

UNIVERSIDAD TECNOLOGICA NACIONAL

Facultad Regional Venado Tuerto

Departamento de Ingeniería Electromecánica

PROYECTO FINAL N° 33

GENERADOR EOLICO

LLOPIZ, Javier

Docentes:

Ing. ALI, Daniel

Ing. FERREYRA, Daniel

Venado Tuerto, 21 de Diciembre de 2017

GENERADOR EOLICO DE BAJA POTENCIA

AGRADECIMIENTOS

Quiero dedicar este proyecto..

A mi señora y compañera de la vida Paola por su esfuerzo constante y su apoyo incondicional a lo largo de todos estos 18 años.

A mis hijos Bautista y Sofía por su amor y por ser la razón de todo esto que me impulsa a ser su ejemplo en la vida.

A mis padres Juan y Delfina por su enorme esfuerzo constante por guiarme en mi camino.

A mis hermanos Mónica y Adrián por aguantarme y aceptarme con mis defectos y virtudes.

A mis amigos, por enseñarme con su ejemplo diario el significado y el valor de la amistad.

A todas aquellas personas, compañeros de clase o trabajo, que en algún momento han formado parte de mi vida y me enseñaron importantes lecciones, colaborando así a convertirme en la persona que soy hoy.

Y en especial a Universidad Tecnológica Nacional Facultad Regional Venado Tuerto por tantos años vividos en esta casa y por la formación técnica, humana, científica, tecnológica y cultural.

INDICE

Índice	3
CAPITULO 1	
Introducción	5
Descripción Técnica	5
Estudios Eólicos	6
Mapa potencial eólico Argentino	8
Normativas	9
CAPITULO 2	
Acción del viento sobre un perfil	10
Fuerza de arrastre y ascensional	10
Fuerza sobre un perfil fijo	10
Fuerza de arrastre y ascensional sobre perfiles móviles	15
Fuerza de par y axial	17
Tipos de Aerogeneradores	19
Rendimiento aerodinámico	21
Potencia máxima	22
Modelo teórico de Betz	24
CAPITULO 3	
Dimensionamiento de un rotor eólico	26
Parámetros de diseño de una hélice tripala	26
Área frontal barrida por la pala	28
Tamaño de las palas y coeficiente de Solidez	30
Resistencia Aerodinámica de la pala	31
Momento Flector de la pala	31
Momento de Torsión del eje de giro	31
CAPITULO 4	
Cálculo y parámetros de diseño	34
Variación vertical del viento	34
Cálculo de potencia demandada por el establecimiento	35

Distribución de RAYLEIGH	37
Cálculo del diámetro de la hélice	40
Velocidad de Rotación	41
Relación de velocidad periférica TSR	42
Definición y caracterización de los perfiles aerodinámicos	45
Clasificación de los perfiles aerodinámicos	47
Perfil de la pala	48
Tabla de coordenadas para realizar el perfil	52
Cálculo de Fuerzas	57
Cálculo del momento Flector y Momento Resultante	62
Cálculo del diámetro del los ejes	64
CAPITULO 5	
Caja multiplicadora	65
CAPITULO 6	
Freno hidráulico	70
CAPITULO 7	
Cálculos de rodamientos	73
CAPITULO 8	
Generador Sincrónico	92
Sistema Colector	111
CAPITULO 9	
Sistema de orientación	
CAPITULO 10	
Caculo de la torre	114
Costos	132
Anexo A.1 _Diseño por software "Solidworks"	133
Anexo A.2 _Planos	135
Anexo A.3 _Catálogos	136
Bibliografía	137

CAPITULO 1

INTRODUCCION

La energía eólica es la energía que proviene de los vientos. Es una forma indirecta de la energía solar, dado que es una expresión del efecto del sol sobre el sistema tierra-atmósfera-océanos. Los vientos son generados por el sol debido a que éste provoca zonas con diferencia de presiones sobre la superficie terrestre. Allí donde la temperatura aumenta, el aire sube y se genera un centro de baja presión que es cubierto por aire proveniente de otras zonas más frías o de mayor presión. Así es como se genera el movimiento de grandes masas de aire.

Dentro de las fuentes energéticas renovables, la explotación de esta energía es la que mayor incremento ha experimentado en los últimos años.

La energía que produce el aerogenerador proviene de la energía eólica que proporciona el viento. El conjunto motriz toma la energía cinética del viento convirtiéndola en energía mecánica de rotación que impulsa al generador.

DESCRIPCION TECNICA

El generador tiene la capacidad de comenzar a generar electricidad con pequeñas brisas; Entregando tensión alterna trifásica.

Posee un sistema de orientación muy sensible, diseñado para que la hélice siempre enfrente al viento, aún si éste es variable y pobre.

La energía generada va a estar conectada a la red de B.T. E.P.E.S.F. según como indica el "Manual de Procedimiento Técnico para Generación en Isla o en Parelelo". (ver PRO-103-101 de la web oficial: www.epe.santafe.gov.ar)

Utilizando un sistema de medición bidireccional y así poder ingresar al "PROGRAMA PRESUMIDORES SANTA FE – TARIFA PROMOCIONAL PARA LA INYECIION DE GENERACION RENOVABLES DISTRIBUIDA EN BAJA TENSION".

ESTUDIOS EOLICOS

Estimación del Recurso eólico.

ENERGIA EÓLICA

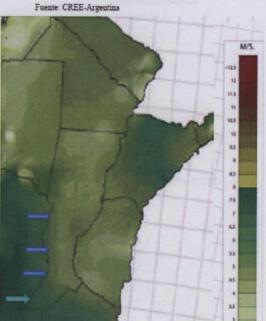
* TODO EL TERRITORIO PROVINCIAL APTO PARA LA GENERACIÓN EÓLICA DE BAJA POTENCIA (VIENTOS VELOCIDAD PROMEDIO ANUAL >5

M/S, A 24 MTROS DE ALTURA) (*)

Objetivo: 1-usuarios rurales aislados 2- futuros usuarios rurales

conectados

a red

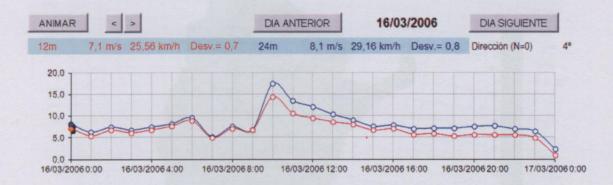

- ZONAS CON POTENCIALES VIENTOS PARA GENERAR EN MEDIA POTENCIA
- UNA POTENCIAL ZONA PARA APROVECHAR VIENTOS EN ALTA POTENCIA (CORDON SUR-OESTE DE LA PROVINCIA)

(*) PROGRAMA NRECA-EPE 1996/2004

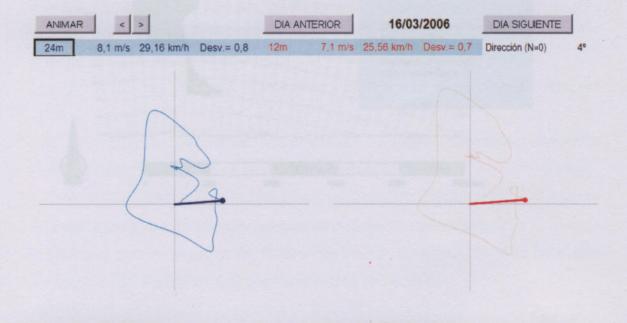
 ✓ 5 puntos de medición a lo largo de la provincia
 ✓ Dos establecimientos rurales con aerogeneradores de 1 kWp en Rufino

(Proyecto EPE-Coop. Electrica Rufino)

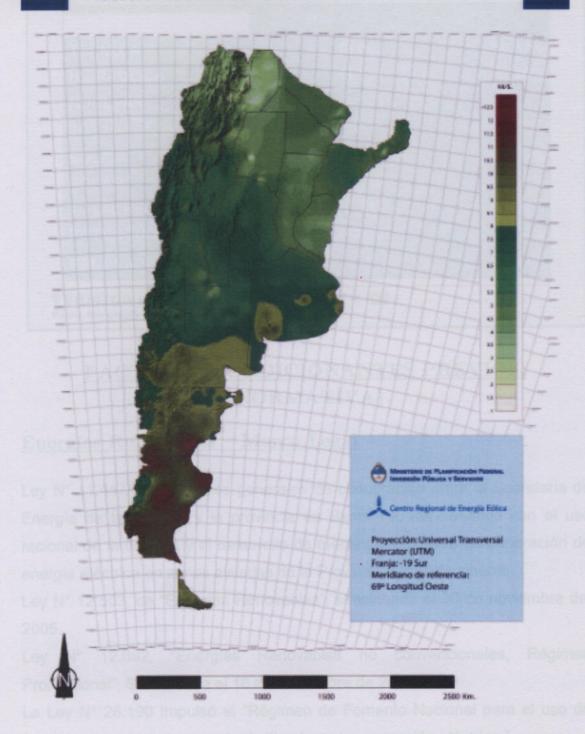
Mapa Eólico: Santa Fe y zonas limítrofes a 50 metros



Estudios privados, la empresa ABOWind ha estimado mediante SIG eólico el potencial en 3 puntos: Rufino – Venado Tuerto – Maggiolo.


Referencia de Campo: escuela rural de Runciman Torre de medición de vientos a 24 mts. de la EPE, operada por la Municipalidad y la Coop. Eléctrica de V. Tuerto Los siguientes datos son obtenidos en la estación meteorológica de Runciman. Con dos anemómetros a distintas altura, uno a 12 metros y el otro a 24 metros.

La gráfica nos muestra la velocidad del viento a dos alturas distintas de un día en particular.


La segunda gráfica nos muestra como varió la dirección del viento ese mismo día.

PLAN ESTRATEGICO NACIONAL DE ENERGIA EOLICA

Mapa del Potencial Eólico Argentino
Velocidad media anual del viento a 50mts de altura sobre el terreno

POTENCIA INSTALADA EN NUESTRO PAIS

	MW	%
TERMICA	18.665	60.37%
HIDRAULICA	11.131	36%
NUCLEAR	1.005	3.25%
TOTAL CONV.	30801	99.62 %
EOLICA	111	95%
SOLAR	6	5%
TOTAL RENOVABLES	117	100%
POTENCIA INSTALADA	30918	100%
RENOVABLES		0.09%

TERMICA = CGG + CCV + TG + TV + DI

Fuente: Secretaria de Energia de la Nación

FACTORES CONDICIONANTES PREVIOS. (NORMATIVA)

<u>Energías Renovables - Marco Legal</u>

Ley N° 11.447/96 Convenios generales de cooperación entre la Secretaria de Energía de la Nación, y la provincia de Santa Fe, relacionados con el uso racional de la energía y el desarrollo de fuentes alternativas de generación de energía eléctrica en zonas aisladas de la Provincia, respectivamente.

Ley N° 12.503, de "Energías Renovables", sancionada el 30 de noviembre del 2005.

Ley N° 12.692, "Energías Renovables no convencionales, Régimen Promocional", Sancionada el 16 de noviembre de 2006.

La Ley N° 26.190 Impulsó el "Régimen de Fomento Nacional para el uso de fuentes renovables de energía destinadas a la generación eléctrica."

-Estableció que en el plazo de 10 años el 8% del consumo eléctrico tiene que ser abastecido a partir de fuentes de energías renovables.

-Reglamentada a través del decreto N° 562/09.

CAPITULO 2

Acción del viento sobre un perfil

Fuerza de arrastre y ascensional

El viento está compuesto por partículas de aire en movimiento; las partículas que constituyen al fluido describen trayectorias denominadas líneas de corrientes o líneas de flujo, cuando la masa de aire está conformada por líneas paralelas en capas uniformes denominadas láminas, perfectamente individualizados, se dice que el movimiento del mismo es laminar, mientras que si las líneas de corrientes se entrecruzan y no conservan su individualidad, se dice que el movimiento es turbulento.

Flujo laminar vs. Flujo turbulento.

Este es el caso más general que acontece en el viento. Si en cada punto de una masa de aire en movimiento turbulento se miden las velocidades instantáneas, se observa que estas varían en magnitud y en dirección sin ninguna regularidad, pero no suelen apartarse mucho de un valor medio. Los movimientos desordenados del aire a nivel macroscópico se llaman turbulencias, que pueden influir en masas de aire importantes. Cuando el viento se encuentra con un obstáculo, su movimiento empieza a ser perturbado y a hacerse irregular a una cierta distancia del mismo.

