
Service Migration in a Distributed Virtualization System

Pablo Pessolani, Luis Santiago Re and Tomás Andrés Fleitas

Department of Information Systems Engineering

Universidad Tecnológica Nacional – Facultad Regional Santa Fe

Santa Fe, Argentina

{ppessolani, lsre, tafleitas}@frsf.utn.edu.ar

Abstract. Cloud applications are usually formed by different components (mi-

croservices) that may be located in different virtual and/or physical computers.

To achieve the desired level of performance, availability, scalability and ro-

bustness in this kind of system is necessary to develop and maintain a complex

set of infrastructure configurations.

 Another approach would be to use a Distributed Virtualization System (DVS)

that provides a transparent mechanism that each component could use to com-

municate with others, regardless of their location and thus, avoiding the poten-

tial problems and complexity added by their distributed execution. This com-

munication mechanism already has useful features for developing distributed

applications, such as replication support (active and passive) and process migra-

tion.

 In general, process migration is used when a node in the cluster is overloaded

or it has been scheduled to be disconnected in order to save energy or to do

maintenance tasks in it. When this occurs, it is very important that any applica-

tion using any service running in that node does not end up being affected by

the migration.

 This article describes the mechanisms used for the migration of server pro-

cesses between nodes of a DVS cluster in a transparent way for client and serv-

er processes, and doing special focus on how to solve the problem of keeping

client/server communications active even when the server process location has

changed.

Keywords: Virtualization, Process Migration, Distributed Systems.

1 Introduction

Nowadays, applications developed for the cloud demand more and more resources,

which cannot be provided by a single computer. In order to increase their computing

and storage power, as well as to provide high availability and robustness they run in a

distributed environment. Using a distributed system, the computing and storage capa-

bilities can be extended to several different physical machines (nodes). Although

there are various distributed processing technologies, those that offer simpler ways of

implementation, operation and maintenance are highly valued, as this will result in

lower costs. Also, technologies that provide a Single System Image (SSI) are really

mailto:ppessolani,%20lsre,%20tafleitas%7d@frsf.utn.edu.ar

2

useful because they abstract the users and programmers from issues such as the loca-

tion and migration of processes, the use of internal IP addresses, TCP/UDP ports, etc.,

and more importantly, because they hide failures by using replication mechanisms. A

Distributed Virtualization System (DVS) is a technology that has all these features

[1]. A DVS offers distributed virtual runtime environments in which multiple isolated

applications can be executed. The resources available to the DVS are scattered in

several nodes of a cluster, but it offers aggregation capabilities (allows multiple nodes

of a cluster to be used by the same application), and partitioning (allows multiple

components of different applications to be executed in the same node) simultaneous-

ly. Each distributed application runs within an isolated domain or execution context

called a Distributed Container (DC). A topological diagram of a DVS cluster is shown

in Fig. 1.

Fig. 1. DVS example topology.

A problem that must be considered when using a distributed application refers to the

location of a certain service used by an external or internal client, or by another com-

ponent of the application itself. One way to solve this problem, without using the

DVS Inter-Process Communication (IPC) facilities, would be to use existing Internet

protocols. With the DNS protocol, the IP address of the server can be located in the IP

network, and with ARP the MAC address of the server can be located within a LAN.

However, one issue that must be taken into account when working with a cluster is

that the network and its nodes may fail, preventing continuity in the delivery of a

given service. A similar problem presents process migration, which is in general used

in those cases in which a cluster node, where a service is running, is overloaded or its

disconnection has been planned to maintain the node's hardware. It is critical that the

applications that use this service are not disrupted by the migration to maintain ser-

3

vice availability. The destination node of the migrated service will have another IP

address (and other MAC address), which forces service clients to know about these

new addresses in order to continue operating with it.

When virtual machines (VMs) are used on hypervisors such as VMware ESXi [2]

or KVM [3], the migration at the VM level is solved using virtual networks where the

source VM is connected to a distributed virtual switch, then migrated to the destina-

tion host keeping its MAC and IP addresses and connected to the same virtual switch.

