is not

ble to efficiently represent complete industrial environments be-

ause of their high combinatorial complexity resulting in extremely

arge computational requirements. 

https://doi.org/10.1016/j.compchemeng.2020.106777
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2020.106777&domain=pdf
mailto:cmendez@intec.unl.edu.ar
https://doi.org/10.1016/j.compchemeng.2020.106777
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Nomenclature 

Indices 

i, i ′ product 

k processing unit 

s, s ′ processing stage 

t, t ′ task 

u workstation 

Sets 

I products 

I a subset of products i that are components of final 

products 

I f subset of products i that are final products 

JT i subset of tasks t corresponding to product i 

K processing units 

K s subset of processing units k that are suitable to per- 

form operations of stage s 

K u subset of processing units k integrating the work- 

station u 

L subset of units k that are released 

S processing stages 

SA i subset of products i ′ that are subassemblies of prod- 

uct i 

S a subset of processing stages s performing assembly 

operations 

ST s subsets of tasks t corresponding to stage s 

T tasks 

U workstations or work cells 

U k subset of workstations u compatible with the pro- 

cessing unit k 

Parameters 

pt is processing time of product order i at stage s 

pt t processing time of task t 

M big number for big-M constraints 

Seq i processing sequence of product i 

N quantity of products to be rescheduled at each iter- 

ation 

N 

max maximum number of final products to be resched- 

uled simultaneously in an iteration 

lTime CPU time limit 

active t determining if task t is active in the current itera- 

tion 

iter number of iterations 

BestSol saving the makespan of the best solution found 

sMK saving value of variable MK 

sY tk saving values of variable Y tk 
s W t t ′ saving values of variable W t t ′ 

Continuous variables 

MK makespan 

Ts t start time of task t 

Tf t completion time of task t 

V k taking a value greater than zero when processing 

unit k is used 

X ks taking a value greater than zero when unit k is se- 

lected to perform some operation of stage s 

X ku taking a value greater than zero when unit k is re- 

located in workstation u 

Binary variables 

W t t ′ determining if task t is processed before task t ′ 
Y tk defining if task t is processed in processing unit k 
Inspired by the industrial challenges and the gap reduction be-

ween the theoretical mathematical models and their industrial

pplicability, the researchers from PSE community have focused

n the development of a wide range of different solution strate-

ies, such as heuristics, meta-heuristics, decomposition-based ap-

roaches, or hybrid methods. The aim of these approaches is to

ompute “good” solutions for large-size problems within accept-

ble computational times. Particularly, heuristic and meta-heuristic

pproaches have been widely used to solve a variety of schedul-

ng problems ( Dauzère-Pérès and Paulli, 1997 ; Pranzo et al., 2003 ;

ossi, 2014 ) and even, they are becoming increasingly used due to

heir sill for solving many optimization problems. However, these

olution approaches are usually tailor-made and cannot system-

tically estimate the degree of quality of the solution generated

 Kopanos et al., 2010 ; Harjunkoski and Bauer, 2017 ). 

On the other hand, solution strategies with complemen-

ary strengths can be mixed resulting in hybrid methods

 Harjunkoski et al., 2014 ). This solution technique arises as

he combination of two or more exact methods, as well as

ombinations of exact and heuristic methods. For instance,

aravelias (2006) proposed a hybrid method combining a MIP

odel with a heuristic scheduling algorithm for solving a multi-

tage scheduling problem. Another type of hybrid approach gen-

rally used involves mathematical programming, simulation mod-

ls, and heuristic techniques. When the scheduling problems are

olved through discrete-event simulation model is needed to use

ispatching rules, which are constructive heuristics for ordering

he queue of jobs that are waiting in front of a resource. Follow-

ng this line, there are relevant articles, such as those ones pro-

osed by Basán et al. (2015) , Cebral-Fernandez et al. (2016) , and

asan et al. (2018) . These authors developed discrete event simula-

ion models, both to maximize productivity and the use of a ship-

ard’s resources and to minimize the total time of the shipbuilding

rocess. Also, MILP-based hybrid methods have received special at-

ention due to the poor solutions given by the pure MILP models

hen they are applied in a monolithic way. Some approaches com-

ine MILP techniques and event discrete simulation models, such

s that one proposed by Castro et al. (2011) , which presented a

ybrid optimization and simulation-based method to reduce the

omputational burden involved in large-scale scheduling problem.

n the same research line, Basán and Méndez (2016) proposed a

ybrid algorithm based on MILP formulation, heuristic strategies

nd an advanced simulation model for solving the complex hoist

cheduling problem. More recently, the same authors ( Basán et al.,

017 ) introduced a novel hybrid simulation-based optimization

ethod in order to generate complete schedules with efficient

omputational times for large-sized shipbuilding scheduling prob-

ems. The researchers have also begun to use the MILP tech-

iques within decomposition algorithms in order to take advan-

age of their robustness and facilitate the resolution of the prob-

ems ( Georgiadis et al., 2019 ). Usually in decomposition-based ap-

roaches, the problem at hand is solved through first determining

n initial feasible solution and then, improving it through several

escheduling iterations. Some important contributions in this di-

ection can be found in Kopanos et al. (2010) , Aguirre et al. (2012) ,

nd Basán et al. (2019a , b , c) . 

The interest from the PSE community in developing efficient

echniques for solving real-world industrial problems has opened a

ast field of research. Chemical manufacturing facilities and other

roduction environments can be classified as either sequential or

etwork according to the material handling restrictions. In se-

uential processing, each batch/lot is characterized by a specific

ecipe, which determines the sequence of stages to follow while

etwork facilities are characterized as more general and complex

nd have usually an arbitrary topology ( Georgiadis et al., 2019 ).

equential environments, in turn, can be categorized into three
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ubtypes according to the number of stages and the complexity

f the production route ( Maravelias, 2012 ). First, in a single-stage

atch plant, each batch is processed in a single stage compos-

ng of one or more parallel units. Second, in a multistage batch

lant, each lot is processed through a set of processing stages

ollowing the same recipe, similar to flexible flow-shop environ-

ents in discrete manufacturing. The third sequential environment

s the multipurpose batch plant, where each batch has to be pro-

essed through a series of product-specific stages. According to

eorgiadis et al. (2019) , a facility is characterized as multipur-

ose when the routings are product-specific, or when a processing

nit belongs to different processing stages depending on the prod-

ct. The multipurpose facilities are equivalent to flexible job-shop

roblems in discrete manufacturing environments. Specifically, this

aper relies on the development of an iterative algorithm for solv-

ng the integrated scheduling and redesign problem of multi-stage

lants with assembly operations in flexible job shop environments,

roblem known in the literature as Flexible Job Shop Schedul-

ng Problem with Assembly operation (FJSP-A). The definition of

he Flexible Job Shop Scheduling Problem (FJSP problem) considers

hat an operation can be carried out on a set of compatible pro-

uction units, thus a same unit can be suitable for operations in

ultiple processing stages. The units performing similar functions

re grouped together in a work cell or workstation. In concordance

ith Shen et al. (2018) , the availability of alternative units of per-

orming similar operations can increase the performance and help

o manage preventive maintenance or tackle breakdown and other

nforeseen events. 

From a scheduling point-of-view, chemical processes with a

ultipurpose environment are similar to flexible job-shop envi-

onments in discrete manufacturing systems. The scheduling prob-

em for sequential chemical facilities is generally modelled in

erms of batches and production stages, like jobs and operations

n discrete manufacturing processes ( Georgiadis et al., 2019 ). The

JSP problem is characterized to be NP-hard, i.e. its combinato-

ial complexity is exponentially increased with the number of

obs to be processed. Hence, no exact optimization approaches

ave been discovered so far to efficiently solve realistic instances

f such a scheduling problem. In the last years, the FJSP prob-

em has been subject of an exhaustive study and numerous tech-

iques of different nature have been proposed for its resolution.

or instance, Blazewicz et al. (1991) were the first to focus on

eveloping mathematical formulations for FJSP problems, consid-

ring simple machines, parallel machines and job shop environ-

ents. Then, Pan (1997) compared different mathematical mod-

ls for scheduling problems such as job shop and flow shop.

ately, Xia and Wu (2005) proposed a hierarchical solution ap-

roach for solving the multi-objective FJSP, while Fattahi et al.