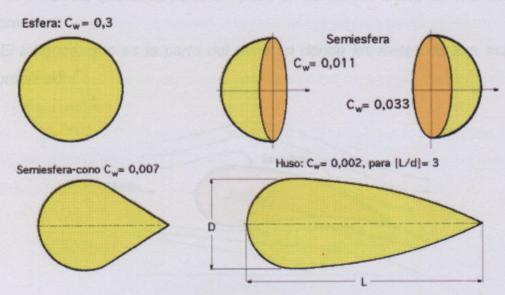
Fuerzas sobre un perfil fijo

Un objeto situado en el seno de una corriente de aire presenta una resistencia al avance deformando las líneas del fluido; esto depende de la forma del objeto y de su posición con relación a la dirección del viento.

Al estudiar los efectos de la resistencia del aire sobre una placa plana, se observa que la resultante R de las fuerzas aplicadas a la placa es un vector

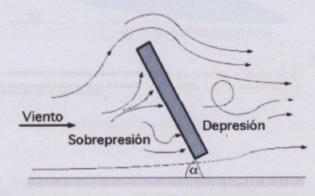
cuyo punto de aplicación es su centro aerodinámico o centro de empuje, siendo su dirección perpendicular a la placa, su sentido el del viento, y su intensidad proporcional a la superficie S expuesta y al cuadrado de la velocidad del viento v, en la forma:

$$R = C_w.\rho. \frac{S.v^2}{2} = k.S.v^2$$

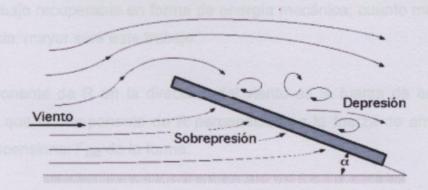

k: Coeficiente que depende del angulo α de incidencia y de la turbulencia del movimiento.

C_w:Coeficiente de resistencia.

ρ: Densidad de aire.

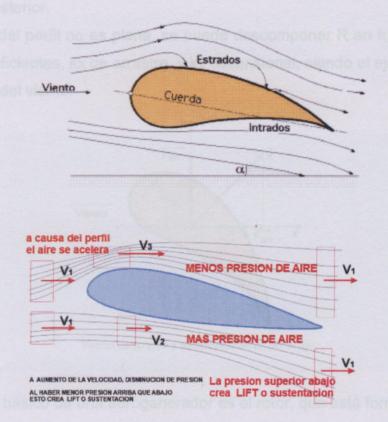

S: Sección frontal del perfil.

Para otros perfiles no planos con su eje de simetría paralelo a la dirección del viento, se indica el valor del coeficiente Cw.



Coeficiente Cw para algunos perfiles semiesféricos

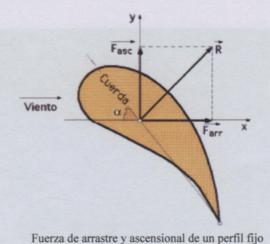
Si el ángulo α que forma el plano de la placa con la dirección del viento es grande, existe una sobrepresión en la parte delantera de la placa y una depresión en su parte posterior de carácter turbulento.



Si el ángulo de incidencia α es pequeño, la sobrepresión aparece en la parte inferior de la placa y la depresión por encima, por lo que aparece una fuerza que tiende a elevarla, conocida como fuerza de sustentación o de elevación.

Para un perfil diseñado en forma aerodinámica se definen dos zonas que son:

- a) El extrados, que es la parte del perfil en donde los filetes de aire están en depresión.
- b) El intrados, que es la parte del perfil en donde los filetes de aire están en sobrepresión.


Si la placa no está perfilada convenientemente, las turbulencias originadas sobre el extrados disminuyen la energía cinética del aire. Si se permite que la placa se desplace bajo el efecto de la fuerza ejercida por el viento, producirá un cierto trabajo recuperable en forma de energía mecánica; cuanto menor sea la turbulencia, mayor será este trabajo.

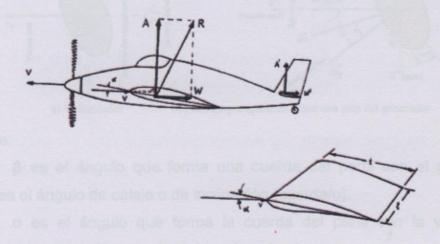
La componente de R en la dirección del viento es la fuerza de arrastre F_{arr} , mientras que la componente de R perpendicular a la fuerza de arrastre es la fuerza ascensional F_{asc} de la forma:

$$\vec{F}_{arr} = R.sen \alpha = K_x .S.v^2$$

 $\vec{F}_{asc} = R.cos \alpha = K_v .S.v^2$

La fuerza R se considera normal a la cuerda del perfil, que es al mismo tiempo su longitud característica; el empuje ascensional aumenta a medida que α disminuye. La cuerda se considera desde el borde de ataque del perfil, al borde de salida posterior.

Si la forma del perfil no es plana, se puede descomponer R en función de dos tipos de coeficientes, kx de arrastre, y ky ascensional, siendo el eje x paralelo a la dirección del viento.

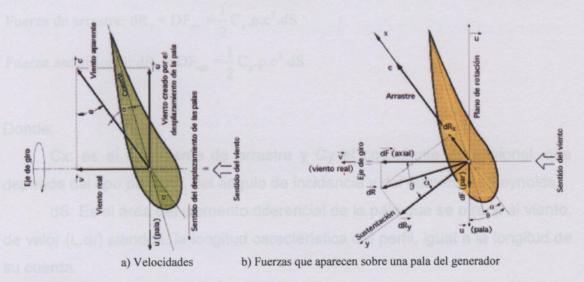

El elemento básico de una aerogenerador es el rotor, que está formado por una o varias hélices o palas, (su teoría de cálculo elemental es análoga a la de las hélices de avión). En el rotor están situadas las palas, cuyo número es variable

según los casos; cada pala tiene un perfil que tiene forma aerodinámica; éstos

perfiles tienen un extremo romo, que es el borde de ataque mientras que el otro extremo, de forma afilada, es el borde de salida.

Las palas de un generador eólico no son otra cosa que alas de avión girando alrededor de un eje.

Al despegar, el motor empuja el avión hacia delante y las alas comienzan a "cortar" el aire. Al estar perfiladas y ligeramente inclinadas (ángulo de ataque), la circulación del aire alrededor de las alas crea una sobrepresión en la parte inferior de las mismas. Esta presión "empuja" las alas hacia arriba y, por consiguiente, el avión "vuela".



Distribución de velocidades sobre un perfil con α_{ataque}= 12° y α _{resultante}= 3,57°

Fuerzas de arrastre y ascensional en perfiles móviles.

La fuerza que actúa en el centro aerodinámico de un elemento de pala en rotación, de superficie frontal elemental dS, (proyección del perfil sobre la dirección del viento aparente), viene dada por dR.

En las que:

β es el ángulo que forma una cuerda del perfil con el plano de rotación; es el ángulo de calaje o de inclinación (cuerda/u).

α es el ángulo que forma la cuerda del perfil con la velocidad aparente del viento c , (ángulo de incidencia o de ataque).

6 es el ángulo que forma el plano de rotación con la dirección aparente del viento que pasa por el borde de ataque; se conoce como ángulo aparente del viento.

Esta fuerza se puede descomponer a su vez en otras dos, tanto a la entrada del viento en el perfil móvil, como a la salida.

A la entrada del perfil móvil se tiene un viento de velocidad v que da lugar a la fuerza axial F_{ax} y a la fuerza de par F_{par}

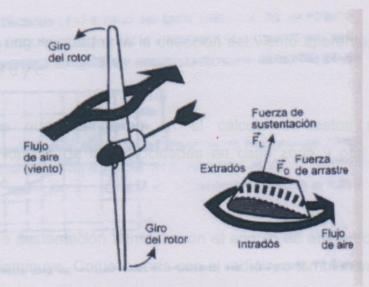
A la salida del perfil móvil se tiene un viento de velocidad aparente c que da lugar a la fuerza de arrastre F_{arr} y a la fuerza de sustentación F_{sust} dRx = F_{arr} , en la dirección c del viento aparente se corresponde con una degradación de la energía.

 $dRy = F_{sust}$, es la fuerza ascensional o empuje sobre el elemento de pala, que la hace volar.

Para un elemento de pala diferencial en rotación dS, y de acuerdo con la figura se puede interpretar:

Fuerza de arrastre: $dR_x = DF_{arr} = \frac{1}{2}C_x \cdot \rho \cdot c^2 \cdot dS$

Fuerza ascensional: $dR_y = DF_{asc} = \frac{1}{2}C_y \cdot \rho \cdot c^2 \cdot dS$


Donde:

Cx: es el coeficiente de arrastre y Cy el coeficiente ascensional, que depende del tipo de perfil, del ángulo de incidencia y del número de Reynolds.

dS: Es el área del elemento diferencial de la pala que se ofrece al viento, de valor (L.dr) siendo L la longitud característica del perfil, igual a la longitud de su cuerda.

Los coeficientes Cx y Cy están relacionados por el coeficiente aerodinámico total CT de la forma:

$$C_T^2 = C_x^2 + C_y^2$$

Fuerzas que actúan sobre un perfil

Fuerzas de par y axial.

Si se proyectan las fuerzas de arrastre o de resistencia dRx y de empuje ascensional o sustentación dRy, sobre el plano de rotación, se obtiene una fuerza útil, dF_{par}, (paralela a u), que hace girar la hélice, y otra fuerza perpendicular, dF_{axial}, (fuerza de empuje del viento sobre el rotor), que se compensa por la reacción del soporte del eje del rotor de la hélice, de la forma:

$$dF_{par} = dR_{y} \sin \theta - dR_{x} \cos \theta$$

$$= \frac{1}{2} \rho c^{2} dS (C_{y} \sin \theta - C_{x} \cos \theta)$$

$$= \frac{1}{2} \rho \frac{v^{2}}{\sin^{2} \theta} dS (C_{y} \sin \theta - C_{x} \cos \theta)$$

$$= \frac{\rho v^{2}}{2} (1 + \cot g^{2} \theta) dS (C_{y} \sin \theta - C_{x} \cos \theta)$$

$$dF_{axial} = dR_{y} \cos \theta + dR_{x} \sin \theta$$

$$= \frac{1}{2} \rho c^{2} dS (C_{y} \cos \theta + C_{x} \sin \theta)$$

$$= \frac{1}{2} \rho \frac{v^{2}}{\sin^{2} \theta} dS (C_{y} \cos \theta + C_{x} \sin \theta)$$

$$= \frac{\rho v^{2}}{2} (1 + \cot g^{2} \theta) dS (C_{y} \cos \theta + C_{x} \sin \theta)$$

siendo θ el ángulo que forma la dirección del viento aparente, entre los vectores velocidad u y c.

Los valores que intervienen en el cálculo de estos elementos diferenciales son función de las velocidades en cada zona y por tanto, del ángulo de ataque α .

La fuerza de sustentación aumenta con el ángulo de ataque α hasta un máximo y luego disminuye. Como u varía con el radio r, c también variará, por lo que el ángulo β deberá variar a lo largo de la pala y de ahí que éstas se construyan alabeadas.

Tipo de Aerogeneradores eólicos

Su clasificación puede obedecer a distintos criterios:

- a) Según la disposición del eje de giro:
 - > Eje horizontal: la casi totalidad de las turbinas eólicas son de este tipo.
 - > Eje vertical: las aplicaciones prácticas son muy escasas
- b) Según el número de palas:
 - Monopalas y bipalas: existe un número pequeño de estos tipos.
 - > Tripala: la mayoría de turbinas dedicadas a la producción eléctrica.
 - Multipala: con un número variable de 16 a 24, utilizadas para bombeo de agua.
- c) Según la velocidad del rotor de la turbina eólica:
 - Velocidad constante.
 - Velocidad variable.
 - Velocidad semivariable.
 - Dos velocidades.
- d) Según su emplazamiento
 - > Aerogeneradores para emplazamientos terrestres (Onshore).
 - > Aerogeneradores para emplazamientos marinos (Offshore)

Los aerogeneradores eólicos cuyo par motor se obtiene a partir de la fuerza de arrastre d_{Farr}, son los aerogeneradores Savonius y los Molinos multipala (12 a 24) palas. Ver imagen 1.2

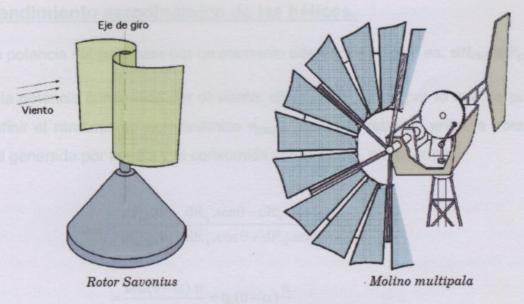


Imagen 1.2 - Molinos impulsados por fuerza de arrastre

Los aerogeneradores eólicos en los que el par motor se obtiene a partir de la fuerza de par dFpar, son los aerogeneradores Darrieux y Hélice.