The problem of maintaining communications between a client and a server after

server migration can be faced with such as those used by VM migration. These solu-

tions rely on network management and use two different approaches: to keep an IP

address when performing a migration or changing it. One possible solution is to trans-

form the problem of migrating VMs between independent subnets into a problem of

migrating VMs in the same subnet. Tools such as OpenFlow [4] and VXLAN [5] can

be used which are based on tunneling strategies, modified routing [6] and layer 2

expansion [5, 7].

Another solution is to use a load balancer, which, in short, operates as a proxy by

which clients connect to servers. At the time of a migration, the load balancer could

be in charge of preserving the information necessary to reestablish the communication

of the clients with the migrated server in a transparent way. This technology is widely

used in certain scenarios such as web applications, where end users send requests

from their devices as clients, and the load balancer is the one who establishes a ses-

sion with the corresponding server, thus distributing and balancing the load between

them. But, in a scenario where both client and server are part of the same cluster, the

use of a load balancer could be detrimental, since it centralizes communications be-

tween clients and servers, transforming it into a single point of potential failure and

this could end up reducing service availability.

Using a DVS is a simpler and more transparent solution which handles the state

and configuration of the cluster in a distributed way. A DVS maintains the identifica-

tion of its nodes and the nodes which compose each DC. A highly valued feature a

DVS has is the mechanisms to maintain communications between clients and a server

process, even when changes in the location of the latter may occur as a result of its

migration to another node in the cluster.

When a server changes its location from a source node to a destination node, the

processes that communicate with it must be able to maintain their communications

despite the change and in a transparent way, in order to simplify programming, man-

agement and maintenance.

There are several ways to handle this problem using a DVS. First, by enabling a

distributed service called RADAR [8], which manages the location of services that

require fault tolerance or, as in this case, process migration. Second, by using DVS's

specific commands meant to be used to notify the location of certain processes (gen-

erally servers) in the cluster, and to keep ongoing communications between the pro-

cesses alive. Third, by using the DVS APIs to develop an application that manages

migrations.

One of the main components of a DVS is the Distributed Virtualization Kernel

(DVK), which is integrated into the Linux kernel as a module. All the mentioned

4

utilities are available through the DVK APIs. In the test scenarios presented in this

article, RADAR will not be used, in order to focus on the mechanisms that the DVS

can use to support process migration, but not in replication scenarios.

The process migration support available in a DVS is fully transparent to the under-

lying network because it does not require additional network configurations to those

already established when configuring the DVS, and therefore, simplifies its deploy-

ment, use and maintenance.

Another problem that process migration usually presents is the treatment of PIDs

(Process IDentifier). When a process is migrated, it will have a PID assigned to it at

the source node and another, generally different PID will be assigned to it at the des-

tination node. If the process, once migrated, makes a getpid() system call, it will ob-

tain a different value than what it could have obtained in the source node. For this

reason, a virtualization layer must be implemented, in which the process PID becomes

a global attribute of the process, associated with a local PID in the node where it is

being executed in a given moment. Several distributed virtual OSs which keep the

process’ PID unchanged after it has migrated have been implemented for the DVS.

The aim of this article is to present several test scenarios of how process migration

could be done in a DVS keeping active communications after one of the process has

migrated. It is a proof of concept of one of the many features a DVS has.

The rest of the article is organized as follows: Section 2 refers to related works.

Section 3 provides an overview of background technologies and Section 4 describes

how DVS process migration works. Section 5 presents the used scenarios and the

results of the evaluation of process migration and finally, the conclusions and future

work are summarized in Section 6.

2 Related Works

The problem raised is not unknown by the scientific community, so several research

and development works have previously been carried out to solve it.

A process migration is called homogeneous when it is carried out between ma-

chines (virtual and/or physical) with the same architecture (ISA) and same OS [9]. A

process migration is called heterogeneous when it is carried out between machines

with different architecture or OS. Within these, process migrations done at user level

are differentiated from the ones done at kernel level. The former is generally easier to

implement and maintain, but has certain disadvantages, such as the inability to mi-

grate certain processes, and the need to use system calls, which are slow and expen-

sive.