20 07 , 20 09) showed that hierarchical algorithms have better per-

ormance than integrated approaches. More recently, Lee and Mar-

velias (2017a) developed two mathematical models for simulta-

eous batching and scheduling in multipurpose batch plants with

torage constraints. In addition, the same authors ( Lee and Mar-

velias, 2017b ) presented a new discrete-time mixed-integer lin-

ar programming formulations for short-term scheduling in mul-

ipurpose batch plants, using State-Task Network and Resource-

ask Network representations. Other authors, such as Demir and

ür ̧s at I ̧s leyen (2013) and Roshanaei et al. (2013) , also proposed

ixed-integer linear mathematical programming models for solv-

ng FJSP problems. However, due to the complexity of the problem,

he effort s are usually f ocused on heuristic methods and meta-

euristics that, despite not guaranteeing the optimality of the solu-

ion, usually provide efficient solutions in acceptable computation

ime. 

In this paper, we face with the integrated scheduling and re-

esign problem for multi-stage multipurpose plants. Particularly,
nce the best schedule that minimizes the makespan is computed

n a first stage, the solution technique fixes the value of makespan

nd determines if the manufacturing plant is oversized through

he minimization of the number of units utilized at each pro-

essing stage. In addition, the algorithm is able to relocate the

nits released to other compatible work cells in order to improve

ven more the efficiency of the production system through pre-

enting bottlenecks and balancing the equipment utilization. Al-

hough the problem of redesigning multi-stage plants can be found

n several industrial environments, to the best of our knowledge,

his subject has received little or no attention at all in the litera-

ure. Most of the contributions have been focused on the design

roblem that conceptually involves the determination of both the

ize of storage tanks and processing units and the network struc-

ure of a system that is not yet operative. The integrated problem

f scheduling and design for multi-stage multiproduct plants has

een treated by Fumero et al. (2012) . More recently, a hybrid meta-

euristic to address the problem of multiproduct chemical batch

lant design with parallel production lines has been presented by

erbiest et al. (2019a) , where they use a MILP model and an iter-

ted local search metaheuristic. Then, the same authors presented

 RTN formulation and three decomposition approaches for solving

he design and scheduling problem in the same type of production

ine ( Verbiest et al., 2019b ). Furthermore, other contributions on

ultipurpose plants were developed for solving realistic schedul-

ng problems in an specific way because of the high complex-

ty involved by each industrial case considered by the researchers

in and Floudas (2001) , Castro et al. (2005) , Corsano et al. (2007) ,

nd Chibeles-Martins et al. (2010) . All these proposals do not allow

valuating possible reconfigurations of the equipment or process-

ng units in plants that are already operating normally and with a

redefined configuration. 

To face with the integration of both problems, scheduling and

edesign, this article presents a novel hybrid solution strategy that

fficiently solves real-life industrial instances arisen in FJSP-A en-

ironments (see Fig. 1 ). The paper starts with the development of

 MILP model based on the general precedence concept, which

s then embedded within an iterative algorithm in order to ad-

ress large-scale scheduling problems arising in flexible manufac-

uring plants. The main goal is to minimize the makespan while

atisfying all process constraints. The procedure first solves the

cheduling problem considering the current plant configuration.

hen, the algorithm runs again to determine if the plant is over-

ized by minimizing the number of units to be utilized, without

orsen the makespan found in the first step. The units released

an be reassignment to other compatible workstations. As a re-

ult, the algorithm determines the best plant configuration, de-

ailing: (i) which units are used at each processing stage and (ii)

hich operations are performed by each equipment, including the

tarting and finishing times of each operation on each unit. The

obustness and applicability of the proposed MILP-decomposition

lgorithm are demonstrated by developing several computational

xperiments on three real-world case-studies coming from differ-

nt industrial sectors and featuring different sizes and characteris-

ics. Also, the paper presents a comparative analysis of the com-

utational efficiency exhibited by both the exact method via MILP

ormulation and the iterative method based on the decomposition

lgorithm. 

The remaining of this manuscript is organized as follows. The

roblem definition is described in Section 2 . The precedence-

ased MILP mathematical formulation with redesign constraints

s proposed in Section 3 to model explicitly the FJSP problem. In

ection 4 , the iterative MILP-based algorithm is explained in detail.

umerical tests over one illustrative example and three case stud-

es are then presented in Section 5 . Finally, the concluding remarks

re given in Section 6 . 
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Fig. 1. Hybrid solution strategy for real-life industrial instances of FJSP-A environments. 
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r  
2. Problem statement 

The integrated problem of scheduling and redesign for flexible

manufacturing plants involving multipurpose units and assembly

operations can be mathematical modeled considering the following

main assumptions: 

• There is a set of products I = { i 1 , i 2 , .., | I| } that are processed by

following a predefined sequence of processing stages, not nec-

essarily using all stages s ∈ S . 
• There is a set of units K = { k 1 , k 2 , .., | K| } allocated in groups or

workstations u according to their suitability for performing op-

erations of the same subset of processing stages. 
• Each workstation u ∈ U is composed of a subset of specific pro-

cessing units k ∈ K u , which can perform operations of one or

more processing stages. 
• The set K s ⊂K determines the subset of units that are suitable to

handle operations of stage s. 
• No resource constraints except for equipment availability are

considered. An equipment unit k ∈ K cannot process more than

one product at a time. 
• When there are assembly operations, each final product i ∈ I f is

created by assembling other intermediate products i ∈ I a . I f and

I a are subsets of set I , i.e. I f ⊂I and I a ⊂I . The subset SA i contains

all subassemblies of product i . 
• Assembly operations are performed by processing stages s ∈ S a 

( S a ⊂S ). 
• The assembly of a product i ∈ I f cannot start until all its cor-

responding parts (subassemblies) i ∈ SA i are finished and avail-

able. 
• The processing time of product i at stage s, pt is , is known in all

cases. 
• Transportation times between stages are considered negligible

or included in the processing times, hence they are ignored. 
• All model parameters, such as processing times, are determin-

istic. 
• There are no setup or changeover times. 
• Machine breakdowns and other unforeseen events that can in-

terrupt the normal operation of the plant are not considered.

Besides, preventive operations are not allowed during the pro-

gramming horizon. 
• Either UIS (unlimited intermediate storage) or NIS (non-

intermediate storage) transfer policy between stages can be

adopted. 

Fig. 2 illustrates an example of a sequential multipurpose plant

with assembly operations, where each product can follow differ-

ent processing sequences. The products i 1 − i 7 can be processed

in five work cells u 1 − u 5 to obtain four final products: i 6 , i 8 , i 9 ,

and i 10 . The workstation u 2 contains the units performing the as-

sembly stage. For instance, the final product i is obtained from
8 
oining products i 1 and i 7 , while product i 6 does not pass by

ork cell u 2 because it does not require of assembling. Note

hat a specific path must be fulfilled to produce each final prod-

ct. For instance, products i 2 and i 3 follow the production path

 1 → u 2 → u 3 → u 4 → u 5 to obtain final product i 9 , while i 4 and

 5 follow the path u 1 → u 2 → u 3 → u 4 to finally obtain i 10 . 

As mentioned above, a specific unit k ∈ K is able to process

nly one product at a time and can be categorized as either single

urpose or multipurpose. A single-purpose unit should be assigned

o a single processing stage while multipurpose units can handle

perations belonging to several stages. For treating with multipur-

ose units, the problem definition incorporates the following fea-

ures: 

• The set of tasks T = { t 1 , t 2 , . . . , | T | } defining all operations that

must be scheduled. 
• Each product i ∈ I is decomposed in a subset of tasks t ∈ JT i ,

where JT i ⊂T . 
• In addition, the subset ST s ⊂T includes all operations corre-

sponding to stage s . 
• For each product i that should be processed in a stage s ( s ∈ S i ),

there is a task t ∈ ( JT i ∩ ST s ). 

A small example with 4 products i 1 , i 2 , i 3 , i 4 and 2 processing

tages s 1 , s 2 is depicted in Fig. 3 . In this case | T | = 8 . Note that

or the processing of product i 1 , two tasks are defined: t 1 in stage

 1 ( t 1 ∈ S T s 1 ) and t 5 in stage s 2 ( t 5 ∈ S T s 2 ) . At the same time, both

asks are part of the set J T i 1 . Therefore, each task is defined by a

roduct and a stage. 

On one hand, the scheduling problem has a goal the minimiza-

ion of makespan ( MK ), which is a criterion based on the total

ime required to complete the processing of all products while

perational constraints are satisfied. According to the production

argets of the problem under study, other objectives, such as the

aximization of profit, the minimization of the total cost, earli-

ess and/or tardiness, can be also chosen for optimization. On the

ther hand, the redesign problem aims at determining the mini-

um number of units that can be utilized to accomplish with the

bjective function computed initially, and then evaluating feasible

eassignments to further improve the original production target.

ence, the decision variables of the mathematical model are: (i)

he assignment of task t to processing unit k through binary vari-

ble Y tk , (ii) the sequencing of any pair of tasks ( t, t ′ ) assigned to

he same processing unit, determined by binary variable W t t ′ , (iii)

he assignment of some processing task to unit k or neither, de-

ned by continuous variable V k , and (iv) the relocation of non-use

nits k to compatible workstations u, X ku . 