Ver imagen 1.3

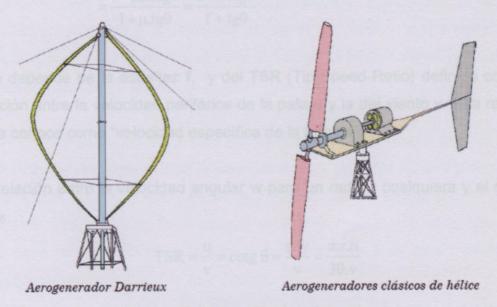


Imagen 1.3 - Molinos impulsados por fuerza depar

Rendimiento aerodinámico de las hélices.

La potencia útil generada por un elemento diferencial de pala es: dNútil=dFpar.u

Y la potencia consumida por el viento: $dN_{viento}=dF_{axial}$.v, por lo que se puede definir el rendimiento aerodinámico $\eta_{(aerod.)}$ como la relación entre la potencia útil generada por la pala y la consumida por el viento, en la forma:

$$\eta_{\text{aerod}} = \frac{dF_{\text{par}}.u}{dF_{\text{axial}}.v} = \frac{dR_{\text{y}}.\text{sen}\theta - dR_{\text{x}}.\cos\theta}{dR_{\text{y}}.\cos\theta + dR_{\text{x}}.\text{sen}\theta} \frac{u}{v}$$
$$= \frac{\text{sen}(\theta - \alpha)}{\cos(\theta - \alpha)} \frac{u}{v} = \text{tg}(\theta - \alpha) \frac{u}{v}$$

$$= \frac{(dR_{y}/dR_{x}) - \cot g\theta}{(dR_{y}/dR_{x})\cot g\theta + 1} \frac{u}{v} = \begin{vmatrix} f = \frac{1}{\mu} = \frac{dR_{y}}{dR_{x}} = \frac{C_{y}}{C_{x}} = \frac{1}{tg\theta} \\ TSR = \frac{u_{máx}}{v} = \cot g\theta_{máx} = \frac{R.w}{v} \end{vmatrix}$$

$$= \frac{1 - \mu . \cot g\theta}{1 + \mu . t g\theta} = \frac{f - \cot g\theta}{f + t g\theta}$$

Que depende de la esbeltez **f**, y del **TSR** (Tip-Speed-Ratio) definido como la relación entre la velocidad periférica de la pala **u** y la del viento **v**. Esa relación se la conoce como "velocidad específica de la turbina".

La relación entre la velocidad angular \mathbf{w} para un radio \mathbf{r} cualquiera y el ángulo $\mathbf{\theta}$, es:

$$TSR = \frac{u}{v} = \cot \theta = \frac{r.w}{v} = \frac{\pi.r.n}{30.v}$$

Con **SR** (Speed-Ratio), en la que $\bf r$ es la distancia del elemento de pala considerado al eje de rotación del aerogenerador; si $\bf r$ disminuye, el ángulo $\bf \theta$ aumenta; si $\bf \beta$ es constante, el ángulo de incidencia $\bf \alpha$ aumenta.

$$SR = \frac{2.\pi.r.n}{60.k.v} = 0,105 \frac{r.n}{k.v}$$

Página 20

En la que **k** es una constante de ajuste de las diversas unidades que se pueden emplear, tomando los siguientes valores:

k=1,47 cuando la velocidad del viento v venga en millas por hora y el radio en ft
k=1 cuando v venga en metros/seg y el radio en metros
k=3,6 cuando v venga en km/hora y el radio en metros

De la expresión del rendimiento de una pala de aerogenerador en función de su esbeltez \mathbf{f} y del ángulo aparente del viento $\mathbf{\theta}$, se deduce que cuanto menor sea el valor de $\mathbf{\mu}$, (o cuanto mayor sea el valor de la esbeltez \mathbf{f}), tanto mayor será el rendimiento $\mathbf{\eta}_{(aerod)}$, obteniéndose para (μ = 0) ó (\mathbf{f} = ∞), un rendimiento máximo igual a la unidad.

Cuando se proyecta un aerogenerador hay que elegir una velocidad v del viento que sea la más adecuada y a partir de ella intentar obtener el rendimiento máximo; ésta es la velocidad nominal, dependiendo su elección del paraje en donde se vaya a instalar el aparato; una vez fijada se elige el tipo de perfil de la pala y la velocidad de rotación deseada. Conociendo la velocidad nominal v del viento y la velocidad periférica de rotación u, se determina el ángulo aparente del viento 9 que varía a lo largo de la pala según la distancia al eje de rotación de la hélice.

También hay que tener en cuenta que para obtener el η (aerod.máx) el ángulo de incidencia del viento sobre la pala debe tener un valor fijo α a todo lo largo de la misma; para que esto sea así es necesario que el ángulo $\beta = \theta - \alpha$ varíe al mismo tiempo que θ . Para obtener un mayor rendimiento aerodinámico, la pala debe tener forma helicoidal en la que el ángulo β es muy importante al principio y lo es menos en su extremidad.

Potencia Máxima

Para hallar la potencia máxima se puede partir de la expresión de la potencia útil de la forma:

$$dN_{util} = u.dF_{par} = u(dR_y.sen \theta - dR_x.cos \theta)$$

La condición de potencia máxima desarrollada por el viento correspondiente al elemento de superficie de pala **dS**, se calcula derivando la expresión de la dNútil respecto de θ, obteniéndose:

$$dN_{util max} = \frac{\rho.v^3.dS}{2} \left(C_y \frac{4C_y^2}{9C_x^2} - C_x \frac{8C_y^3}{27C_x^3} \right) = \frac{2\rho.v^3.dS}{27} \frac{C_y^3}{C_x^2}$$

Par motor máximo.

El par motor dC correspondiente al elemento de superficie de pala dS se ha calculado anteriormente como:

$$dC = r dF_{par} = \frac{r}{2} \frac{\rho}{v^2} dS (1 + \cot^2\theta) (C_y \sin\theta - C_x \cos\theta)$$

La condición de par motor máximo se obtiene igualando a cero

$$dC_{max} = \frac{r.\rho.v^2.dS}{2} \left(\frac{C_y^2}{2C_x} - \frac{C_x.C_y^2}{4C_x^2} \right) = \frac{r.\rho.v^2.dS}{8} \frac{C_y^2}{C_x}$$

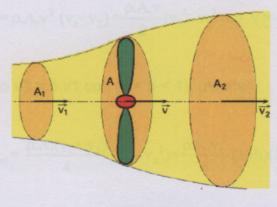
Velocidad angular máxima.

La velocidad angular máxima ω_{máx} es:

$$\omega_{m\acute{a}x} = \left(\frac{dN}{dC}\right)_{m\acute{a}x} = \frac{\frac{2.\rho.v^3.dS}{27}\frac{{C_y}^3}{{C_x}^2}}{\frac{r.\rho.v^2.dS}{8}\frac{{C_y}^2}{{C_x}}} = \frac{16}{27}\frac{v}{r}\frac{{C_y}}{{C_x}} = \frac{\pi.\eta_{m\acute{a}x}}{30} \,.$$

En los aerogeneradores de eje horizontal, para obtener una velocidad angular ω uniforme, es necesario que tanto la velocidad v del viento, como su dirección, permanezcan constantes respecto a la pala.

La relación TSR = cotg θ está comprendida entre 0,2 y 13, lo que permite hacer la siguiente clasificación de maquinaria eólica de eje horizontal:


Para grandes molinos	u/v < 1
Para aerogeneradores de palas múltiples	u/v ≈ 3
Para aerogeneradores rápidos de hélice	u/v ≈ 10

MODELO TEÓRICO DE BETZ

Vamos a suponer que la energía eólica se puede recuperar y transformar mediante un aerogenerador de hélice (la demostración es válida para cualquier otro medio de transformación). La hélice se supone inmersa en una corriente de aire de velocidad V que, aguas abajo, posee una velocidad V2 no nula, lo que permite asegurar que no es posible la transformación y recuperación de toda la energía del viento en otra forma de energía.

Se supondrá que aguas arriba de la hélice, el aire que circula por el tubo de corriente posee una velocidad V1 en la sección transversal ficticia A1, que es la velocidad del viento sin perturbar, mientras que la velocidad V2 corresponde con otra sección transversal ficticia A2 aguas abajo de la zona en que se encuentra la hélice.

En el plano que contiene la hélice, la sección transversal batida por la misma sería un disco imaginario de sección **A**, siendo **V** la velocidad útil del viento en la misma.

Modelo de Betz

La hélice se supone como un disco de diámetro **d** que capta la energía del aire en movimiento que llega a él. Si el disco fuese capaz de captar toda la energía cinética del viento, aguas abajo del mismo el aire estaría en reposo y, por lo tanto, la velocidad sería (V2 = 0).

Suponiendo que el gasto másico G de aire es constante:

$$G = \rho.A1.v1 = \rho.A2.v2 = \rho.A.v$$

La variación de la energía cinética del viento en la unidad de tiempo es de la forma:

$$\Delta E_{\text{cinética}} = E_{\text{c1}} - E_{\text{C2}} = \frac{G}{2} \, \left(\, v_{1}^{\, \, 2} - \, v_{2}^{\, \, 2} \, \, \right) = \frac{\rho. A. v}{2} \left(\, v_{1}^{\, \, 2} - \, v_{2}^{\, \, 2} \, \, \right)$$

La fuerza \mathbf{F} ejercida por el viento en la unidad de tiempo $\Delta t = 1$ sobre el área ficticia \mathbf{A} barrida por la hélice, es igual a la variación de la cantidad de movimiento del aire que la atraviesa; el trabajo generado por esta fuerza \mathbf{F} en la unidad de tiempo, es la potencia $\mathbf{N}_{\text{útil}}$, de la forma:

$$F = \frac{G.\Delta v}{\Delta t} = \rho.A.v (v_1 - v_2)$$

$$N_{\text{util}} = F.v = \rho.A.v^2 (v_1 - v_2)$$

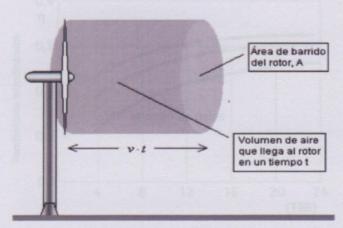
Que es igual a la variación de la energía cinética del aire, en el mismo tiempo, pudiéndose poner:

$$N_{\text{útil}} = \rho.A.v^2 (v_1 - v_2) = \frac{\rho.A.v}{2} (v_1^2 - v_2^2) \Rightarrow v = \frac{v_1 + v_2}{2}$$

Si se hace el cambio v2 = b.v1 con (0 < b < 1), resulta:

$$N_{\text{util}} = \frac{\rho.A.(v_1 + v_2)}{4}(v_1^2 - v_2^2) = \frac{\rho.A.v_1^3}{4}(1+b)(1-b^2)$$

El máximo valor de Nútil se obtiene haciendo dNútil/db = 0, resultando:


$$b = \frac{1}{3} = \frac{v_2}{v_1}$$
; $v_1 = 3v_2$

Que permite hallar la potencia máxima suministrada por el rotor, de valor:

$$N_{\text{útil máx}} = \frac{\rho.A.v^{3}}{4} \left(1 + \frac{1}{3} \right) \left(1 - \frac{1}{9} \right) = \frac{8.\rho.A.v_{1}^{3}}{27} = 0,37A.v_{1}^{3}$$

se conoce como ecuación de Betz

De todo esto se deduce que la potencia máxima teórica es proporcional al diámetro D del círculo barrido por la pala y al cubo de la velocidad nominal del viento V1.