To carry out a homogeneous process migration there are five well known algo-

rithms that are mentioned and briefly explained below [10]:

 Total-copy algorithm: it consists in suspending the process, then transferring all its

status information and finally resuming it on the destination node. It is simple, easy

and does not have residual dependencies, but it has a long delay caused by having

to transfer the whole state of the process.

5

 Pre-copy algorithm: it consists of transferring the whole state of the process, then

suspending it and transferring the changes that may have occurred in its state, and

finally resuming it in the destination node. Despite being a bit more complex than

the Total-copy algorithm, this algorithm has a lower downtime.

 On-demand pages algorithm: the largest part of a process state is its virtual address

space. On this algorithm the process is suspended, then transfers its state except for

the virtual address space, which will be requested, if required in the destination

node. This approach is fast, but it maintains dependencies with the source node,

meaning that the source node must keep on the information on the migrated pro-

cess until it finishes.

 File server algorithm: it is very similar to the on-demand pages algorithm, but it

introduces a third node called the file server, which will precisely be in charge of

storing the virtual address space of the migrated process, in order to avoid depend-

ency between different possible nodes, and always keep dependencies only with

the file server node.

 Nonfreezing algorithm: this algorithm proposes two important optimizations

against the previous ones. On the one hand, in relation to the virtual address space,

it looks for the pages in use at the time of migration and only migrates those to-

gether with the process state, the rest are sent later and in case of page faults, they

are handled as in the on-demand page algorithm. On the other hand, this algorithm

separates the communications module of a process from the rest of its state, in or-

der to first migrate the process but not its communications, queuing the messages

that arrive during this time, and then just migrate the communications module. This

achieves to considerably reduce the communications freeze time.

Handling communications during a process migration is something that increases its

complexity. Some techniques used by classic DOS to perform process migrations

while maintaining their communications are analyzed below.

2.1 Mosix

Mosix [9] can be used to build a Distributed Operating System (DOS) in a Linux

cluster. Mosix is implemented as a kernel-level loadable module and has a set of tools

and libraries. In Mosix, a process that has been migrated shares the runtime environ-

ment of its Unique Home Node (UHN), the node on which it was started.

Two algorithms are provided for sharing resources: load balancing and remote

node memory usage. When a node's memory runs out, the remote node memory usage

algorithm is triggered. A given process is migrated to a node that has enough free

memory but it maintains interaction with its original environment. The context of the

process selected for migration is divided into two parts: deputy and remote. The at-

tached context remains in UHN and cannot be migrated. The remote part of a process

is a user context and can be migrated. Therefore, all processes that have been migrat-

ed to other nodes interact with the user's environment through the UHN and use the

remote node's resources when possible.

6

This way of migrating processes represents leaving a residual dependency on the

UHN that affects the availability of the service provided by the process, but, on the

other hand, the migration has no consequences on the IP addressing (as an associated

process of the migrated one remains in the kernel on the UHN) and communications

remain uninterrupted. For this reason, Mosix provides transparent process migration

and automatic load balancing across the cluster.

2.2 OpenSSI

OpenSSI [9] is a Single System Image DOS. In order to manage and balance loads,

OpenSSI implements and uses a process migration mechanism. The migration scheme

used in OpenSSI is derived from the one used by Mosix, but unlike it, it does not

require a deputy process on the source node. This is achieved through the use of a

virtualization layer implemented as a Linux kernel extension that manages Vprocs

(virtual processes). For example, the PID of a process remains even after it has mi-

grated to another node. This PID is virtual and is associated with the real PID of the

local node (node where the process is running).

2.3 Kerrighed

Kerrighed [9] is another SSI DOS that additionally implements Distributed Shared

Memory (DSM). It implements several useful mechanisms when migrating processes

or threads (memory sharing supports thread migration). It first performs the "check-

point" of a process to obtain relevant information about its status and then performs

the migration itself through a stream exclusively dedicated to this, which guarantees a

high efficiency level. However, a disadvantage of Kerrighed is the inability to add or

remove nodes to a cluster after it has been started and a failure of one node can cause

the failure of the entire cluster.