. Mathematical formulation 

In this section, the problem addressed is mathematically rep-

esented as a Mixed Integer-Linear Programming (MILP) formu-
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Fig. 2. Manufacturing process with multipurpose units and assembly operation (FJSP-A). 

Fig. 3. Illustration of subsets JT i and ST s . 
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ation based on the general precedence concept presented by

éndez et al. (20 0 0) . The original proposal of these authors was

eveloped for solving batch scheduling problems with dedicated

nits, without considering redesign constraints. The assignment

nd sequencing constraints presented initially in the cited paper

ere expressed in terms of batches and stages but here these con-

traints must be defined over the set of tasks T for effectively

ealing with multipurpose units. Also, a new constraint is incor-

orated to the model in order to represent the assembly opera-

ions than can be carried out in discrete manufacturing systems. It

s worth to remark that any other alternative formulation can be

sed to represent the scheduling problem addressed. The aim is to

ropose a robust formulation than can be taken as basis for the

urther development of the decomposition procedure. This section

lso presents a new set of constraints for mathematically repre-

enting the redesign problem. In the proposed mathematical for-

ulation explained below, the constraints have been grouped ac-

ording to their type: (i) scheduling decisions (assignment, timing,

equencing, and assembly) and (ii) redesign decisions (reallocation

f units, rescheduling, and time adjustment). 

.1. Scheduling problem 

• Allocation constraint 

Eq. (1) represents the assignment constraint that is defined for

very processing stage s and task t ∈ ST s . This restriction deter-

ines that each task t ∈ ST s must be accomplished in just one pro-

essing unit k ∈ K s , being K s the subset of units k that can perform

perations of stage s . Variable Y represents the binary decision of
tk 
hether to assign a task t to a unit k or not. Hence, Y tk is active

( Y tk = 1) if task t is allocated to processing unit k ; otherwise, the

ariable is set to zero. 
∑ 

 ∈ K s 
Y tk = 1 ∀ s ∈ S, t ∈ S T s (1)

• Timing constraints 

Constraint (2) computes the ending time of a task t, Tf t , as its

egin time Ts t plus the processing time of t, which is known a pri-

ri through parameter pt t . Note that p t t = p t is when t ∈ ( JT i ∩ ST s ) .

ariables Tf t and Ts t are defined as continuous positive in the

athematical model. 

 f t ≥ T s t + p t t ∀ t ∈ T (2)

In case of scheduling problems with due-date constraints, the

ariable Tf t can be used for determining the earliness or tardiness

or product i , being t ∈ JT i . 

Constraint (3) ensures that the processing of product i on any

tage s cannot start until the processing of i in its previous stage

as already been completed. The elements of subset of tasks JT i are

rdered according to the production recipe of product i. 

 s t ≥ T f t ′ ∀ i ∈ I, 
(
t , t ′ 

)
∈ J T i : t < t′ (3)

As a key feature in the most process industries is the han-

ling of storage, Constraint (3) can be modified according to the

torage policy adopted by the scheduler; it must be expressed as

nequality for unlimited intermediate storage (UIS), while it be-

omes in equality when the non-intermediate storage (NIS) pol-

cy is adopted. In case of Zero-Wait scheduling policy, Constraints

2) and (3) should be expressed as equalities. 

• Sequencing constraints 

Constraints (4) and (5) are used to sequence any pair of tasks

 t, t ′ ) assigned to a same processing unit k . These constraints are

ormulated as big-M constraints and follow the generalized prece-

ence concept. The parameter M is an upper bound for the cor-

esponding timing variables. According to the general precedence

oncept, the sequencing constraints on a unit k are defined for any

air of tasks ( t, t ′ ) where t < t ′ , t ∈ S T s , t 
′ ∈ S T s ′ and k ∈ ( K s ∩ K s ′ ) .

he binary sequencing variable W t t ′ . takes 1 as value when t is

rocessed before than t ′ ; otherwise, it is set to zero. Note that,

f two tasks ( t , t ′ ) are assigned to a unit k ( Y tk + Y t ′ k = 2) and

ask t is chosen to be processed before task t ′ , i.e. W t t ′ = 1 , then

q. (4) forces that the begin time of t ′ , T s t ′ , will be greater than

he ending time of task t, Tf t . However, if task t ′ is processed earlier

han t, i.e. W t t ′ = 0 , the reverse statement is fulfilled and Eq. (5) be-

omes active. 

T s t′ ≥ T f t − M(1 − W t t ′ ) − M ( 2 − Y − Y ′ ) 
tk t k 
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Fig. 4. A multipurpose unit performing operations of two processing stages. 
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∀ 

(
s, s ′ 

)
∈ S, t ∈ S T s , t 

′ ∈ S T s ′ , k ∈ ( K s ∩ K s ′ ) : t < t ′ (4)

T s t ≥ T f t ′ − M W t t ′ − M ( 2 − Y tk − Y t ′ k ) 

∀ 

(
s, s ′ 

)
∈ S, t ∈ S T s , t 

′ ∈ S T s ′ , k ∈ ( K s ∩ K s ′ ) : t < t ′ (5)

In order to illustrate the definition of constraints (4) and (5) ac-

cording to the generalized precedence concept, Fig. 4 shows a

multipurpose unit k 2 , in where five tasks of two different stages

(s 2 and s 3 ) are assigned and sequenced. Note that t 5 and t 9 rep-

resent the processing of product i 1 at stage s 2 and s 3 , respec-

tively. The values of sequencing variables are: W t 5 ,t 6 = 1 ; W t 5 ,t 7 = 1 ;

 t 5 ,t 8 = 1 ; W t 5 ,t 9 = 1 ; W t 6 ,t 7 = 1 ; W t 6 ,t 8 = 1 ; W t 6 ,t 9 = 1 ; W t 7 ,t 8 = 1 ;

 t 7 ,t 9 = 0 ; W t 8 ,t 9 = 0 . 

In addition, some scheduling problems may require that the

products i will be processed at any stage s following a predefined

sequence, which is known a priori through parameter Seq i . In this

case, constraints (4) and (5) must be replaced by (6) . 

T f t ≥ T f t′ − M ( 2 − Y tk − Y t ′ k ) ∀ 

(
i, i ′ 

)
∈ I, 

(
s, s ′ 

)
∈ S, t ∈ JT i , 

t ′ ∈ JT i ′ , t ∈ ST s , t 
′ ∈ ST s ′ , k ∈ ( K s ∩ K s ′ ) : Se q i < Se q i ′ (6)

• Assembly constraint 

In order to represent the assembly operations that can be per-

formed on the manufacturing system, constraint (7) forces that the

processing of product i in assembly stage s ∈ S a cannot begin until

its subassemblies i ′ ∈ SA i have completed their processing in the

previous stage ( s − 1 ) . The begin time Ts t of task t ∈ ( JT i ∪ ST s ) must

be greater than the end times T f t ′ of tasks t ′ ∈ (J T i ′ ∪ S T ( s −1 ) ) . 

T s t ≥ T f t ′ ∀ s ∈ S a , i ∈ I a , i ′ ∈ S A i , t ∈ J T i , t ′ ∈ J T i ′ , t ∈ S T s , t ′ ∈ S T s −1 : s > 1 

(7)

• Objective function 

The flexible manufacturing plants dealing with multipurpose

units usually seek the effective utilization of their manufacturing

resources, taking the machine versatility into consideration. A min-

imum makespan generally implies a high utilization of the process-

ing units. Hence, the mathematical model aims at minimizing the

makespan, which is computed through constraints (8) and (9) . 

M inimize M K (8)

MK ≥ T f t ∀ t ∈ T (9)

Due to there are many meaningful goals for choosing, the ob-

jective function (8) should be defined considering the production
argets of the problem that is being solved. In case of considering

ther objective, such as the maximization of profit, the minimiza-

ion of the total cost, earliness and/or tardiness, it is needed the

ncorporation of additional constraints in the mathematical formu-

ation. 

.2. Redesign problem 

When solving the original scheduling problem taking as goal

he minimization of the makespan, or any other objective, the op-

imal solution may show that some workstations u ∈ U have a low

tilization rate, while other ones are the bottleneck. So, consider-

ng the existence of multipurpose units, it is possible to evaluate

he relocation of some processing units k ∈ K u to other compatible

orkstations u ′ ∈ U k with the aim of preventing bottlenecks, bal-

ncing the equipment utilization and consequently, reducing the

bjective value given by the initial scheduling solution. 