Como la potencia del viento aguas arriba de la hélice, viene dada por la expresión

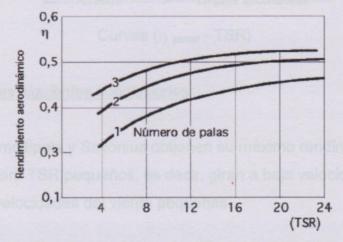
$$N_{\text{disponible viento}} = \frac{\rho.A.v^3}{2} = 0,62A.v_1^3$$

El rendimiento máximo aerodinámico (o factor de potencia máximo) es:

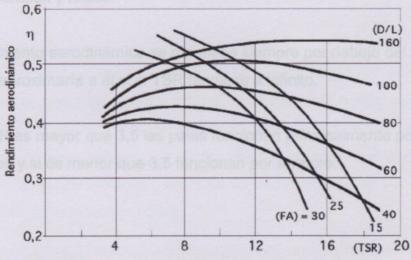
$$\eta_{\text{máx}} = \frac{N_{\text{útil máx}}}{N_{\text{viento}}} = \frac{0.37}{0.62} = 0.595 = \underline{59.9\%}$$

Que es el límite teórico o coeficiente de Betz, resultado que ninguna máquina eólica, por muy sofisticada que sea, puede superar.

CAPITULO 3

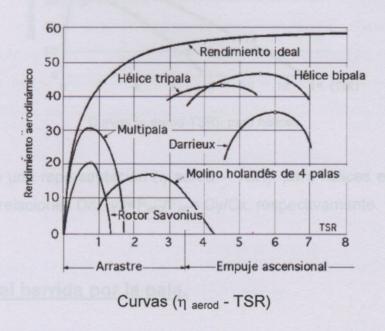

DIMENSIONADO DE UN ROTOR EÓLICO

Rendimiento Aerodinámico

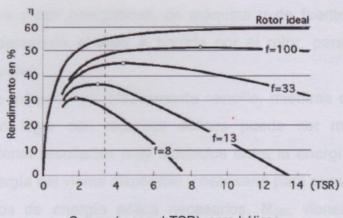

Se ha definido el rendimiento aerodinámico η como la relación entre la potencia generada por el aerogenerador y la energía del viento que atraviesa el rotor, en la forma:

$$\eta = \frac{\text{Pot. del aerogenerador}}{\text{Pot. del viento}} = \frac{N}{\rho.\text{A.v}^3}$$

Parámetros de diseño de una hélice tripala



Relación entre el rendimiento aerodinámico, el TSR y el número de palas para, D/L→∞


Relación entre el rendimiento aerodinámico, el TSR y la relación, D/L

Teniendo en cuenta lo anterior, podemos determinar la calidad de una máquina eólica, considerando las curvas del tipo (η _{aerod} - TSR), de las que en primer lugar se puede hacer una clasificación mediante la representación gráfica:

Obteniéndose las siguientes conclusiones:

- a) Los molinos multipala y Savonius obtienen su máximo rendimiento aerodinámico para TSR pequeños, es decir, giran a baja velocidad; asimismo funcionan con velocidades del viento pequeñas.
- b) El rendimiento aerodinámico y por tanto, la potencia útil es superior en los aparatos Darrieux y hélice.
- c) El rendimiento aerodinámico se mantiene siempre por debajo del límite de Betz, y se aproximaría a él si el TSR tendiese a infinito.
- d) Si el TSR es mayor que 3,5 las palas funcionan principalmente por empuje ascensional, y si es menor que 3,5 funcionan por arrastre.

Curvas (η aerod-TSR), para hélices

Se ha hecho una representación (η aerod – TSR), para hélices en función del nº de palas, relaciones D/L, y f=F_{asc}/F_{arr}= Cy/Cx, respectivamente.

Área frontal barrida por la pala.

El área A barrida por el rotor y que éste presenta frontalmente al viento, es un parámetro que se utiliza con cierta frecuencia en los cálculos de energía eólica. Este área, para una hélice, es la superficie total barrida por las palas del rotor, perpendicular a la dirección del viento.

Para un rotor de hélice, de eje horizontal, paralelo a la dirección del viento, y diámetro d, el valor de A es:

$$A = \frac{\pi . d^2}{4}$$

El tamaño y dimensiones de un rotor eólico se determinan calculando, en primer lugar, el área frontal A del mismo; para ello se le puede suponer como una máquina motriz, a la que de antemano se tiene que prefijar y asignar la energía que se desea generar; al mismo tiempo se determina el promedio de energía que se puede obtener a partir de los recursos eólicos del lugar donde se vaya a instalar la máquina eólica.

Conocidos estos datos energéticos, de máquina y de fuente energética, se igualan, y se determina el área **A** barrida por el rotor, para así calcular la longitud de las palas.

El diseño de la máquina es relativamente sencillo, mientras que el estudio y elección de un lugar con recursos eólicos puede ser más complicado, pudiéndose obtener resultados muy ajustados entre la energía que se desea obtener y la energía del viento disponible y necesaria para conseguirla.

Estos promedios de energía eólica necesarios, $N_{\text{útil}}$, vienen dados por la ecuación:

$$N_{\text{util}} = N_{\text{viento}}.\eta = \frac{1}{2}\rho.A.v^3\eta$$

Siendo, η = η_{aerod} , el rendimiento aerodinámico global del aerogenerador. Esta fórmula se puede expresar también en la forma:

$$A = \frac{2.N_{\text{útil aerog}}}{\rho.v^3.\eta} = \frac{93.N_{\text{útil aerog}}}{\eta.F.C_A.C_T}$$

Con $N_{\text{útil}}$ en kW y en la que F es un factor que depende de la velocidad del viento y cuyos valores se indican en la siguiente tabla:

v mph	6	7	8	9	10	11	12	13	14	15	16	17
F	1,07	1.78	2,62	3.74	5,13	6,82	8,86	11,3	14,1	17,3	21	25,2
v mph		19	20	21	22	23	24	25	26	27	28	29
F	29.9	35,2	41	47.5	54,6	62,4	70,9	80,1	90,1	101	113	125

Valores del factor de potencia F

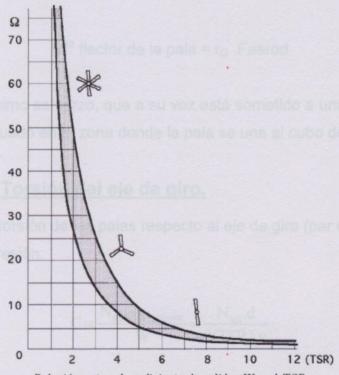
Siendo C_A y C_T dos factores de corrección de la densidad del aire, en función de la altitud (en metros) y de la temperatura del lugar en °C, valores que vienen compendiados en la siguiente tabla:

Altitud m	CA	Temperatura °C	Ст
0	1	-18°	1,13
750	0,898	-6°	1,083
1500	0.819	+4°	1,04
2250	0,744	+16°	1
3000	0.676	+27°	0,963
		+38°	0,929

Factores de corrección de la densidad del aire

Tamaño de las palas y coeficiente de Solidez

Cuando una máquina eólica dispone de un número determinado de palas **Z**, la superficie total de las mismas se calcula mediante la expresión:


Area total de las palas = Z.S = Solidez W x Área A barrida por el rotor.

Por lo que la solidez **W** del rotor se puede interpretar como la relación entre el área geométrica de la pala, **S = R.L**, y el área barrida por ella en su giro, es decir:

$$\Omega = \frac{Z.S}{\pi.R^2} = \frac{Z.R.L}{\pi.R^2} = \frac{Z.L}{\pi.R}$$

Para obtener la superficie de una pala se divide el área total así obtenido por el número de ellas.

El coeficiente de solidez W guarda una relación inversa con el TSR.

Relación entre el coeficiente de solidez W y el TSR

Resistencia Aerodinámica de la pala

Una fórmula aproximada para determinar la resistencia aerodinámica de un aerogenerador en rotación, inmerso en una corriente de aire de velocidad **v**, se puede expresar en la forma:

En la que A viene dada en m2, y v en m/seg

Si la máquina eólica está parada, pero inmersa en la corriente de aire, la resistencia estática aerodinámica por pala se calcula mediante la expresión:

F estática aerod. = 2.W.F aerod. en movimiento

Momento Flector de la pala.

El momento flector de la pala se calcula a partir de las fuerzas aerodinámicas que actúan sobre las palas, que son paralelas al eje de giro, a la distancia \mathbf{r}_{G} del mismo, de la forma:

El punto de máximo esfuerzo, que a su vez está sometido a una fatiga máxima, se encuentra situado en la zona donde la pala se une al cubo del rotor.

Momento de Torsión del eje de giro.

El momento de torsión de las palas respecto al eje de giro (par motor), viene dado por la expresión:

$$C = \frac{N_{\text{generada en el rotor}}}{W} = \frac{N_{\text{útil}}.d}{2(TSR).v}$$

con, $N_{\text{útil}}$ en Kgm/seg , d en metros y v en m/seg.

La ecuación anterior se puede poner también en la forma:

$$C = \frac{51.N_{\text{útil}}.d}{(TSR).v}$$

con, Nútil en kW, d en metros y v en m/seg.

El par motor **C** así obtenido es el total, por lo que para saber el par originado por cada pala, habrá que dividirle por el número de palas.

Hay que tener en cuenta que la potencia $N_{\text{útil}}$ a utilizar es la que se tiene en el eje del rotor, y no en el eje de salida del generador u otro aparato impulsado por el aerogenerador.

Este momento actúa en el plano de rotación, estando localizada la tensión máxima en la zona de implantación de cada pala con el rotor; el par aumenta con el coeficiente de solidez **W**.

CAPITULO 4

Cálculos y parámetros de diseño

El siguiente proyecto se propone el estudio de viabilidad de un generador eólico habiendo desarrollado cada una de sus partes. Se propone obtener energía eléctrica a partir de un molino tripala e intentar dar un buen rendimiento a este, mediante un generador sincrónico y todos los complementos que hacen posible la obtención de dicha energía.

Se propone dicho proyecto como una solución fiable y viable para la instalación de una pequeña escuela Rural y producir energía eléctrica para poder conectarla a la red del establecimiento.

Variación vertical del viento

En ese lugar se han tomado muestras de viento a lo largo de un año a dos alturas diferentes. Uno a 12 metros y otro a 24metros.

El Anemómetro a 24 metros nos arrojo un promedio de 7,3 m/s, por lo que vamos a tener que calcular cuánto sería la velocidad del viento a **16 metros**, que es la altura a la que queremos colocar nuestro aerogenerador.

Según la siguiente fórmula: (Ley exponencial de Hellmann)

$$V_{(h)} = V_a \left(\frac{H_h}{H_a}\right)^{\alpha}$$

Donde:

V_(h):Velocidad a calcular

Va: Velocidad Conocida

H_h:Altura a la que se quiere calcular la velocidad del viento

H_a:Altura a la que se tienen los datos.

α: Exponente de Hellmann en función de la rugosidad del terreno.

$$H_g = \sqrt{H_a \cdot H_h} = \sqrt{(24.16)m} = 19,6m$$

$$\alpha = \frac{1}{Ln\frac{H_g}{H_0}} - \frac{0,0881}{1 - 0,0881.Ln\frac{H_a}{10}} .Ln\frac{V_a}{6}$$

$$\alpha = \frac{1}{Ln\frac{19,6m}{0,01m}} - \frac{0,0881}{1 - 0,0881.Ln\frac{24}{10}}.Ln\frac{7,3}{6}$$

$$\alpha = 0.1319 - 0.0187 = 0.1131$$

$$V_{(h)} = 7.3 \text{m/s} \left(\frac{16\text{m}}{24\text{m}}\right)^{0.1131} = \frac{V_{(h)} = 7\text{m/s}}{2000 \text{m/s}}$$
; [1]

7 m/s es la velocidad que vamos a tener en promedio a 16 metros de altura y es la que vamos a tener que usar para realizar todos los cálculos correspondientes.

Cálculo de potencia demandada por el establecimiento

En primer lugar vamos a calcular el consumo total del establecimiento en un día, luego vamos a tener en cuenta que al ser una escuela, estará abierta de lunes a viernes y de Marzo a Diciembre.