2.4 Amoeba

Amoeba is an SSI DOS developed by A. S. Tanenbaum based on a microkernel [11].

It uses a high-performance network protocol called FLIP [12] that supports RPC,

group communications (GCS), support for process migration, and important security

features. Each process is assigned a Network Service Access Points (NSAPs) that are

independent of their location, so they can be located at any node in the cluster. This

feature facilitates process migration.

The process migration implementation in Amoeba is based on three key points.

First, separate the migration mechanism from the policy to be used, that is, separate

how a migration is carried out from when and where it is carried out. On the other

hand, achieve transparency for the processes, that is, they should not worry about

where they are being executed, or about possible migrations of both themselves and

other processes with which they are related. And finally, avoid residual dependencies,

which implies achieving a total migration, preventing a process from continuing to

depend on its original node.

7

3 Background Technology

This section presents the developments, products and tools that have been studied and

analyzed as technological support for the design and implementation of process mi-

gration in a DVS prototype.

3.1 M3-IPC

The DVK provides programmers with an advanced IPC mechanism named M3-IPC

[13] which is available at all nodes of the DVS cluster. M3-IPC provides tools to

carry out transparent communication between processes located in the same (local) or

in different (remote) nodes. To send messages and data between processes of different

nodes, M3-IPC uses Communications Proxies processes. Proxies can use different

transport/network protocols which can include encryption, compression and batching

of messages and data. It also hides communication interruptions that involve replicat-

ed server processes in case of server failure or when it migrates to another node of the

DVS cluster. On a process migration, communications are reestablished after the pro-

cess has migrated or returned to its source node (failed migration).

M3-IPC processes are identified by endpoints which are not related to the location

of each process, and then it does not change after a process migration. This feature

becomes an important property that facilitates application programming, deployment

and operation.

3.2 CRIU

One of the most used sequence of actions when migrating a process is: 1) carry out

a checkpoint, which consists of stopping the process to capture and store its status at a

given moment; 2) transfering the stored state of the process from the source node to

the destination node, and finally 3) restore the state of the process and execute it from

this checkpoint.

The first implementations were carried out with the intervention of the kernel,

which caused that this solution was not accepted by the Linux community [14].

In particular, the CRIU project [15] solves this problem, since it implements the

user-space checkpoint and restore mechanism, using the available kernel interfaces

through system calls or pseudo-filesystems such as /proc. One of those most im-

portant interfaces to accomplish this task is the ptrace system call, which provides a

means for one process to observe and control the execution of another process, and

examine and change its memory and registers.

Finally, in the restore, CRIU allows to re-identify the process with the PID that it

had during the checkpoint. To achieve this, CRIU writes one number less than the

desired PID to /proc/sys/kernel/ns_last_pid and then validates that the newly created

process has the correct PID, otherwise the process restore is aborted.

It was not possible to integrate CRIU to DVS in these instances due to incompati-

bilities in the architectures of both products. The stable versions of CRIU require 64-

8

bit architectures, but the current version of the DVS only supports the i386 and i686

architectures, both 32-bit.

3.3 DMTCP

DMTCP [16, 17] is a tool which provides a checkpoint and restore (C/R) mechanism

at user level. Each process to be supervised by DMTCP must be associated with a

coordinator process (Fig. 2) at the time of its execution. This allows the coordinator to

later capture the status of these processes on demand. Then, when a process fails or is

terminated for some reason, it can be resumed from one of the captured states. How-

ever, the resumption of these processes must necessarily be done using DMTCP.

The DMTCP Coordinator communicates with the processes it controls through a

thread called Coordinator Thread (CT). In this way, when the Coordinator requests

that a process checkpoint be generated, it sends a command to the CT. Upon receiving

this command, the CT generates a SIGUSR2 signal so that each thread of the process

is suspended and the image to be stored in a file can be generated.