In the redesign stage, the first objective is to minimize the

umber of units to be utilized per workstation. After solving the

ILP model (1)–(9) , the variable MK is bounded by its optimal

alue (fixing it as upper bound) and the resulting model is solved

gain but considering two additional constraints (10) and (11) .

ere, the objective function is represented by constraint (10) . 

inimize 
∑ 

k ∈ K 
V k (10)

 tk ≤ V k ∀ t ∈ T , k ∈ K (11)

V k is a continuous positive variable that, according to Eq. (11) ,

an be set to zero only when unit k is not utilized to perform any

peration . In this case, it can be said that unit k is released and

ecomes part of the set L . Otherwise, if unit k is used to perform

t least one task t , the variable V k will take a value equal to 1

ecause it is included in the objective function (of minimization)

s a positive term. The MIP solver will always assign the minimum

easible value to variable V k , i.e. 0 or 1, depending on Eq. (11) . 

• Relocation of released units 

To improve the efficiency of the production system, feasible re-

onfigurations of the facility can be evaluated. This option is mod-

led through Constraint (12) , which establishes that each released

nit k ∈ L can be relocated at most to a single compatible work-

tation u ∈ U k . 
∑ 

 ∈ U k 
X ku ≤ 1 ∀ k ∈ L (12)

The decision to relocate a unit k ∈ L to workstation u , i.e. X ku =
 , implies that k will be able to perform the operations belonging

o all stages s ∈ S u . This condition is modeled through constraint

13) . 

 ku = X ks ∀ u ∈ U k , k ∈ L, s ∈ S u (13)

• Rescheduling tasks 

Constraints (14) and (15) are used to assign the tasks t to be

rocessed by each unit k ∈ L relocated in a compatible worksta-

ion u ∈ U k . Although all tasks t ∈ T have already assigned to

ome processing unit in the initial scheduling solution, some of

hem can be rescheduled to any unit k ∈ L . In this case, the bi-

ary variable Y tk is used to compute the reassignment of task t to

eleased unit k ∈ L . It is important to mention that the reassign-

ent of tasks to non-released units ( k �∈ L ) is not allowed. In other

ords, Y tk = 0 ∀ k / ∈ L, t ∈ T . In addition, Constraint (15) determines

hat task t ∈ ST s can be assigned to unit k ∈ L only in the case that

uch a unit is able to perform operations of stage s , i.e. X ks = 1 . 
 

k ∈ L 
Y tk ≤ 1 ∀ t ∈ T (14)
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Fig. 5. Reassignment of tasks to released units and time adjustment. 
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 tk ≤ X ks ∀ s ∈ S, t ∈ S T s , k ∈ L (15)

• Time settings 

Once the reassignment actions have been performed on the ini-

ial schedule, it is needed to update the timing decisions for each

ask. On the one hand, Constraints (16) and (17) are used to adjust

he begin time of tasks that are assignment to units k �∈ L . Parame-

ers s W t t ′ and s Y t ′ k save the value of variables W t t ′ and Y t ′ k in the

riginal scheduling solution, respectively. 

T s t ′ ≥ T f t − M 

∑ 

k ′ ∈ L 
Y tk ′ 

∀ 

(
t , t ′ 

)
∈ T , k / ∈ L, s W t t ′ = 1 , s Y tk = 1 , s Y t ′ k = 1 : t < t ′ (16) 

T s t ≥ T f t ′ − M 

∑ 

k ′ ∈ L 
Y tk ′ 

∀ 

(
t , t ′ 

)
∈ T , k / ∈ L, s W t t ′ = 0 , s Y tk = 1 , s Y t ′ k = 1 : t < t ′ (17) 

On the other hand, constraints (18) and (19) are used to de-

ermine the sequencing decisions for each unit k ∈ L . For greater

larity to the reader, constraints (14)–(19) are illustrated in Fig. 5 ,

herein the unit k 2 ∈ L is relocated to compatible workstation u 1 
nd thus, it can perform operations of this work cell, such as t 2 
nd t 3 . 

 s t ′ ≥ T f t − M ( 1 − W t t ′ ) − M ( 2 − Y tk − Y t ′ k ) ∀ 

(
t , t ′ 

)
∈ T , k ∈ L : t < t ′ 

(18) 

 s t ≥ T f t ′ − M W t t ′ − M ( 2 − Y tk − Y t ′ k ) ∀ 

(
t , t ′ 

)
∈ T , k ∈ L : t < t ′ 

(19) 

. The solution strategy 

A full space approach, such as that one presented in the pre-

ious section, may not be suitable for solving realistic instances of

K  
ndustrial problems because their resolution through exact meth-

ds is either impossible or yield poor solutions with high integral-

ty gaps. An efficient strategy for solving real-life industrial cases

hat takes advantage of the robustness exhibited by the exact op-

imization approaches without falling into the pure use of heuris-

ics or meta-heuristics is to disaggregate the problem structure in

 logical way and to resolve manageable model sizes at each itera-

ion. 

The general scheme of the decomposition algorithm proposed

n this paper is depicted in Fig. 6 , where two major procedures

an be identified according to the problem to be solved: (i) the

rst stage deals with the scheduling problem, wherein an initial

olution is computed and then it is gradually improved, consider-

ng the reallocation and reordering of tasks in order to obtain the

est schedule; (ii) the other stage deals with the redesign prob-

em, wherein the use and possible oversizing of multipurpose units

n each workstation are evaluated for subsequent relocations, with

he aim of improving the efficiency of the production system and

chedule. Therefore, the solution of each stage is constructed it-

ratively through the resolution of the MILP model several times

ut considering a reduced search space in each solver execution.

he procedure aims at converging to a high-quality solution with

elatively low computational effort. The proposed algorithm is de-

cribed in detail in the following subsections. 

.1. Scheduling stage 

The first phase of the algorithm solves the scheduling problem

y first constructing an initial feasible solution and then improv-

ng it through several rescheduling iterations. Thus, it sequentially

erforms two sub-stages. 

.1.1. Constructing an initial scheduling solution 

The first step aims at finding an initial feasible sched-

le considering the current plant configuration. For this goal,

ny constructive heuristic can be used. The strategy used here

s based on the sequential construction heuristic proposed by

opanos et al. (2010) , in which a subset of products are inserted
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Fig. 6. General structure of the MILP-based algorithm. 

Fig. 7. Pseudo-code of initial feasible solution phase. 
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at each iteration until all orders are finally inserted. The construc-

tive heuristic used should be capable to give a feasible solution for

the scheduling problem in few seconds of CPU time. The conver-

gence to a feasible schedule should be reached with low compu-

tational effort, and in some cases, it can be viewed as a good ap-

proximation to the industrial reality. Therefore, it is needed to set

a criterion for selecting the number of products to be inserted at

each iteration and the order in which they will be inserted. In or-

der to minimize the MIP solver search space and ensure the quick
athematical model resolution for every iteration, the easiest and

ost effective heuristic is to insert the products i ∈ I f one-by-one

nd select them following an insertion sequence, such as that one

iven by the parameter Seq i . Note that when a final product i ∈ I f 

s selected to be inserted and scheduled in each iteration, its sub-

ssemblies i ′ ∈ SA i must also be considered for scheduling. With

his insertion criterion, the number of iterations of the constructive

tage is equal to | I f |. The pseudo-code of the constructive heuristic

s given in Fig. 7 . 
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Fig. 8. Pseudo-code of iterative improvement phase. 
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A boolean parameter called active t is used by the algorithm to

etermine if a task t is scheduled at iteration iter . The model with

onstraints (1)–(3) , (6)–(9) is solved at each iteration but consid-

ring only the tasks t with act i v e t = t rue . After each solver exe-

ution, the binary variables Y tk are fixed and the procedure con-

inues with the scheduling of the next task. Particularly, at each

teration, only assignment decisions are considered. As can be seen

n the pseudo-code of Fig. 7 , the sequencing decisions W t t ′ are de-

ermined by solving the MILP model with constraints (1)–(9) once

ll assignments decisions Y tk have been fixed. Another feasible al-

ernative is to determine both the assignment and sequencing de-

isions in a simultaneous way for all tasks selected for schedul-

ng at each iteration. Once all tasks have been scheduled, the so-

ution found (initial schedule) is saved in parameters sMK, sY tk ,

nd s W t t ′ . 