El instituto se compone de 4 aulas de enseñanza para alumnos. También dispone de instalaciones como administración y sala de profesores entre otras dependencia de menor uso.

Detalles de los consumos

Descripción	Potencia (W)	Cantidad	Potencia	hs/día	Energía/Día	Energía/mes
Descripcion			Total (W)	(h)	(W.h)	(W.h)
Tublos Fluorescente Aula N°1	40	6	240	8	1920	57600
Tublos Fluorescente Aula N°2	40	6	240	8	1920	57600
Tublos Fluorescente Aula N°3	40	6	240	8	1920	57600
Tublos Fluorescente Aula N°4	40	6	240	8	1920	57600
TV 29"	140	1	140	2	280	8400
Reproductor de DVD	14	1	14	2	28	840
Tubo Fluorescente	40	4	160	10	1600	48000
Ventilador de techo	70	1	70	10	700	21000
PC de escritorio	270	1	270	10	2700	81000
Radio	70	1	70	10	700	21000
Bomba de Agua 3/4	559	1	559	1	559	16770
Heladera	250	1	250	24	6000	180000
Total	1573	35	2493	101	20247	607410

Con un consumo mensual de 607,41 kWh y teniendo en cuenta que en los meses estivales el consumo es mínimo, pero con un factor de ampliación de un 20% nos da como resultado:

Que la "Energía total de todo un año: 7288,92 kW/hs."

Nota1: En condiciones normales un generador eólico produce anualmente una energía (Eg) igual a la equivalente a la de la misma turbina operando a potencia nominal durante 3000 horas al año ~ 34,2%. (Dato estadístico)

$$Eg = Pn.3000h \Rightarrow Pn = \frac{Eg}{3000 \text{ h}} = \frac{7288,9 \text{kWh}}{3000 \text{ h}}$$

$$Pn = 2,43 \text{ kW} \cong 2,5 \text{ kW}$$

;[2]

Donde:

Eg =Energía generada

Pn=Potencia nominal

Por la tanto vamos a necesitar un aerogenerador con una capacidad de generación de 2,5 kW.

Distribución de RAYLEIGH

(Como sabemos, ver pág. 35 ecuación [1]; la velocidad del viento promedio a 16 metros de altura es de 7 m/s.)

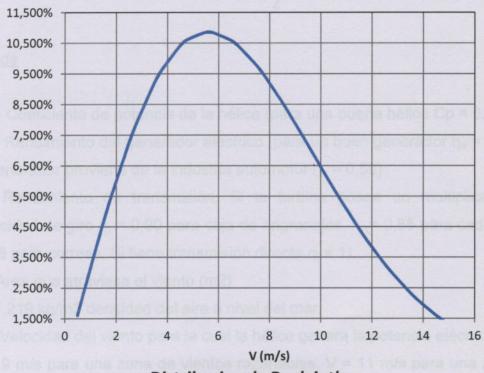
La distribución de Rayleigh permite visualizar como se distribuye la intensidad del viento y que rango ocurren con frecuencia.

Con los datos disponibles de la velocidad del viento en un determinado lugar, se puede encontrar la ecuación de distribución de Rayleigh que describe la distribución de velocidades del viento con una aproximación razonable dentro de ciertos límites, siendo la velocidad media del mismo un parámetro a tener en cuenta.

La distribución de Rayleigh es de la forma:

$$R(v) = \frac{\pi}{2} \cdot \frac{V \cdot e^{-k}}{V_m^2}$$

$$k = \frac{\pi}{4} \cdot \left(\frac{V}{V_{m}}\right)^{2}$$


UTN-FRVT

Esta ecuación proporciona el número total de horas al año que se prevé pueda soplar el viento "V" a la velocidad media "Vm" del lugar.

	1//		D()	61
V(m/s)	V/Vm	K	R(m)	%
0,5	0,071428571	0,0040051	0,01595637	1,596%
0,75	0,107142857	0,00901148	0,02381503	2,382%
1	0,142857143	0,01602041	0,0315316	3,153%
1,25	0,178571429	0,02503189	0,03906091	3,906%
1,5	0,214285714	0,03604592	0,04635966	4,636%
1,75	0,25	0,0490625	0,05338682	5,339%
2	0,285714286	0,06408163	0,06010399	6,010%
2,25	0,321428571	0,08110332	0,06647577	6,648%
2,5	0,357142857	0,10012755	0,07247008	7,247%
2,75	0,392857143	0,12115434	0,07805839	7,806%
3	0,428571429	0,14418367	0,08321596	8,322%
3,25	0,464285714	0,16921556	0,087922	8,792%
3,5	0,5	0,19625	0,09215976	9,216%
3,75	0,535714286	0,22528699	0,09591664	9,592%
4	0,571428571	0,25632653	0,09918417	9,918%
4,25	0,607142857	0,28936862	0,101958	10,196%
4,5	0,642857143	0,32441327	0,10423779	10,424%
4,75	0,678571429	0,36146046	0,1060271	10,603%
5	0,714285714	0,4005102	0,10733323	10,733%
5,25	0,75	0,4415625	0,10816698	10,817%
5,5	0,785714286	0,48461735	0,10854245	10,854%
5,75	0,821428571	0,52967474	0,10847673	10,848%
6	0,857142857	0,57673469	0,10798965	10,799%
6,25	0,892857143	0,62579719	0,10710342	10,710%
6,5	0,928571429	0,67686224	0,10584233	10,584%
6,75	0,964285714	0,72992985	0,10423242	10,423%
7	1	0,785	0,10230113	10,230%
7,25	1,035714286	0,8420727	0,10007695	10,008%
7,5	1,071428571	0,90114796	0,09758909	9,759%
7,75	1,107142857	0,96222577	0,09486717	9,487%
8	1,142857143	1,02530612	0,0919409	9,194%
8,25	1,178571429	1,09038903	0,0888398	8,884%
8,5	1,214285714	1,15747449	0,08559289	8,559%
8,75	1,25	1,2265625	0,08222849	8,223%
9	1,285714286	1,29765306	0,03222343	7,877%
9,25	1,321428571	1,37074617	0,07525542	7,526%
9,5	1,357142857	1,44584184	0,07323342	7,170%
9,75	1,392857143	1,52294005	0,06812456	6,812%
10 25	1,428571429	1,60204082	0,06455741	6,456%
10,25	1,464285714	1,68314413	0,06101649	6,102%
10,5	1,5	1,76625	0,05752018	5,752%

-	10,75	1,535714286	1,85135842	0,05408506	5,409%
	11	1,571428571	1,93846939	0,05072589	5,073%
	11,25	1,607142857	2,02758291	0,04745566	4,746%
	11,5	1,642857143	2,11869898	0,04428556	4,429%
	11,75	1,678571429	2,2118176	0,04122506	4,123%
	12	1,714285714	2,30693878	0,03828195	3,828%
	12,25	1,75	2,4040625	0,03546244	3,546%
	12,5	1,785714286	2,50318878	0,03277121	3,277%
	12,75	1,821428571	2,6043176	0,03021155	3,021%
	13	1,857142857	2,70744898	0,02778541	2,779%
	13,25	1,892857143	2,81258291	0,02549354	2,549%
	13,5	1,928571429	2,91971939	0,02333562	2,334%
	13,75	1,964285714	3,02885842	0,02131031	2,131%
	14	2	3,14	0,01941543	1,942%
	14,25	2,035714286	3,25314413	0,01764802	1,765%
	14,5	2,071428571	3,36829082	0,01600448	1,600%
	14,75	2,107142857	3,48544005	0,01448066	1,448%
	15	2,142857143	3,60459184	0,01307195	1,307%

Planilla realizada en excel

Distribucion de Rayleigth

Su representación gráfica se ha considerado el tiempo sobre el eje de ordenadas en %, y la velocidad del viento V en m/s sobre el eje de abscisas.

Significa que con un viento que tiene una velocidad media anual de 7 m/s, con la curva puedo saber por ejemplo que voy a tener un 6,4% de horas al año a

una velocidad de 10 m/s, es decir que si el año tienen aproximadamente 8640 horas al 6,4% voy a disponer de 552,9 hs al año a 10 m/s.

Cálculo del diámetro de la hélice

Necesitamos un generador de 2,5 kW (ver pág.37, ec:[2]) para una velocidad promedio de 7m/s (ver pág.35, ec:[1]) por lo que vamos a empezar a calcular el diámetro de su hélice.

La potencia eléctrica Pe que puede producir un aerogenerador en función del caudal de aire que atraviesa dicha área es:

$$Pe = Cp.\eta_t.\eta_e.\frac{1}{2}.A.\rho.V^3$$

Donde

C_p = Coeficiente de potencia de la hélice (para una buena hélice Cp = 0,40)

 η_e = Rendimiento del generador eléctrico (para un buen generador η_e = 0,90. Si el generador proviene de la industria automotor η_e = 0,50)

 η_t = Rendimiento de transmisión. Si la turbina posee un multiplicador de velocidad de giro η_t = 0,90 para caja de engranajes, η_t = 0,85 para cadenas, η_t = 0,8 para correas. Si tiene transmisión directa η_t = 1).

A= Area que atraviesa el viento (m2)

 ρ =1,219 kg/m3 densidad del aire a nivel del mar.

V = Velocidad del viento para la cual la hélice genera la potencia eléctrica Pe.

V = 9 m/s para una zona de vientos razonables. V = 11 m/s para una zona de fuertes vientos.

Vm= Velocidad media, haciendo uso de la función de distribución de velocidad de Rayleigh, válida para zonas con velocidad media de vientos superiores a 4,5 m/s, se puede aceptar la siguiente relación: V3 = 1,91(Vm) ³

Por lo que la potencia eléctrica queda defina:

$$Pe = Cp.\eta_t.\eta_e.\frac{1}{2}.A.\rho.1,91.V_m^3$$

Despejando el área (A):

$$A = \frac{2.Pe}{\eta_t.\eta_e.Cp.\rho.1,91.V_m^3} = \frac{2.2500 \text{ w}}{0,8.0,9.0,4.1,219 \frac{\text{Kg}}{\text{m}^3}.1,91.\left(7\frac{\text{m}}{\text{s}}\right)^3} \Rightarrow \underline{A = 14,9\text{m}^2}$$

$$A = \frac{\pi \cdot D^2}{4} \Rightarrow D = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{14,9m^2 \cdot 4}{\pi}} \Rightarrow D = 4,36m \rightarrow \text{adoptamos } \underline{D} = 4,40m$$
;[3]

$$R = \frac{D}{2} = \frac{4,40m}{2} \Rightarrow \underline{R} = 2,20m$$
 ;[4]

Obtenemos un radio de 2,2 metros que va a ser el largo de las aspas.

Velocidad de Rotación

En forma aproximada supondremos que la velocidad tangencial de la punta de la pala de la hélice es de 60 m/seg. (Dato extraído de estadísticas) Donde ω es la velocidad angular de la hélice y R es el radio de la hélice.

$$V_{tan} = \omega.R = 60 \,\mathrm{m/s}$$

$$\omega = \frac{V_{tan}}{R} = \frac{60 \,\text{m/s}}{2,2 \,\text{m}} \Rightarrow \omega = 27,46 \frac{1}{\text{seg}}$$
;[5]

El número de revoluciones por minutos de la hélice es:

$$n = \frac{\omega.30}{\pi} = \frac{27,46\frac{1}{\text{seg}}.30}{\pi} \Rightarrow n = 262,3 \text{ rpm} \rightarrow \underline{n = 262 \text{ rpm}}$$
;[6]

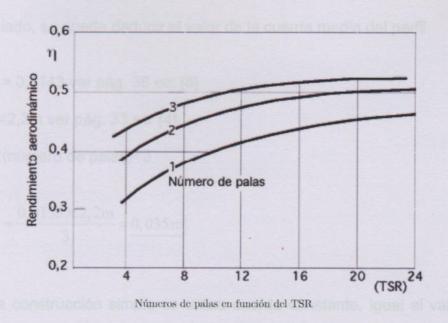
UTN-FRVT

Relación de velocidad periférica TSR

La relación de la velocidad periférica TSR (tip-speed-ratio) es un término que suple las RPM de rotor y este es usado para la comparación de diversas máquinas eólicas, por lo que también se le suele denominar velocidad específica.