Fig. 2. DMTCP components (from [17]).

DMTCP only captures the state of a process and then resumes it, possibly on an-

other node. However, sending the process state between nodes and handling its com-

munications must be done separately, using some other tools, because DMTCP

doesn’t provide these features. Once the process image file has been obtained, it must

be transferred to the destination node. In the latter, the dmtcp_restart command is

executed and the process is restarted.

4 Process Migration in a DVS

Process migration is a technique used to dynamically load balance between the

nodes of a cluster to relieve a node that requires repair. It is also used to consolidate

services in a fewer number of active nodes during periods of low demand and thus

reduce the energy consumption of the infrastructure.

The DVS supports that a process associated with an endpoint can be migrated from

a source node to a destination node without having to modify the applications (neither

9

the migrated process nor the processes that communicate with it). Its goal is for the

communications to remain active, but suspended while the migration process is being

carried out. Then, once the migration is finished, the communications are reestab-

lished without changing the behavior of the involved processes, except for perceiving

an additional delay. This property of the communication system is known as Migra-

tion Transparency.

To migrate a process in a DVS, the DVK of each of the involved nodes (source,

destination, and communication counterparts) must be notified that the process whose

endpoint is in active state will be migrated. It is assumed that there is a distributed

process management system that runs in each of the nodes of the DVS cluster, alt-

hough all this operation can be done manually or through scripts as shown in the tests

presented in the next section. Using a command line or a web application, the migra-

tion manager is instructed that a given process will be migrated (MIGR_START)

which has as parameters the process to be migrated identified by the {DC, endpoint}

tuple.

This MIGR_START command is broadcasted to each of the DVS nodes, and each

node will take different actions depending on the state of the endpoint in that node.

These states can be:

 Active: this means that the process (PROC_RUNNING) to be migrated is executing

on that node (source), so the endpoint is active and upon receiving the migration

start command, it will go to the MIGRATING state until the migration is finished or

aborted. The DVK ensures that no messages will be received/sent by that endpoint.

 Backup: this means that the endpoint has been registered as a backup type process

(MIS_RMTBACKUP) and the process to be migrated (Primary) is running on an-

other node (REMOTE). The endpoint will go into a state waiting for migration

(MIGRATING) and no messages will be received/sent by that endpoint.

 Remote: this means that the endpoint has been registered as a remote type process

and that the process in question (or primary) is running in another node

(REMOTE). The endpoint will go into a state waiting for migration (MIGRATING)

and no messages will be received/sent by that endpoint.

 Not registered: this means that there is no record of the process to be migrated in

this node’s DVK, so there will be no changes.

Once communications with the endpoint to be migrated have stopped, the process can

be migrated from the source node to the destination node with any tool designed to do

so. In particular, this article describes the use of DMTCP as a migration tool.

Once the migration is finished, a MIGR_COMMIT command must be executed on

all the DVS nodes, which will execute different actions depending on the endpoint

type on the node:

 Source Node: the endpoint will be registered as remote (REMOTE), running on the

migration destination node.

 Destination Node: the endpoint will be registered as active (PROC_RUNNING)

10

 Nodes with endpoint registered as Remote: the type of endpoint will be kept as

remote, but the DVK will modify the node ID where the endpoint is located, from

source node to destination node.

 Unregistered: There are no changes on these nodes.

Once the MIGR_COMMIT is received, the DVK of each node where the endpoint is

bound reestablishes its communications. It is possible that the process migration may

fail; in this case a MIGR_ROLLBACK command must be sent to all the DVS nodes in

order to abort the migration. Then, the endpoint in each node returns to its state prior

to starting the migration, and its communications previously stopped are reactivated.

5 Evaluation

This section describes the test scenarios used to verify the correct operation of the

M3-IPC migration support in a DVS cluster.

It should be considered that the tests had to be carried out in a virtualized environ-

ment and not a physical environment as a consequence of the inability to access the

laboratories during 2020 and 2021 due to the regulations established by the national

government in relation to COVID-19. This does not imply important consequences

for the proof of concept that is to be demonstrated for the following reasons:

 Currently, most applications run in virtualized environments, so in some way the

test environment would be similar to a production environment.