.1.2. Improving the scheduling solution 

In this phase, the initial scheduling solution found by the con-

tructive heuristic is systematically improved by performing sev-

ral rescheduling iterations. A rescheduling action consists of re-

easing a subset of products i ∈ I f from the current schedule in or-

er to find for them better unit assignments or sequencing. As in

he constructive stage, when a product i is selected for reschedul-

ng it means that all tasks t ∈ JT i can be reassigned or rese-

uenced. The same happen with tasks t ∈ J T i ′ , where i ′ ∈ SA i .

he pseudo-code of the improvement stage is given in Fig. 8 . At
ach iteration, the MILP model integrated by constraints (1)–(9) is

olved but considering just the binary variables Y tk and W t t ′ for the

asks t with the parameter act i v e t = t rue . For the remaining tasks

 with acti v e t = false , only timing decisions can be taken and their

ssignment and sequencing decisions are fixed and known through

arameters sY tk and s W t t ′ . 
A key point to define in the improvement stage is the number

f products i ∈ I f to be rescheduled at each model execution, given

y parameter N . Let’s consider a small problem with four products

 i 1 , i 2 , i 3 , and i 4 ). Fig. 9 shows the products rescheduled at each

teration for different values of parameter N : N = 1 to N = | I| . Note

hat the fewer the value of N , the higher the number of iterations

nd smaller the solver search space, resulting in manageable model

izes. However, as the value of N increases: (i) the number of itera-

ions is reduced, (ii) the feasible region of the resulting mathemat-

cal model becomes larger, and hence, (iii) the resolution of the

ILP model becomes more complex and intractable. 

The algorithm developed in this paper is configured for execut-

ng the improvement stage several times starting with N = 1 and

o on increasing this value by one until, either the maximum num-

er of iterations N 

max is achieved or the makespan is not improved.

 CPU time limit ( lTime ) is imposed for each model execution. The

alues of parameters N 

max and lTime should be defined from a pre-

ious analysis of the problem under resolution. 

Every time that all products i ∈ I f and their subassemblies have

een rescheduled, the procedure checks if the solution (makespan)
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Fig. 9. Products rescheduled at each iteration for different values of N. 

Fig. 10. Pseudo-code of unit minimization phase. 
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is improved. If the solution found is better than the last one re-

ported as the best ( BestSol ), the algorithm: (i) updates the best

solution, (ii) saves the allocation and sequencing decisions in pa-

rameters sY tk and sW tk , and (iii) starts the rescheduled iterations

again from the beginning. Otherwise, the procedure ends and re-

ports the solution saved in parameters sY tk and sW tk as the best

solution found. 

4.2. Redesign stage 

This algorithmic stage takes as input the best scheduling so-

lution and evaluates the redesign of the plant by analyzing: (i) if

some processing unit can be released through the reassignment of

the tasks assigned to such a unit to other equipment, while main-

taining the makespan value; and if so, (ii) the feasible relocations

of such released units to other compatible workstations in order to

improve the efficiency of the production system. 

The redesign stage involves the resolution of mathematical

model integrated by constraints (1)–(7) and (9)–(11) for minimiz-

ing the number of processing units to be utilized and then, the res-

olution of mathematical model (2) , (3) , (6)–(9) , and (12)–(19) for

possible reassignments of tasks to the released units with the goal

of minimizing the original value of makespan. The resolutions of

both models via a full space approach are computationally expen-
ive when real-life industrial instances are solved. Therefore, the

edesign stage is also decomposed to be iteratively solved as ex-

lained follows. 

.2.1. Analysis of the equipment utilization 

This step aims at minimizing the number of processing units

equired to process all tasks t ∈ T within the time given by the

est solution found in the Scheduling stage . Once the best schedule

hat minimizes the makespan is reported by the previous step of

he algorithm, the procedure fixes the value of variable MK and

everal rescheduling actions are iteratively applied on the current

cheduling, by solving the MILP model with constraints (1)–(7) and

9)–(11) for each workstation u ∈ U . The pseudo-code for the first

hase of the redesign stage is shown in Fig. 10 . 

The procedure iterates on each workstation u ∈ U in order to

inimize the number of units k ∈ K u utilized at each of them.

ence, at each iteration, the procedure activates all tasks t ∈ ST s 
hat belong to stages s ∈ S u . Only the tasks with act i v e t = t rue can

e reassignment. After each resolution of the MILP model, the al-

orithm fixes the value of variables V k for all k involved in the

urrent iteration. The variable V k takes value 1 if k is used in the

orkstation u ( k ∈ K u ), otherwise, V k takes value 0 meaning that

he unit k "is released" and becomes candidate for a future reloca-

ion. In this last case, the unit k becomes part of the set L ( k ∈ L ).
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Fig. 11. Pseudo-code of reconfiguration phase. 
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h  
he procedure ends when all workstation u ∈ U have been evalu-

ted. As in the previous algorithmic stages, allocation and sequenc-

ng decisions are saved in the parameters sY tk and s W t t ′ , respec-

ively. 

.2.2. Reconfiguration of the production system 

Once the set of unused processing units ( k ∈ L ) is determined,

he relocation of these units to other possible workstations u ∈ U k 

s evaluated. The feasible reallocations should be defined for each

pecific problem, establishing the compatible workstations for each

nit through set U k . At first, it can be assumed that each unit k ∈ L

an be relocated to any workstation u ∈ U . It is important to high-

ight that the purpose of this last phase of the algorithm is to an-

lyze the configuration of the production system and carry out an

fficient relocation of all units previously released in order to mini-

ize the makespan and improve utilization of workstations. There-

ore, the best value of makespan reported by the Scheduling stage

 BestSol ) is set as the upper bound of the variable MK . 

The relocation of released units can be taken simultaneously by

olving the MILP model involving the constraints (2) , (3) , (6)–(9) ,

nd (12)–(19) with the goal of minimizing the makespan. However,

or some complex instances, the resolution of this full mathemat-

cal model can be very expensive from the computational require-

ent point of view. In these cases, it is possible to use the re-

ocating strategy of the units k ∈ L one-by-one, in an iteratively

ay, as shown the pseudo-code given in Fig. 11 . At each iteration,

he assignment and sequencing decisions are activated only for the

nit k ∈ L under consideration. For the remaining units k ∈ L , the

ariables Y tk and X ks are set to zero. At end of each iteration, the

urrent schedule is update with the reassignments of tasks to the

nit k ∈ L under iteration, saving the solution in parameters sY tk 
nd s W t t ′ . The procedure ends when all units k ∈ L have been iter-

ted. 
. Case studies and computational results 

When industrial problems are solved through an optimization

pproach, both the computational time and the quality of the solu-

ion found depend on both the quantity of products and the num-

er of processing units involved in the problem configuration. In

his way, the applicability and efficiency of the proposed solution

trategy are tested by solving different problem sizes derived from

hree real-world case studies. The aim is to evaluate and illus-

rate the performance, flexibility and scalability of the algorithm

hrough the resolution of different problem instances. Firstly, the

lgorithm is verified by solving a small illustrative example aris-

ng in a flexible manufacturing system that accounts for assembly

perations and multipurpose units. Then, several instances derived

rom three real-world cases studies coming from different indus-

rial sectors are solved by using both the exact optimization ap-

roach and the decomposition procedure. First, a real-world case

tudy coming from the pharmaceutical industry is tackled. The sec-

nd case study deals with the scheduling problem of an automo-

ive company processing parts of automobiles. Finally, the third

eal-life example arises in a shipping company dedicated to the

onstruction of large ships. The experimentation developed allows

omparing the performance of both solution strategies in terms of

olution quality and computational burden, estimating an approxi-

ated measure of the quality of the solutions provided by the de-

omposition algorithm. 

The algorithm and underlying models were codified in GAMS

5.1.2 using CPLEX 12.6.3 as the MILP solver, which is set for run-

ing in a parallel deterministic mode using up to twelve threads.

he hardware is a DELL PRECISION T5500 Workstation with six-

ore Intel Xeon processor (2.67 GHz) and 8 GB of RAM. Either a

elative optimality of tolerance of zero or a time limit of 1 CPU

our was imposed as the termination criteria on the resolution
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Fig. 12. Flowchart of the illustrative example. 

Table 1 

Processing times [hours] for the illustrative example. 

Product Stages 

s 1 s 2 s 3 

i 1 4 – –

i 2 5 – –

i 3 5 – –

i 4 8 – –

i 5 3 – –

i 6 9 – –

i 7 – 9 10 

i 8 – 4 8 

i 9 – 7 6 

Units k 1 , k 2 , k 3 k 4 k 3 , k 5 , k 6 
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of every example solved by the exact optimization approach. For

those problem instances whose solutions featuring a high integral-

ity GAP after 1 h of computational time, the MILP model is solved

again but considering a longer CPU time limit in order to evaluate

the reduction of integrality GAP to a lower value or eventually the

convergence to the optimal solution. 