El **TSR** indica que la periferia de la pala se encuentre a una velocidad **TSR** veces mayor que la velocidad del viento **V** y es la relación entre la velocidad angular del extremo de la pala **U** y el centro del eje de rotación. Siendo:

$$\omega = 27,47 \text{ 1/s ver pág. 41 ec: [5]}$$


$$TSR = \frac{Velocidad \ periférica \ de \ la \ pala}{Velocidad \ del \ viento} = \frac{R.\omega}{V}$$

$$TSR = \frac{2,2 \,\mathrm{m}.27,46 \,\frac{1}{\mathrm{s}}}{7 \,\frac{\mathrm{m}}{\mathrm{s}}} = \underline{8,6}$$
;[7]

La relación entre la velocidad angular ω para un radio cualquiera $\,r\,$ y el ángulo $\,\theta$ se conoce como $\,SR\,$

$$SR = \frac{u}{V} = \cot g\theta = \frac{r.\omega}{V}$$

Relación entre: η, TSR y el número de palas.

En este caso como tenemos un TSR=8,6 optamos por un número de palas =3 para obtener un rendimiento cercano al 50%.

Solidez

Se denomina solidez **S** de la hélice a la relación entre la superficie ocupada por las palas **Ap** y la superficie frontal barrida por la hélice **A**.

$$S = \frac{Ap}{A}$$

En el cálculo simple de la hélice la solidez S se determina con la expresión:

$$S = \frac{0,872}{TSR} - 0,086$$

$$S = \frac{0,872}{8,6} - 0,086 \Rightarrow \underline{S} = 0,0153$$
 ;[8]

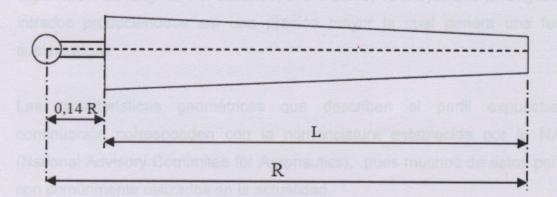
Cálculo de la Cuerda

Por otro lado, se puede deducir el valor de la cuerda media del perfil Siendo:

S = 0,0143 ver pág. 36 ec: [8]

R=2,2m ver pág. 33 ec: [4]

N:(número de palas)=3


$$c = \frac{S.\pi.R}{N} = \frac{0,0153.\pi.2,2m}{3} = \underline{0,035m}$$
;[9]

Para una construcción simple se utiliza cuerda constante, igual al valor de la cuerda media pero para una hélice un poco mejor, se puede lograr una variación lineal entre la cuerda punta de pala Cpp y la cuerda raíz Craíz.

Estas se calculan aproximadamente por:

Cpp =
$$c - 0.025.L$$

Craíz = $c + 0.025.L$

Donde L es la longitud útil de la pala. → L= 0,86.R

También podemos verificar la longitud de las palas Siendo:

TSR= 8,6 ver pág. 35 ec: [7]

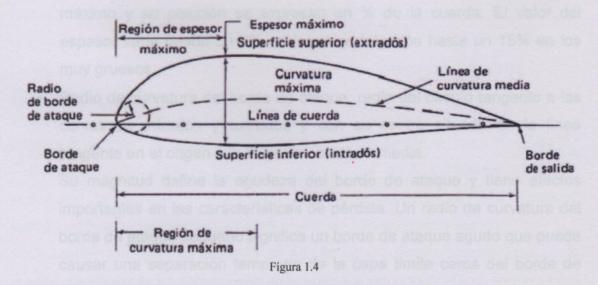
R=2,2 m ver pág. 33 ec: [4]

n= 260 rpm ver pág 34 ec: [6]

$$R = \frac{30.V.TSR}{n.\pi} = \frac{30.7 \text{m/s.8,6}}{262 \text{ rpm.} \pi} = 2,19 \text{m} \rightarrow \text{Por lo que optamos R=2,2 m}$$

$$L = 0.86.R = 0.86.2, 2m \Rightarrow L = 1.89m$$
 ;[10]

$$Cpp = 0,09 - 0,025.1,89 \Rightarrow Cpp = 0,042m$$
 ;[11]


$$Craiz = 0,09 + 0,025.1,89 \Rightarrow Craiz = 0,137m$$
 ;[12]

Definición y caracterización de los perfiles aerodinámicos

Un perfil alar corresponde a una sección del ala diseñada para obtener mejores características aerodinámicas. Permite generar una fuerza de sustentación debido a las diferencias de presión que actúan en el extrados (parte superior del ala) y en el intrados (parte inferior del ala), y que se debe a la diferente longitud del camino recorrido por las moléculas del aire sobre dichas superficies. La longitud del extrados, al ser curvo, es mayor que la longitud del intrados produciéndose así una presión mayor la cual genera una fuerza sustentadora.

Las características geométricas que describen el perfil expuestas a continuación corresponden con la nomenclatura establecida por la NACA (National Advisory Comimitee for Aeronautics), pues muchos de estos perfiles son comúnmente utilizados en la actualidad.

Terminología de un perfil aerodinámico

- Borde de ataque: borde delantero del perfil (B.A).
- Borde de salida: borde trasero del perfil (B.S).
- Cuerda: línea recta que une el borde de ataque con el borde de salida.
 Es una dimensión característica del perfil.
- Línea de curvatura media: lugar geométrico de los puntos que equidistan de la curva que define el extradós y el intradós. Esta línea fija la curvatura del perfil. Si la línea de curvatura media queda sobre la cuerda geométrica (como en la figura 1.4) se dice que la curvatura es positiva, si es por debajo, negativa, y de doble curvatura si un tramo va por encima y otro por debajo.
- Curvatura máxima: es la máxima distancia entre la línea de curvatura media y la cuerda del perfil. Este valor y su posición a lo largo de la cuerda ayudan a definir la forma de la línea de curvatura media. El valor de la ordenada máxima y su posición suelen darse en forma de % sobre la cuerda.

- Espesor máximo: es la máxima distancia entre el lado de succión y el lado de presión, medida perpendicularmente a la cuerda. El valor máximo y su posición se expresan en % de la cuerda. El valor del espesor varía desde un 3% en los muy delgados hasta un 18% en los muy gruesos.
 - Radio de curvatura del borde de ataque: radio del círculo tangente a las curvas de intradós y extradós y con su centro situado en la línea tangente en el origen a la línea de curvatura media.
 Su magnitud define la agudeza del borde de ataque y tiene efectos importantes en las características de pérdida. Un radio de curvatura del borde de ataque pequeño significa un borde de ataque agudo que puede causar una separación temprana de la capa límite cerca del borde de ataque.
 - Ángulo de ataque: ángulo que forma la velocidad de la corriente incidente con la cuerda geométrica.

Clasificación de los perfiles aerodinámicos

La NACA llevó a cabo investigaciones sistemáticas de diferentes perfiles, y los clasificó en familias, son los conocidos perfiles NACA.

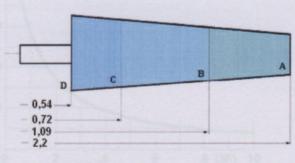
Serie NACA de 4 dígitos

Primer dígito describe la curvatura máxima como porcentaje de la cuerda (% c). Segundo dígito describe la distancia de máxima curvatura desde el borde de ataque en 1/10 del porcentaje de la cuerda.

Los dos últimos dígitos describen el máximo espesor como % de la cuerda.

Ejemplo:

NACA 4412


Máxima curvatura al 4%

Máxima curvatura localizada al 40% (0.4 cuerdas) del borde de ataque Máximo espesor del 12% de la cuerda En este caso consultando bibliografía, vemos que uno de los perfiles más utilizados para estos tipos de aerogeneradores son los del tipo **NACA 4412.**Por lo tanto se ha elegido dicho perfil adoptando los siguientes parámetros.

Perfil de la pala.

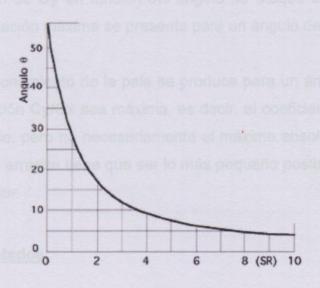
Interesan perfiles con altos valores de Cy/Cx (Coeficiente de sustentación (Cy) y Coeficiente de arrastre (Cx)); el espesor del perfil disminuye desde el entronque con el cubo a la periferia; cuando el espesor del perfil aumenta, disminuye la relación Cy/Cx y el perfil transmite menos fuerza al rotor.

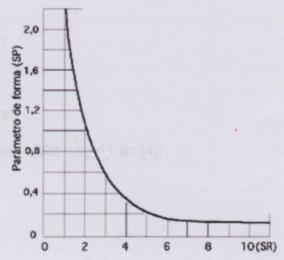
Para perfilar una pala se procede en primer lugar a hacer un esquema de la misma, dividiéndola en varias secciones, calculando la relación de velocidades SR correspondiente a cada una de ellas.

$$SR = \frac{TSR.r}{R}$$

$$SR_{D} = \frac{8,6.0,54m}{2,2m} \Rightarrow SR_{D} = 2,11$$

$$SR_C = \frac{8,6.0,72m}{2,2m} \Rightarrow SR_C = 2,81$$


$$SR_B = \frac{8, 6.1, 09m}{2, 2m} \Rightarrow SR_B = 4, 26$$


$$SR_A = \frac{8,6.2,2m}{2,2m} \Rightarrow SR_A = 8,6$$

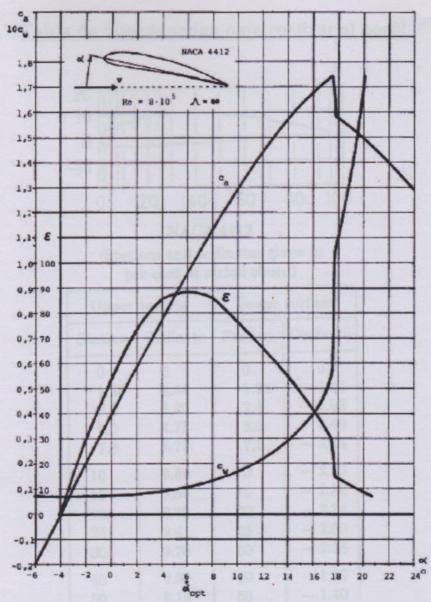
Obtenida la forma del perfil, se procede a realizar una serie de modificaciones al perfil, con el fin de aumentar al máximo la eficiencia de la pala, debido a que el ángulo que se encuentra entre la velocidad angular ω y la velocidad aparente u del viento es cambiante a medida que se desplaza por la pala, esto se debe a que la velocidad radial cambia en cada momento. Por eso es necesario que la pala tenga una forma helicoidal, ya que también el ángulo de ataque α cambia y es necesario que sea constante en toda la pala.

Se debe encontrar un parámetro **SP** (parámetro de forma) a partir de **SR**, que se pueden obtener de las graficas.

La primer grafica muestra el θ y SR y la segunda grafica SP y SR

$$SR_D = 2.11 \rightarrow \theta_D = 16^\circ \text{ y } SP_D = 1$$

 $SR_C = 2.81 \rightarrow \theta_C = 12^\circ \text{ y } SP_C = 0.6$
 $SR_B = 4.26 \rightarrow \theta_B = 7^\circ \text{ y } SP_B = 0.3$
 $SR_A = 8.6 \rightarrow \theta_A = 3^\circ \text{ y } SP_B = 0.1$

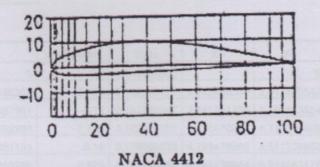

Metodología de diseño aplicada a el perfil Naca 4412

Se presenta la polar del perfil NACA 4412 y a la misma escala la representación de Cy en función del ángulo de ataque α de ellas se obtiene que la sustentación máxima se presenta para un ángulo de ataque α = 5,5°.

El mejor funcionamiento de la pala se produce para un ángulo de ataque α en el que la relación Cy/Cx sea máxima, es decir, el coeficiente ascensional tiene que ser grande, pero no necesariamente el máximo absoluto, al tiempo que el coeficiente de arrastre tiene que ser lo más pequeño posible, compatible con la relación anterior.

Valores adoptados:

Cm= 135,9 mm	,[13],
Cpp= 143 mm	,[14]
Craíz= 236,9 mm	,[15]
Radio= 2200 mm (Ver pág 41 ec:[4])	



Perfil Naca 4412 con los coeficientes de sustentación, resistencia y el ángulo de ataque.