 The goal of these tests is to demonstrate the correct behavior of the communica-

tions having migrated the server counterpart. It is not intended to evaluate the per-

formance of the migration itself because the major impact would be the migration

tool used (in this case DMTCP) and the testing infrastructure (node hardware and

networking).

The hardware used to perform the tests was a PC with a 4-core AMD A6-3670 APU

CPU, 8 GBytes of RAM and SATA disks. The virtualization was carried out using

VMware Workstation version 15.5.0 running on Windows 10 and a cluster of 3 nodes

was configured, each node in a VM: NODE0, NODE1 and NODE2. Each VM was

assigned a vCPU and 1 GB of RAM. The VMs were clones of each other running

Linux kernel 4.9.88 modified with the DVK module. All tests were run 10 times.

For the test mockup, a specific client and server were developed in a way to allow

recording the status of each one of them, a fundamental aspect to detect possible

changes in their behavior due to the migration of the server. The client sends a request

type message to the server, which transfers a block of data to the client and then it

sends a reply type message to the client. These operations were repeated 1000 times

by each test. Based on this interaction between the programs, the test itself consisted

of performing the migration of the server process while the communications were

being carried out, and then verify that they were resumed correctly after having per-

formed the migration or performed a rollback. The migration scenarios are detailed

below.

11

5.1 Migrating the Server from a Remote Node to the Client’s Local Node

In this scenario, initially, the client process is running on NODE1 and the server pro-

cess is running on NODE0, both in the DC0 environment. The DMTCP coordinator

also runs on NODE0, but does not belong to any DC. It is important to highlight that

the process to be migrated must be executed by a program that reports to the DMTCP

coordinator. The steps to carry out the migration of the server to NODE1 are the fol-

lowing (Fig. 3):

 The DVK of NODE1 is notified that the server will initiate a migration

(dvk_migr_start). In this way, the DVK stops the client's communication with the

server and waits to be notified when the server is available again, either because it

migrated successfully or because the migration failed.

 The DVK of NODE0 is notified that the server process will start a migration

(dvk_migr_start). In this way, the DVS stops communications to and from the

server.

 Using the dmtcp_command command, a checkpoint of the server process in

NODE0 is carried out, which captures its status in an image file and then ends it.

 The image file is transferred from NODE0 to NODE1 with a tool such as ssh.

 The server process is resumed from its image file with DMTCP on NODE1 using

the dmtcp_restart command.

 If the migration was successful, the DVK of NODE1 is notified so that it resumes

the communications of the migrated process (dvk_migr_commit), which unlocks

both the client and the server to continue to exchange messages.

 Otherwise (failed migration), the DVK is notified to restore the server process on

NODE0 (dvk_migr_rollback) and then the DVK on NODE1 to unlock the client to

continue to exchange messages.

Fig. 3. Server migration from remote node to local node.

For this scenario, the test results were: The migration time was 1.738 [s] with a stand-

ard deviation of 0.077 and where the image transfer time consumed 0.450 [s], with a

process image file size of 2.5 [Mbytes].

5.2 Migrating the Server from the Client’s Local Node to a Remote Node

In this scenario, initially, both the client process and the server are running on

NODE1, both in the DC0 environment. The DMTCP coordinator also runs on

12

NODE1, but does not belong to any DC. The steps to carry out the migration of the

server to NODE0 are the following (Fig. 4):

 The DVK of NODE1 is notified that the server will initiate a migration

(dvk_migr_start). In this way, the DVK stops the client's communication with the

server and waits to be notified when the server is available again, either because it

migrated successfully or because the migration failed.

 The DVK of NODE0 is notified that the client process is located in NODE1. This

is required so that after the server is migrated, messages are routed correctly to the

client.

 Through the dmtcp_command command, a checkpoint of the server process in

NODE1 is carried out, which captures its status in an image file and then ends it.