5.1. A small illustrative example 

In order to illustrate the characteristics of the scheduling prob-

lem in flexible manufacturing systems, a toy example is presented

and solved in this section. Such an example involves the process-

ing of | I| = 9 products. Three of them are final products (| I f | = 3) ,

each one composed by two subassemblies (| I a | = 6) . Specifically,

S A i 7 
= { i 1 , i 2 } , S A i 8 

= { i 3 , i 4 } , and S A i 9 
= { i 5 , i 6 } . The production

facility consists of 6 equipment units (| K| = 6) for carrying out 3

processing stages (| S| = 3) . As shown Fig. 12 , there are 4 worksta-

tions (| U| = 4) and those units that can perform operations be-

longing to the same subset of processing stages are grouped to-

gether in the same workstation u . Note that there is an only mul-

tipurpose unit k 3 handling operations of stages s 1 and s 3 . The re-

maining units are single purpose. From Fig. 12 , it follows that prod-

ucts i 1 to i 6 are processed in the first stage s 1 for then being as-

sembled in pairs at stage s 2 , generating the products i 7 , i 8 , and i 9 ,

which are finally processed at stage s 3 . Information related to pro-

cessing times of the products at each processing stage is given in

Table 1 . 

When the illustrative example is solved using the decompo-

sition algorithm, a solution featuring a makespan of 31 h is re-

ported in 0.98 s of CPU time. This solution is equal to the opti-

mal one found by the exact MILP model after 0.25 CPUs. Although

the model size is not large (196 linear constraints, 105 binary vari-

ables, and 26 continuous variables), the example serves to demon-

strate the convergence of the algorithm to the optimal solution of

the problem. The computational results are summarized in Table 2
hile the optimal solution is illustrated in Fig. 13 . From Table 2 , it

ollows that both approaches required less than a second of CPU

ime to find the optimal solution. Fig. 13 depicts the assignment

nd sequencing of tasks in each processing unit, wherein every

ask is identified by the #id of product followed by the id of pro-

essing stage; for example, task 2–1 refers to the processing of

roduct #2 on stage #1. In addition, the set of tasks associated to

 final product i and its subassemblies i ′ ∈ SA i are depicted with

he same color. 

.2. Case study 1 

The first case study comes from the pharmaceutical industry,

n where the majority of the operations performing in their fa-

ilities are batch-type. This industrial case, originally tackled by

icoar ̆a (2012) , comprises a sequential job-shop production envi-

onment involving 20 processing units, which are grouped in 10

rocessing stages (see Fig. 14 ). All processing units are single pur-

ose and hence, the scheduling problem is solved without con-

idering redesign options. The plant produces 16 different types

f drugs through product-specific recipes. For each type of drug,

able 3 shows the quantity of batches to produce and its produc-

ion recipe. Just a subset of units of every processing stage is able

o perform the operation required by a given product. This com-

atibility between products and processing units is also given in

able 3 . The processing times depend on both the product and the

rocessing unit and can be obtained from the referenced paper.

he general structure of production facility is depicted in Fig. 14 ,

hich also illustrates the alternative production routes for the dif-

erent types of drugs. 

The original case study involves the processing of 79 batches

n several processing stages. As a result, 606 tasks must be de-

ned for their assignment and sequencing on 20 processing units.

his results in an extremely large-size model (see Table 4 ), which

s impossible to be efficiently solved through a pure optimization

pproach. For this reason, three instances of growing size are gen-

rated from the original case study. The computational results ob-

ained are summarized in Table 4 . When considering the produc-

ion of 2 and 4 drugs, involving the scheduling of 58 and 190 tasks,

espectively, both solution strategies converge to the same solu-

ion but the decomposition procedure achieves it in considerably

ess computational time than the pure MILP model. The solver can

emonstrate the optimality of the solution only in the smallest-

ize instance. For the full-size example, the solution reporting by

he algorithm after 1762 s of CPU time outperforms that one found

y the mathematical model after 12 h of computational time. Note

hat the solutions found by the MILP model for the cases of 4 and

6 drugs feature a high integrality GAP, which is reduced at most

n 2.5% without improving the objective value when the CPU time

imit imposed for the problem resolution is increased from 1 to

2 h. 

.3. Case study 2 

In this case, the proposed methodology is applied to an indus-

rial problem of medium-large size. Such a case study relies on an

xample previously tackled by Roshanaei et al. (2013) that com-

rises the production of molds for the automotive industry. A mold

s composed of 5 different parts: cavity, core, slide, retractor, and

lamp-plates. In the problem definition, both the molds and their

orresponding parts represent the products to be processed on the

anufacturing line. The original case study taken from the litera-

ure involves the processing of 20 parts, corresponding to 4 molds,

 processing stages, and 14 processing units, without considering

old assembly operations. This paper extends such an example

y incorporating a last stage ( s ) with 2 dedicated assembly units.
9 
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Table 2 

Computational results for the illustrative example. 

MILP model Iterative algorithm 

Cont. var. Bin. var. Eqs. Obj. Func. CPU( s ) Gap% Initial solution Best solution Total CPU (s) 

196 105 26 31 0.25 0 31 31 0.98 

Fig. 13. Optimal schedule for the toy example – MK = 31 hours. 

Fig. 14. General structure of the production facility – case study 1. 

Table 3 

Processing sequence for each type of product – case study 1. 

Product No. batches Stages 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 s 10 

i 1 (Analgin) 8 k 1 k 2 k 7 k 11 , k 13 k 18 k 20 

i 2 (Antacid) 1 k 1 k 2 k 3 k 4 k 8 k 9 , k 10 k 14 k 15 k 17 k 20 

i 3 (Ascovit 100) 13 k 1 k 2 k 5 , k 6 k 9 , k 10 k 14 k 15 k 17 k 20 

i 4 (Ascovit 200) 4 k 1 k 2 k 5 , k 7 k 12 k 18 k 16 k 20 

i 5 (Ascovit 60) 3 k 1 k 2 k 7 k 9 , k 10 k 14 k 15 k 17 k 20 

i 6 (Biseptrim cl.) 1 k 1 k 2 k 5 , k 6 k 12 k 19 k 16 k 20 

i 7 (Biseptrim) 19 k 1 k 2 k 5 , k 6 k 12 k 18 k 16 k 20 

i 8 (Ephimigrin) 1 k 1 k 2 k 3 k 4 k 5 , k 7 k 13 k 18 k 16 k 20 

i 9 (Europirin T) 3 k 1 k 2 k 7 k 11 , k 13 k 18 k 20 

i 10 (Europirin) 3 k 1 k 2 k 3 k 4 k 7 k 11 , k 13 k 18 k 20 

i 11 (Eurosept) 4 k 1 k 2 k 3 k 4 k 8 k 9 , k 10 k 14 k 15 k 17 k 20 

i 12 (Paracetamol Pus) 2 k 1 k 2 k 3 k 4 k 5 k 11 k 18 k 20 

i 13 (Paracetamol Sinus) 11 k 1 k 2 k 3 k 4 k 5 k 11 k 18 k 16 k 20 

i 14 (Paracetamol) 3 k 1 k 2 k 5 , k 6 k 11 k 18 k 20 

i 15 (Tussin Forte) 2 k 1 k 2 k 3 k 4 k 5 k 9 , k 10 k 14 k 15 k 17 k 20 

i 16 (Tusin) 1 k 1 k 2 k 5 k 9 , k 10 k 14 k 15 k 17 k 20 
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Table 4 

Computational statistics for the three instances of case study 1. 

Drugs Batches Tasks MILP model Iterative algorithm 

Cont. var. Bin. var. Eqs. Obj. Func. CPU( s ) Gap% Initial solution Best solution Total CPU (s) 

2 9 58 190 283 1429 7171 50.42 – 7171 7171 7.39 

4 26 190 595 2423 11,767 10,308 3600 ∗ 47.98 10,527 10,308 64.93 

10,308 43,200 ∗ 45.51 

16 79 606 1905 21,709 104,903 23,570 3600 ∗ 77.02 23,015 22,930 1762 

23,570 43,200 ∗ 76.86 

∗CPU time limit imposed for the solver execution. 

Table 5 

Processing sequence for each type of product for case study 2. 