Según el gráfico del perfil Naca 4412, los coeficientes de sustentación, arrastre y momento para un ángulo de 12° son:

Coeficiente de Sustentación	→ Cy=1,43	,[16]
Coeficiente de Resistencia	→Cx=0,021	;[17]
Coeficiente de Momento	→CM=0,146	,[18]

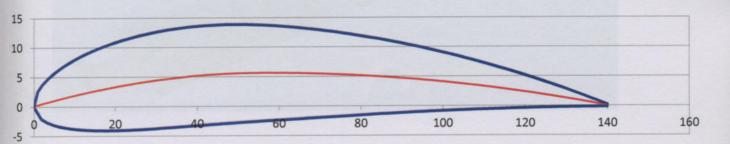
Tabla de coordenadas para realizar el perfil

(Stations and ordinates given in per cent of airfoil chord)

Upper	surface	Lower surface				
Station	Ordinate	Station	Ordinate			
0	0	0 .	0			
1.25	2.44	1.25	- 1.43			
2.5	3.39	2.5	- 1.95			
5.0	4.73	5.0	- 2.49			
7.5	5.76	7.5	- 2.74			
10	6.59	10	- 2.86			
15	7.89	15	- 2.88			
20	8.80	20	- 2.74			
25	9.41	25	- 2.50			
30	9.76	30	- 2.26			
40	9.80	40	- 1.80			
50	9.19	50	- 1.40			
60	8.14	60	- 1.00			
70	6.69	70	- 0.65			
80	4.89	80	- 0.39			
90	2.71	90	- 0.22			
95	1.47	95	- 0.16			
100	(0.13)	100	(- 0.13)			
100		100	0			

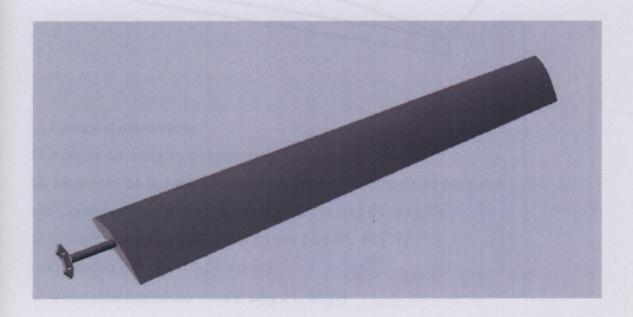
L.E. radius: 1.58

Slope of radius through L.E.: 0.20

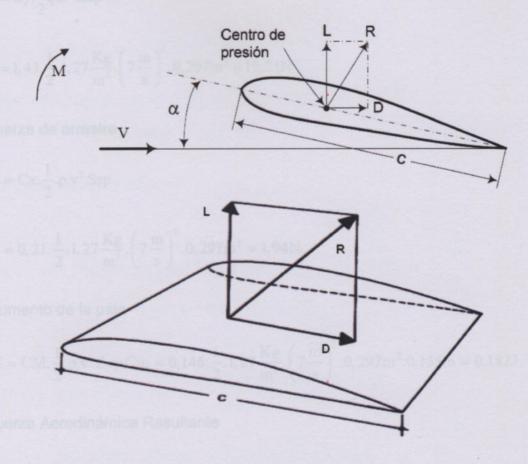

Perfil calculado en Excel con los porcentajes y los datos obtenidos.

m	0,04	t	0,12								
р	0,4										
С	140	56									
	x	ус	yt	atan(theta)	theta	XU	YU	XL	YL	Xm	Ym
0	0	0	0	0,2	0,19739556	0	0	0	0	0	15 1000
1	1,4	0,2765	2,385190356	0,195	0,192583277	0,943486369	2,617595542	1,856513631	-2,064595542	1,4	0,276
2	2,8	0,546	3,303687981	0,19	0,187761947	2,183331468	3,791623854	3,416668532	-2,699623854	2,8	0,54
3	4,2	0,8085	3,976202358	0,185	0,182931766	3,476676307	4,718357802	4,923323693	-3,101357802	4,2	0,808
4	5,6	1,064	4,51881153	0,18	0,178092938	4,799478989	5,511338952	6,400521011	-3,383338952	5,6	1,06
5	7	1,3125	4,976559956	0,175	0,173245666	6,142138944	6,214563178	7,857861056	-3,589563178	7	1,312
6	8,4	1,554	5,372613441	0,17	0,168390157	7,499574197	6,850622373	9,300425803	-3,742622373	8,4	1,55
7	9,8	1,7885	5,720785922	0,165	0,163526619	8,868663014	7,432966581	10,73133699	-3,855966581	9,8	1,788
8	11,2	2,016	6,030121901	0,16	0,158655262	10,24729802	7,970387381	12,15270198	-3,938387381	11,2	2,01
9	12,6	2,2365	6,306941364	0,155	0,1537763	11,63395977	8,469017601	13,56604023	-3,996017601	12,6	2,236
10	14	2,45	6,555878593	0,15	0,148889948	13,027498	8,933346666	14,972502	-4,033346666	14	2,4
11	15,4	2,6565	6,780460908	0,145	0,143996422	14,42700854	9,366785965	16,37299146	-4,053785965	15,4	2,656
12	16,8	2,856	6,983454266	0,14	0,139095941	15,83175912	9,772006296	17,76824088	-4,060006296	16,8	2,85
13	18,2	3,0485	7,167081184	0,135	0,134188728	17,24114218	10,15115052	19,15885782	-4,054150518	18,2	3,048
14	19,6	3,234	7,333164281	0,13	0,129275004	18,65464344	10,50597355	20,54535656	-4,037973552	19,6	3,23
15	21	3,4125	7,483224309	0,125	0,124354995	20,07182026	10,83793793	21,92817974	-4,012937928	21	3,412
16	22,4	3,584	7,618549156	0,12	0,119428926	21,49228628	11,148281	23,30771372	-3,980281	22,4	3,58
17	23,8	3,7485	7,740243681	0,115	0,114497027	22,9157002	11,43806345	24,6842998	-3,941063454	23,8	3,748
18	25,2	3,906	7,849266513	0,11	0,109559527	24,34175744	11,7082051	26,05824256	-3,896205105	25,2	3,90
19	26,6	4,0565	7,946457752	0,105	0,104616658	25,77018376	11,95951182	27,42981624	-3,846511819	26,6	4,056
20	28	4,2	8,032560186	0,1	0,099668652	27,20073039	12,19269612	28,79926961	-3,792696118	28	4,
21	29,4	4,3365	8,108235783	0,095	0,094715746	28,63317015	12,40839318	30,16682985	-3,735393179	29,4	4,336
22	30,8	4,466	8,174078679	0,09	0,089758174	30,06729439	12,60717343	31,53270561	-3,675173426	30,8	4,46
23	32,2	4,5885	8,230625543	0,085	0,084796175	31,50291053	12,78955256	32,89708947	-3,61255256	32,2	4,588
24	33,6	4,704	8,278363925	0,08	0,079829986	32,93984003	12,95599964	34,26015997	-3,547999642	33,6	4,70
25	35	4,8125	8,317739063	0,075	0,074859848	34,37791673	13,10694365	35,62208327	-3,481943653	35	4,812
26	36,4	4,914	8,349159464	0,07	0,069886002	35,81698548	13,24277889	36,98301452	-3,414778891	36,4	4,91
27	37,8	5,0085	8,373001536	0,065	0,06490869	37,25690099	13,36386942	38,34309901	-3,346869422	37,8	5,008
28	39,2	5,096	8,389613451	0,06	0,059928155	38,69752683	13,4705528	39,70247317	-3,278552799	39,2	5,09
29	40,6	5,1765	8,399318391	0,055	0,054944642	40,13873463	13,56314317	41,06126537	-3,210143172	40,6	5,176
30	42	5,25	8,402417295	0,05	0,049958396	41,5804033	13,64193393	42,4195967	-3,141933926	42	5,2
31	43,4	5,3165	8,399191199	0,045	0,044969662	43,0224185	13,70719991	43,7775815	-3,074199912	43,4	5,316
32	44,8	5,376	8,389903236	0,04	0,039978687	44,46467203	13,75919936	45,13532797	-3,007199357	44,8	5,37
33	46,2	5,4285	8,374800358	0,035	0,034985719	45,90706136	13,7981755	46,49293864	-2,941175501	46,2	5,428
34	47,6	5,474	8,354114825	0,03	0,029991005	47,34948926	13,82435801	47,85051074	-2,876358009	47,6	5,47
35	49	5,5125	8,328065498	0,025	0,024994794	48,7918634	13,8379642	49,2081366	-2,812964197	49	5,512
36	50,4	5,544	8,296858967	0,02	0,019997334	50,234096	13,83920009	50,565904	-2,751200093	50,4	5,54
37	51,8	5,5685	8,260690537	0,015	0,014998875	51,67610358	13,82826137	51,92389642	-2,691261366	51,8	5,568
38	53,2	5,586	8,219745098	0,01	0,009999667	53,11780666	13,80533414	53,28219334	-2,633334141	53,2	5,58
39	54,6	5,5965	8,174197891	0,005	0,004999958	54,55912952	13,77059572	54,64087048	-2,577595716	54,6	5,596
40	56	5,6	8,124215187	6,16791E-17	6,16791E-17	56	13,72421519	56	-2,524215187	56	5,
41	57,4	5,5984444	8,069954886	0,002222222	0,002222219	57,41793319	13,6683794	57,38206681	-2,471490515	57,4	5,598
42	58,8	5,5937778	8,011567057	0,00444444	0,004444415	58,83560661	13,60526571	58,76439339	-2,417710154	58,8	5,593