 The image file is transferred from NODE1 to NODE0 with a tool such as ssh.

 The server process is resumed from its image file with DMTCP on NODE0 using

the dmtcp_restart command.

 If the result of the migration was successful, the DVK of NODE1 is notified so that

it resumes the communications of the migrated process (dvk_migr_commit), which

unlocks both the client and the server to continue to exchange messages.

 Otherwise (failed migration), the DVK is notified to restore the server process on

NODE1 (dvk_migr_rollback) and then unlock the client to continue to exchange

messages.

Fig. 4. Server migration from local node to remote node.

For this scenario, the results of the tests were: The migration time was 1.598 [s] with

a standard deviation of 0.311 and where the image transfer time consumed 0.684 [s],

with a process image file size of 2.5 [Mbytes].

5.3 Migrating the Server from a Remote Node to another Remote Node

In this scenario, initially the client process is running on NODE2 and the server pro-

cess is running on NODE0, both in the DC0 environment. The DMTCP coordinator

also runs on NODE0, but does not belong to any DC. The steps to carry out the mi-

gration of the server to NODE1 are the following (Fig. 5):

13

 The NODE2 DVK is notified that the server will initiate a migration

(dvk_migr_start). In this way, the DVK stops the client's communication with the

server and waits to be notified when the server is available again, either because it

migrated successfully or because the migration failed.

 The DVK of NODE1 is notified that the client process is located in NODE2. This

is required so that after the server is migrated, messages are routed correctly to the

client.

 The DVK of NODE0 is notified that the server process will start a migration

(dvk_migr_start). In this way, the DVS stops communications to and from the cli-

ent.

 Using the dmtcp_command command, a checkpoint of the server process in

NODE0 is carried out, which captures its status in an image file and then ends it.

 The image file is transferred from NODE0 to NODE1 with a tool such as ssh.

 The server process is resumed from its image file with DMTCP on NODE1 using

the dmtcp_restart command.

 If the result of the migration was successful, the DVK of NODE2 is notified so that

it resumes the communications of the migrated process (dvk_migr_commit), which

unlocks both the client and the server to continue to exchange messages.

 Otherwise (failed migration), the DVK is notified to restore the server process on

NODE1 (dvk_migr_rollback) and then unlock the client to continue to exchange

messages.

Fig. 5. Server migration from remote node to another remote node.

For this scenario, the test results were: The migration time was 1.983 [s] with a stand-

ard deviation of 0.218 and where the image transfer time consumed 0.471 [s], with a

process image file size of 2.5 [Mbytes].

It should be considered that the resulting migration times include components such

as the time to execute remote commands via ssh which involves creating a session,

identifying and authenticating a user (automated), starting a shell, and executing shell

script.

The test scenarios presented here refer to successful migrations but, in all of them,

the same tests were performed simulating failed migrations. The results obtained

showed a correct behavior in terms of continuing with the exchange of messages be-

tween the client and the server.

14

6 Conclusions and Future Works

There are several approaches to face process migration. Some of them are acceptable

in terms of their scalability and availability, but they lack simplicity in terms of im-

plementation and management. It is necessary to deal with multiple configurations,

which are generally managed by different work groups (developers, implementers,

operators, IT security groups, service providers, etc.) and, although there are useful

tools to organize them, they increase even more the complexity related to manage and

operate distributed applications.

A DVS provides scalability, reliability and availability, it is simple to implement

and configure; and lightweight in terms of requirements, reducing the related costs.

The contribution of this article is to present several test scenarios of process migra-

tion in a DVS. It was verified that communications between processes keep active

after one of the process was migrated or its migration was failed. Maintaining com-

munications after process migration increases availability and performance of distrib-

uted and Cloud applications. The results of the tests presented demonstrate one of the

several features a DVS architecture has. Migrating processes in a DVS (using an ex-

ternal tool such as DMTCP) with no impact on communications is an easy task and

transparent to the communicating processes. Client processes can continue receiving

service after a server migration, even when the migration fails.