Type of product Stages 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 

Cavity x x x x x x x x 

Core x x x x x x x x 

Slide x x x x 

Retractor x x 

clamp – plates x 

mold x 

Units k 1 , k 2 , k 3 , k 4 k 5 k 3 , k 4 k 6 , k 7 k 8 , k 9 k 10 k 11 k 3 , k 12 k 13 , k 14 k 15 , k 16 

Table 6 

Processing times [hours] for case study 2. 

Product i Stages 

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 s 9 

i 1 - cavity 60 85 24 52 40 84 32 26 

i 2 - core 79 80 24 70 84 84 47 60 

i 3 - slide 11 35 25 19 

i 4 - retractor 16 40 

i 5 - cl amp − pl ates 36 

i 6 - cavity 62 85 48 52 45 84 21 26 

i 7 - core 74 74 48 60 65 84 40 60 

i 8 - slide 30 20 7 20 

i 9 - retractor 35 36 

i 10 - cl amp − pl ates 45 

i 11 - cavity 60 94 36 52 40 84 21 23 

i 12 - core 72 74 90 60 59 84 46 54 

i 13 - slide 16 20 12 35 

i 14 - retractor 14 16 

i 15 - cl amp − pl ates 45 

i 16 - cavity 55 76 36 54 54 36 32 26 

i 17 - core 67 70 36 60 73 36 26 46 

i 18 - slide 23 21 20 39 

i 19 - retractor 23 38 

i 20 - cl amp − pl ates 50 

i 21 - mould 35 

i 22 - mould 30 

i 23 - mould 25 

i 24 - mould 38 
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Table 5 shows the processing sequence for each type of product and

the units performing operations at each processing stage. From this

table, it deduces that a total of 96 tasks must be assigned and se-

quenced in order to find a feasible schedule. Note also that units

k 3 and k 4 are multipurpose because k 3 is able to perform opera-

tions of stages s 1 , s 3 , and s 7 , while k 4 is suitable for operations of

stages s 1 and s 3 . Information regarding to processing times of the

products at each stage is specified in Table 6 . 

When this real-life problem is solved by using the exact opti-

mization approach, the optimal solution, reporting a makespan of

979 h, is found after 127.7 s of CPU time, while the decomposition

algorithm converges to the same solution in just 28.8 s (see row 1

of Table 7 ). 

In order to test the scalability of the algorithm when increased

the number of parts to be processed in the production system, two
dditional instances considering the production of 6 and 8 molds,

espectively, are generated from the original case study. The fea-

ures of molds 5 to 8 are similar to those ones of molds 1, 2, 3,

nd 4, respectively. The computational statistics and objective val-

es for each instance considered of case study 2 are summarized

n Table 7 . This table details the solutions reported by both the

onstructive and the improvement stage of the iterative algorithm.

As can be seen in Table 7 , the resolution of MILP model consid-

ring the full space solution cannot find the optimal makespan for

he new problem instances within a time limit of an hour. In the

ase of 6 molds, the MILP model reports a solution of 1355 h with

n integrality gap of 30.5%, while the algorithm reaches the same

olution in just 455.7 s. This makes suspect that the solution found

s the optimal one but the MIP solver cannot demonstrate it within

he time limit predefined. Moreover, when the production of 8

olds is considered, the objective value of 1764 h found by the de-

omposition procedure in 1145 CPUs time is better than that one

chieved by the exact optimization approach ( MK = 1772 hours)

fter an hour of CPU time. When the examples involving the pro-

uction of 6 and 8 molds are solved without setting a maximum

PU time limit, the solver ends due to memory capacity error. In

he case of 6 molds, a small reduction of the integrality GAP is

chieved after 100 h without improving the objective value while

or the example with 8 molds, the same solution found by the al-

orithm is obtained, but requiring more than 82 h of CPU time.

ote that to find a solution for the scheduling problem involving

 molds, the model faces with the assignment and sequencing of

92 tasks on 16 processing units. In spite of the complexity of the

nstances considered for case study 2 (see Table 7 ), the decomposi-

ion approach shows a good computational performance, reporting

igh-quality solutions with a modest CPU time, for all cases con-

idered. 

The best schedules found by each solution strategy for the in-

tance of 8 molds are depicted in Fig. 15 . In this picture, the op-

rations performed on each processing unit are colored according

o the processing stage to which they belong. For this reason, the

ultipurpose units ( k 3 and k 4 ) have operations of two different

olor. Besides, each task is labeled with the #id of the product that

s being processed due to the reduced space available in the fig-

re. For instance, mold 1 is the product #48 and its corresponding

arts are product #1 to #5. On the other hand, the schedule de-

icted in Fig. 15 a shows as in the multipurpose unit k , the prod-
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Table 7 

Computational statistics for the three instances of case study 2 . 

Molds MILP model Iterative algorithm 

Cont. var. Bin. var. Eqs. Obj. Func. CPU( s ) Gap% Initial solution Best solution Total CPU (s) 

4 194 2332 4685 979 127.7 0 1266 979 28.8 

6 290 5166 10,363 1355 3600 ∗ 30.5 1633 1355 455.7 

1355 360,038 ∗∗ 27.4 

8 386 9112 18,265 1772 3600 ∗ 55.4 2030 1764 1145 

1764 295,233 ∗∗ 46.8 

∗CPU time limit imposed for the solver execution. 
∗∗Solver ended because the memory capacity was exceeded. 

Fig. 15. Scheduling solutions found for case study 2 with 8 molds: (a) the iterative approach and (b) the MILP model. 
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Fig. 16. Processing and assembly stages in shipbuilding process – FJSP-A. 
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ucts i 11 , i 31 , and i 36 (#11, #31, and #36, respectively) appears twice,

representing the processing of products #11 and #31 at stages s 1 
and s 3 , and the processing of product #36 at stages s 3 and s 7 . Fi-

nally, it is worth to remark that when the redesign stage is applied

to the three instances derived from case study 2 , no unit could be

released in neither of these examples because the scheduling solu-

tions show a high utilization of all processing units. 

5.4. Case study 3 

This third case study faces with the scheduling and redesign

of a multi-stage shipbuilding process arising in the naval industry.

The shipbuilding process involves multipurpose units and assembly

operations. According to the modular approach to offshore vessel

design and configuration, a ship is constructed by assembling a set

of blocks, which represent the largest construction units of a ship.

Each block in turn is formed from one or more sub-blocks which

generally include some welded equipment, such as bushings, pipes,

and cables, implementing before painting. Once finishing the pro-

duction of the blocks, they are transported and positioned in a dry

dock for building the ship. An operation known as Block Erection is

performed to mount the blocks, one after another, according to a

predefined sequence given by the specifications of the ship design.

The naval company seeks to minimize the total time required to

mount a ship due to the high penalty costs incurred by the com-

pany when the completion of a project is delayed. Moreover, the

inactivity of any resource, such as a dry dock, represents a loss of

income for the company. 

The real-life example presented here involves the production of

a large ship composed by 25 blocks and 50 sub-blocks. The ship-

yard is integrated by 42 workshops that perform operations of 7

processing stages, wherein 13 workshops are multipurpose: 6 ones

handling operations of processing stages s 2 and s 4 , while the other

7 ones are shared by stages s 2 , s 4 , and s 6 . There are two processing

stages that carry out assembly operations (| S a | = 2) , one for as-

sembling the sub-blocks and the other one for mounting the ship.

The problem configuration is illustrated in Fig. 16 . The products to

be processed are represented by circles while the work cells in-

tegrating the manufacturing system are depicted by rectangles. As

shown in Fig. 16 , there are groups of parallel units with single pur-

pose ( u 1 , u 3 , u 4 , and u 6 ) and other ones are multipurpose, such as

u 2 (stages s 2 and s 4 ) and u 5 (stages s 2 , s 4 , and s 6 ). The small ex-

ample depicted in Fig. 16 involves the processing of 6 sub-blocks
( i 1 − i 6 ) and 3 blocks ( i 7 , i 8 , and i 9 ). Sub-blocks are processed at

he first two stages and then, they are assembled in pairs at stage

 3 to form the blocks. The remaining stages s 4 , s 5 , and s 6 perform

perations on the blocks, which are put together in stage s 7 to

ount the ship. The data about processing times and other prob-

em features, such as the type of operation performing on the sub-

locks/blocks at each processing stage, cannot be given in this pa-

er by confidentiality issues imposed by the company. 