As future work, it is proposed to develop a distributed scheduling system that peri-

odically evaluates the load on each DVS node and, if necessary, performs a redistribu-

tion of the whole load using process migration in order to balance the use of re-

sources.

References

1. P. Pessolani, T. Cortes, F. Tinetti, S. Gonnet: “An Architecture Model for a Distributed

Virtualization System”; Cloud Computing 2018; The Ninth International Conference on

Cloud Computing, GRIDs, and Virtualization; Barcelona, España.2018.

2. VMware Infrastructure Architecture Overview. White paper.

https://www.vmware.com/pdf/vi_architecture_wp.pdf. Last accessed April 2021.

3. A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori: “KVM: the Linux Virtual Machine

Monitor”, In Proceedings of the 2007 Ottawa Linux Symposium (OLS’-07), 2007.

4. R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg: “Live ¨ Wide-Area Migration

of Virtual Machines Including Local Persistent State,” in SIGPLAN VEE. ACM, 2007.

5. M. Mahalingam, D. Dutt, K. Duda, P. Agarwal et al:, “VXLAN: A Framework for Over-

laying Virtualized Layer 2 Networks over Layer 3 Networks,” Internet Draft (Work in Pro-

gress), 2013.

6. D. Erickson, G. Gibb, B. Heller, D. Underhill et al.: “A Demonstration of Virtual Machine

Mobility in an OpenFlow Network,” in SIGCOMM (Demo). ACM, 2008.

7. K. Kompella and Y. Rekhter, “Virtual Private LAN Service (VPLS) Using BGP for Auto-

Discovery and Signaling,” RFC 4761 (Proposed Standard), 2007.

8. Pablo Pessolani; David Gabriel Harispe; Octavio Garcia Aguirre: “Localizacion y Segui-

miento de Servicios Replicados en un Sistema de Virtualizacion Distribuido”, Revista Di-

15

gital del Departamento de Ingenieria e Investigaciones Tecnologicas; vol.: 5 - nro. 1 (agos-

to-2020) ISSN: 2525-1333.

9. P. OsiĔski, E. Niewiadomska-Szynkiewicz: “Comparative Study of Single System Image

Clusters”, Evolutionary Computation and Global Optimization 2009 / National Conference

2009 ; Zawoja, Poland.

10. R. Lawrence,: “ Introduction A Survey of Process Migration Mechanisms”. Department of

Computer Science University of Manitoba, 1998

11. S. J. Mullender, G. van Rossum, A. S. Tananbaum, R. van Renesse, H. van Staveren:

"Amoeba: a distributed operating system for the 1990s", in Computer, vol. 23, no. 5, pp.

44-53, May 1990

12. M.F. Kaashoek, R. Renesse, H. van Staveren, and A.S. Tanenbaum: “FLIP: An Internet-

work Protocol for Supporting Distributed Systems”. ACM Transactions on Computer Sys-

tems, 11(2):73-106, 1993.

13. P. Pessolani, T. Cortes, F. G. Tinetti, and S. Gonnet: “An IPC Software Layer for Building

a Distributed Virtualization System”, Congreso Argentino de Ciencias de la Computación

(CACIC 2017) La Plata, Argentina, October 9-13, 2017

14. Criu - checkpoint/restore in user space. https://access.redhat.com/articles/2455211.Last ac-

cessed April 2021.

15. https://criu.org/Main_Page, Last accessed April 2021.

16. http://dmtcp.sourceforge.net/index.html. Last accessed April 2021.

17. https://es2.slideshare.net/jserv/implement-checkpointing-for-android/13-

DMTCP_Distributed_MultiThreaded_CheckPointing_Works. Last accessed April 2021.

https://criu.org/Main_Page
http://dmtcp.sourceforge.net/index.html
https://es2.slideshare.net/jserv/implement-checkpointing-for-android/13-DMTCP_Distributed_MultiThreaded_CheckPointing_Works
https://es2.slideshare.net/jserv/implement-checkpointing-for-android/13-DMTCP_Distributed_MultiThreaded_CheckPointing_Works