The computational results obtained when case study 3 is solved

hrough both the exact MILP model and the iterative algorithm,

re summarized in Table 8 . The example results into a huge MILP

odel of 148,551 equations, 9300 binary variables, and 452 con-

inuous variables. As consequence, the full space approach gives

 makespan of 241.7 days, with an integrality gap of 25.2%, after

he predefined CPU time limit of an hour. Instead, the decomposi-

ion algorithm finds a solution that is 2.8% better (makespan of 235

ays) in just 265.2 s of CPU time. Moreover, when a CPU time limit

s not imposed for the resolution of the full-space MILP model, the

olver ends because the memory capacity is exceeded and reports

 solution featuring a makespan of 241.4 days with a GAP value

f 25.3%. Once again, the solution of this industrial scale problem

llustrates how the strategy of solving iteratively the MILP model

ith a reduced search space at each solver execution outper-

orms the full space approach in terms of CPU time and solution

uality. 

Fig. 17 shows the behavior of the solution found by both ap-

roaches over computational time. As can be seen in this pic-

ure, the high computational efficiency of the proposed iterative

ethodology allows to report, in less than 5 min of CPU, an im-

rovement in the solution of 84.7% with regards to the monolithic

ILP formulation within the same CPU time. In this case, the al-

orithm is parameterized with the following values: N 

max = 10 and

T ime = 10 seconds . Furthermore, when analyzing the performance

f the decomposition algorithm by setting different values to these

nput parameters ( N 

max = 10 and 3 different values for the time

imit of execution lTime , 10, 20, and 30 CPUs), the best solution

ound evolves as shown in Fig. 18 . 

From Fig. 18 it follows that, regardless of the value of param-

ter lTime , the makespan is reduced considerably in the first it-

rations. Then, for values N = 5 or greater, there are no im-

rovements in the objective function. The analysis of Fig. 18 al-

ows concluding that the best values for the input parameters are

 

max = 5 and lT ime = 30 seconds. When the decomposition algo-
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Table 8 

Computational statistics for case study 3. 

MILP model Iterative algorithm 

Objective value CPU (s) GAP (%) Initial solution CPU (s) Best solution CPU 

∗(s) 

241.7 3600 25.2 261.2 18.9 235 265.2 

∗accumulative time including previous algorithmic stages. 

Fig. 17. Evolution of the solutions found by the MILP Model and the decomposition algorithm through time. 

Fig. 18. Solution quality vs. computational time – decomposition algorithm. 
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ithm is run considering these parameter values, a solution fea-

uring a makespan of 229.6 days is obtained after 1100 s of CPU

ime. This solution, the best found for case study 3 , is depicted in

ig. 19 by a Gantt chart. A total of 225 tasks are assigned and se-

uenced in 42 processing units in order to find a feasible schedule

or the example at hand. In this Gantt chart, all tasks belonging to

 same processing stage are represented with the same color and

ach operation is labeled with the #id of the product related to

he processing task. Note that several tasks of different colors have

een assigned to work cells u 2 and u 5 because the units integrating

hese workstations are multipurpose. The time currently employed

y the company for delivering a ship of size 25 × 50 is about a

ear and half. Consequently, the new schedule given in Fig. 19 re-
uces the total time that takes to build a ship by approximately

0%. 

Once obtained the best solution for the scheduling problem, the

econd stage of the iterative procedure is carried out to analyze the

edesign of the productive system. At first, the procedure takes as

nput the scheduling solution given in Fig. 19 and determines that

 processing units can be released without worsen the makespan

f 229.6 days. The units becoming part of set L are: k 16 and k 20 of

orkstation u 2 and k 22 , k 23 , k 26 , k 29 , and k 30 of workstation u 3 . By

nalyzing Fig. 19 , it is possible to known beforehand that work cell

 3 is oversized. Nevertheless, there is nothing to suggest that the

uantity of units in work cell u 2 could be also reduced. Fig. 20 il-

ustrates the new schedule that results after minimizing the num-
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Fig. 19. Best solution found by the iterative algorithm for case study 3 – MK = 229 . 6 days. 

Fig. 20. Best solution for case study 3 with 7 units released – MK = 229 . 6 days. 
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ber of units to be utilized at each work cell. Note that tasks origi-

nally assigned to released units k 16 , k 20 , k 22 , k 23 , k 26 , k 29 , and k 30

(see Fig. 19 ) are reassigned to other units in the schedule depicted

in Fig. 20 . 

Once the set L = { k 16 , k 20 , k 22 , k 23 , k 26 , k 29 , k 30 } is defined,

the algorithm continues with the relocation of the processing units
 ∈ L to any compatible workstations u ∈ U k . In this example, as

he units represent workshops of the shipyard, any facility can be

uitable to perform operations of any processing stage, except the

ainting operations, which should be accomplished in workshops

rranged for such a purpose. 
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Fig. 21. Best solution reported by the alternative 1 for case study 3 – MK = 217 . 5 days. 

Fig. 22. Best solution reported by the alternative 3 for case study 3 – MK = 202 . 9 days. 
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Table 9 

Computational statistics of the integrated problem of scheduling and redesign for case study 3 . 

Heuristic Scheduling stage Redesign stage 

Initial solution CPU (s) Best solution CPU ∗ (s) Released units CPU ∗ (s) Redesign solution CPU ∗ (s) 

1 261.2 19.0 229.6 1139.3 7 12,337.0 217.5 12,497.7 

2 261.2 18.1 229.6 1147.0 7 12,355.7 216.3 15,957.7 

3 ∗∗ 261.2 17.8 229.6 1141.7 7 12,353.8 202.9 188,967.6 

∗accumulative time including previous algorithmic stages. 
∗∗unlimited runtime in the last phase of step redesign, the solver ends up exceeding the memory capacity. 
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The problem of relocating the released units is solved by using

both the iterative strategy proposed by the algorithm ( alternative

1 ) and the pure MILP model ( alternative 2 and 3 ). The computa-

tional results obtained are summarized in Table 9 . In alternative

1 , the units are relocated iteratively, one by one. As a result, the

algorithm converges to a solution featuring a makespan of 216.3

days after 160 s of CPU time. On the other hand, alternative 2 and

3 solve the full space MILP modelconsidering all units k ∈ L in a

simultaneously way. In alternative 2 , a CPU time limit of 3600 s

is imposed for the solver execution, while such a termination cri-

terion is neglected in alternative 3 . From Table 9 , it follows that

alternative 3 finds the best solution (202.9 days) but employing al-

most 50 h of CPU time. In this case, the solver ends because the

memory capacity was exceeded. 

Taking into consideration that the redesign problem involves

long-term decisions, the high computational expense exhibited by

alternative 3 represents a minor issue in the problem resolution.

The best scheduling solution found after plant reconfiguration for

alternative 1 and 3 are depicted in Figs. 21 and 22 , respectively. In

the last case, the makespan is reduced around 12%, from 229.6 to

202.9 days, with regards to the original plant configuration. 

6. Conclusions 

This paper has addressed the integrated scheduling and re-

design problem of flexible manufacturing plants involving multi-

purpose units and assembly operations. A rigorous mathematical

model relied on the general precedence concept was developed for

solving the problem under study. The MILP model incorporates the

definition of task in order to handle the allocation and sequencing

decisions in multipurpose units. Furthermore, the paper proposes a

set of novel constraints for facing with the redesign problem. The

main goal is the minimization of the makespan. 

Even though the full space approach is able to find the optimal

solution for small problem instances, its applicability to industrial

size problems is either impossible or yield poor solutions. There-

fore, the MILP model is embedded within a decomposition algo-

rithm, which solves repeatedly the rigorous model but consider-

ing a reduced search space at each solver execution. The iterative

procedure is integrated by two main stages: one for solving the

scheduling problem and the other one for the redesign problem.

In the scheduling stage, the products to be processed are incorpo-

rated one by one together with their subassemblies until a com-

plete feasible initial schedule is obtained. Then, this initial solution

is improved iteratively by executing several rescheduling actions.

Once the best schedule for the current plant configuration is deter-

mined by the procedure, this solution is taking as input for the re-

design stage. The first goal of redesign stage is to determine if the

plant is oversized by minimizing the number of units used in each

workstation, and then, in a second objective, the redesign problem

evaluates alternative plant reconfigurations in order to minimize

the makespan found at first by the scheduling stage. 

The proposed algorithm was used for solving several instances

derived from three real-life case studies. In order to determine

the complexity of the examples selected and the quality of the
olutions reported by the decomposition method, all problem in-

tances were also solved by using the full space MILP model. Com-

utational results demonstrate that the algorithm converges effi-

iently to the optimal solution with low computational effort when

mall-to medium sized instances are considered. For the case of

arge-scale problems, the iterative procedure reports better solu-

ions than the rigorous mathematical model, also outperforming

his optimization approach in terms of CPU time. 

Finally, it is worth to remark that the iterative procedure can

e easily adapted for solving other types of scheduling problems

y changing appropriately the mathematical model used as base. 
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