43	60,2	5,586	7,949194417	0,00666667	0,00666568	60,25299345	13,53501777	60,14700655	-2,363017774	60,2	5,58
44	61,6	5,5751111	7,88297276	0,008888889	0,008888655	61,6700681	13,45777246	61,5299319	-2,307550241	61,6	5,575
45	63	5,5611111	7,813031342	0,011111111	0,011110654	63,0868061	13,37366021	62,9131939	-2,25143799	63	5,561
46	64,4	5,544	7,739493229	0,013333333	0,013332543	64,50318407	13,28280537	64,29681593	-2,194805366	64,4	5,54
47	65,8	5,5237778	7,662475613	0,015555556	0,015554301	65,91917965	13,18532649	65,68082035	-2,137770938	65,8	5,523
48	67,2	5,5004444	7,58209009	0,017777778	0,017775905	67,33477142	13,08133666	67,06522858	-2,080447772	67,2	5,500
49	68,6	5,474	7,498442926	-0,02	0,019997334	68,74993887	12,97094369	68,45006113	-2,022943687	68,6	5,47
50	70	5,444444	7,41163528	0,022222222	0,022218565	70,16466235	12,85425037	69,83533765	-1,96536148	70	5,444
51	71,4	5,4117778	7,321763428	0,02444444	0,024439577	71,57892299	12,7313547	71,22107701	-1,90779914	71,4	5,411
52	72,8	5,376	7,228918947	0,026666667	0,026660348	72,99270267	12,60235004	72,60729733	-1,850350035	72,8	5,37
53	74,2	5,3371111	7,133188902	0,028888889	0,028880856	74,40598397	12,46732531	73,99401603	-1,793103087	74,2	5,337
54	75,6	5,2951111	7,034655999	0,031111111	0,031101079	75,81875013	12,32636515	75,38124987	-1,736142931	75,6	5,295
55	77	5,25	6,933398741	0,033333333	0,033320996	77,230985	12,17955006	76,769015	-1,67955006	77	5,2
56	78,4	5,2017778	6,829491563	0,03555556	0,035540584	78,64267302	12,02695652	78,15732698	-1,623400961	78,4	5,201
57	79,8	5,1504444	6,723004955	0,037777778	0,037759822	80,05379915	11,86865712	79,54620085	-1,567768235	79,8	5,150
58	81,2	5,096	6,614005581	-0,04	0,039978687	81,46434883	11,70472072	80,93565117	-1,512720717	81,2	5,09
59	82,6	5,0384444	6,502556385	0,04222222	0,042197159	82,87430798	11,53521246	82,32569202	-1,458323573	82,6	5,038
60	84	4,9777778	6,388716692	0,04444444	0,044415215	84,28366294	11,36019396	83,71633706	-1,404638403	84	4,977
61	85,4	4,914	6,272542295	0,046666667	0,046632834	85,69240042	11,17972333	85,10759958	-1,351723329	85,4	4,91
62	86,8	4,8471111	6,154085544	0,048888889	0,048849994	87,10050749	10,9938553	86,49949251	-1,299633078	86,8	4,847
63	88,2	4,7771111	6,033395421	0,051111111	0,051066674	88,50797154	10,80264128	87,89202846	-1,248419059	88,2	4,777
64	89,6	4,704	5,910517617	0,053333333	0,053282852	89,91478024	10,60612944	89,28521976	-1,198129438	89,6	4,70
65	91	4,6277778	5,785494596	0,05555556	0,055498505	91,3209215	10,40436476	90,6790785	-1,1488092	91	4,627
66	92,4	4,5484444	5,658365663	0,057777778	0,057713614	92,72638347	10,19738911	92,07361653	-1,100500219	92,4	4,548
67	93,8	4,466	5,529167018	-0,06	0,059928155	94,13115448	9,985241309	93,46884552	-1,053241309	93,8	4,46
68	95,2	4,3804444	5,397931813	0,062222222	0,062142108	95,53522301	9,767957172	94,86477699	-1,007068283	95,2	4,380
69	96,6	4,2917778	5,264690204	0,06444444	0,064355452	96,93857769	9,545569559	96,26142231	-0,962014004	96,6	4,291
70	98	4,2	5,129469398	0,066666667	0,066568164	98,34120723	9,318108433	97,65879277	-0,918108433	98	4,
71	99,4	4,1051111	4,992293699	0,068888889	0,068780223	99,74310041	9,085600895	99,05689959	-0,875378673		4,105
72	100,8	4,0071111	4,853184551	0,071111111	0,070991609	101,1442461	8,848071237	100,4557539	-0,833849015	100,8	4,007
73	102,2	3,906	4,712160573	0,073333333	0,073202299	102,544633	8,605540974	101,855367	-0,793540974	102,2	
74	103,6	3,8017778	4,569237602	-	0,075412273	103,9442501	8,358028884	103,2557499	-0,754473329		3,801
75	105	3,6944444	4,424428723	0,077777778	0,077621509	105,3430861	8,105551048	104,6569139	-0,71666216		3,694
76	106,4	3,584	4,277744304	-0,08	0,079829986	106,7411297	7,84812088	106,0588703	-0,68012088	106,4	
77		3,4704444		0,082222222	0,082037683	108,1383695	7,585749158	107,4616305	-0,644860269		3,470
78	109,2	3,3537778		0,08444444	0,084244578	109,534794	7,318444058	108,865206	-0,610888502	-	3,353
79	110,6	3,234	3,82650137	0,086666667	0,086450652	110,9303916	7,046211182	110,2696084	-0,578211182	110,6	3,23


80	112	3,1111111	3,672365173	0,088888889	0,088655882	112,3251504	6,769053586	111,6748496	-0,546831364	112	3,111
81	113,4	2,9851111	3,516365537	0,091111111	0,090860248	113,7190584	6,486971804	113,0809416	-0,516749582	113,4	2,985
82	114,8	2,856	3,358497115	0,093333333	0,093063729	115,1121033	6,199963876	114,4878967	-0,487963876	114,8	2,85
83	116,2	2,7237778	3,198752025	0,09555556	0,095266304	116,5042725	5,908025371	115,8957275	-0,460469815	116,2	2,723
84	117,6	2,5884444	3,03711987	0,097777778	0,097467952	117,8955534	5,61114941	117,3044466	-0,434260521	117,6	2,588
85	119	2,45	2,873587757	-0,1	0,099668652	119,2859327	5,309326688	118,7140673	-0,409326688	119	2,4
86	120,4	2,3084444	2,708140318	0,102222222	0,101868385	120,675397	5,002545496	120,124603	-0,385656607	120,4	2,308
87	121,8	2,1637778	2,540759724	0,10444444	0,104067129	122,0639326	4,690791742	121,5360674	-0,363236186	121,8	2,163
88	123,2	2,016	2,371425704	0,106666667	0,106264863	123,4515252	4,374048967	122,9484748	-0,342048967	123,2	2,01
89	124,6	1,8651111	2,200115559	0,108888889	0,108461567	124,8381604	4,052298369	124,3618396	-0,322076147	124,6	1,865
90	126	1,7111111	2,02680418	0,111111111	0,110657221	126,2238231	3,725518819	125,7761769	-0,303296597	126	1,711
91	127,4	1,554	1,851464058	0,113333333	0,112851804	127,6084978	3,393686877	127,1915022	-0,285686877	127,4	1,55
92	128,8	1,3937778	1,6740653	0,115555556	0,115045296	128,9921688	3,056776813	128,6078312	-0,269221257	128,8	1,393
93	130,2	1,2304444	1,494575643	0,117777778	0,117237677	130,3748195	2,71476062	130,0251805	-0,253871731	130,2	1,230
94	131,6	1,064	1,312960462	-0,12	0,119428926	131,756433	2,367608033	131,443567	-0,239608033	131,6	1,06
95	133	0,8944444	1,129182787	0,122222222	0,121619023	133,1369918	2,015286543	132,8630082	-0,226397654	133	0,894
96	134,4	0,7217778	0,943203308	0,12444444	0,123807949	134,516478	1,657761413	134,283522	-0,214205857	134,4	0,721
97	135,8	0,546	0,754980393	0,126666667	0,125995682	135,8948728	1,294995693	135,7051272	-0,202995693	135,8	0,54
98	137,2	0,3671111	0,56447009	0,128888889	0,128182204	137,272157	0,926950235	137,127843	-0,192728012	137,2	0,367
99	138,6	0,1851111	0,371626144	0,131111111	0,130367494	138,6483109	0,553583705	138,5516891	-0,183361483	138,6	0,185
100	140	-3,41E-14	0,1764	0,133333333	0,132551532	140,0233137	0,174852602	139,9766863	-0,174852602	140	-3E-1

Con la tabla de datos obtenidos en Excel se puede relizar el perfil en autocad.



Un vez obtenido el perfil en Autocad se lleva la imagen a un software de diseño CAD en 3D, en este caso se utilizó "Solidworks" para su posterior desarrollo.

Cálculo de Fuerzas

L: Fuerza sustentadora

D: Fuerza de arrastre o resistencia

M: Momento de la pala que tiende aumentar el ángulo de ataque α

Cy: Coeficiente de sustentación = 1,43 ver pág 51, ec:[16]

Cx: Coeficiente de arrastre = 0,21 ver pág 51, ec:[17]

ρ: Densidad del aire = 1,27 Kg/m3

V: Velocidad promedio =7m/s pág 31, ec:[1]

Calculamos el área de la sección del perfil → S_{sp}

$$Ssp = Cm.R$$

$$Ssp = 0,135m.2, 2m = 0,297m^2$$

Fuerza sustentadora

$$L = Cy.\frac{1}{2}.\rho.v^2.Ssp$$

$$L = 1,43.\frac{1}{2}.1,27\frac{Kg}{m^3}.\left(7\frac{m}{s}\right)^2.0,297m^2 = 13,21N$$
 ;[20]

Fuerza de arrastre

$$D = Cx.\frac{1}{2}.\rho.v^2.Ssp$$

$$D = 0, 21. \frac{1}{2}.1, 27 \frac{Kg}{m^3}. \left(7 \frac{m}{s}\right)^2.0, 297m^2 = 1,94N$$
 ;[21]

Momento de la pala

$$\mathrm{M} = \mathrm{CM}.\frac{1}{2}.\rho.\mathrm{v}^2.\mathrm{Ssp.Cm} = 0,146.\frac{1}{2}.1,27\frac{\mathrm{Kg}}{\mathrm{m}^3}.\left(7\frac{\mathrm{m}}{\mathrm{s}}\right)^2.0,297\mathrm{m}^2.0,135\mathrm{m} = 0,182\mathrm{J} \qquad ;[22]$$

Fuerza Aerodinámica Resultante

$$R = \sqrt{L^2 + D^2} = \sqrt{(13, 2N)^2 + (1,94N)^2} = 13,3N$$
 ;[23]

Momento torsor del eje solicitado en sus peor condición climática.

Para este cálculo se toma un viento igual a 120 Km/h aplicado a un 70% del largo de la pala.

$$L = Cy. \frac{1}{2}.p.v^{2}.Ssp = 1,43. \frac{1}{2}.1,27 \frac{Kg}{m^{3}}.(33,33m)^{2}.0,297m^{2} = 300N \qquad ;[24]$$

$$D = Cx.\frac{1}{2}.\rho.v^2.Ssp = 0, 21.\frac{1}{2}.1, 27\frac{Kg}{m^3}.(33, 33m)^2.0, 297m^2 = 40N$$

$$F = \sqrt{L^2 + D^2} = \sqrt{(300 \text{ N})^2 + (44 \text{ N})^2} = 303.2 \text{ N}$$

Entonces el Momento Torsor total será:

 $N = 3 \rightarrow N^{\circ} de palas$

$$M_{\rm m\acute{a}x}^{\rm To} = {\rm N.L.0, 7.R} = 3.303, 2{\rm N.0, 7.2, 2m} = 1386\,{\rm N.m} \qquad ; [25]$$

Mto=141,42 kg.m=14142 Kg.cm

Potencia mecánica en el eje

Siendo:

ω = 260rpm ver pág. 34 ec: [5]

Mto=14142 Kg.cm ver pág. 50 ec: [25]

$$F(Kg).R(cm) = Mt(kg.cm) = \frac{71620.Pot(cv)}{\omega(rpm)}$$

$${\rm Pot}\,({\rm cv}) = \frac{{\rm Mt}({\rm kg.cm}).\omega\,({\rm rpm})}{71620} = \frac{14142\,{\rm Kg.cm}.262\,{\rm rpm}}{71620}$$

$$Pot = 51,7 \, cv$$
 ;[26]

El material del eje corresponde a un acero SAE 1020, trefilado. Cuyo límite de fluencia es 350MPa, según tabla del catálogo de información técnica de ACINDAR y con un coeficiente de seguridad según tabla extraída del libro "Diseño de elementos de máquinas de V. Faires"; Para aceros y metales dúctiles se debe utilizar un coeficiente de seguridad que puede variar desde 1,5 a 2, adoptando en este caso 1,7.

Por lo tanto la tensión admisible nos dá:

$$\sigma_{\rm fluencia} = 350 MPa \approx 3430 \frac{kg}{cm^2}$$

$$v = 1, 7$$

$$\sigma_{\rm adm} = \frac{\sigma_{\rm fluencia}}{v} = \frac{3430 \frac{\rm kg}{\rm cm^2}}{1.7} \cong 2017 \frac{\rm kg}{\rm cm^2}$$
 ;[26_1]

enacidad (N/tex): 1.74 uerza a le tracción (MP)		ERO, DÚCTILES	HIERRO FUNDIDO, METALES QUEBRADIZOS	MADERA DE CONS- TRUCCIÓN	
CLASE DE CARGA	Basado Basado en la en la resistencia resistencia máxima de fluencia		Basado en la resistencia máxima		
Carga permanente, N =	3-4	1,5-2	5-6	7	
Repetida, una dirección, gradual (choque suave) *, N =	6	3	7-8	10	
Repetida, invertida, gradual (choque suave) *, N = Choque *, N =	8 10-15	4 5-7	10-12 15-20	15 20	

Coef. De Seg. U según: Tabla 11: Diseño de elementos de máq. Faires

Según norma SAE J1397 SAE / AISI Estado Aceros al carbono (Máx. 1.00% Mn, sin resulfurar) 1010 Laminado 320 180 28 50 95 1020 Laminado 380 210 25 50 111

Catálogo técnico de aceros ACINDAR

15

350

Trefilado

420

Cálculo del peso de las aspas

Material: FIBRAS DE TIPO R

Composición: La fibra de vidrio "**tipo R**" es una fibra compuesta de un 60% SiO2, 25% Al2O3, 9% CaO y 6% MgO. Posee buenas propiedades mecánicas y es resistente a la fatiga, temperatura y humedad. Su peso esp. es de 2.53g/cm3.

Especificaciones técnicas

Mecánicas

Tenacidad (N/tex): 1.74

Fuerza a la tracción (MPa): 4400

Elongación hasta rotura (%): 5.2

Térmicas

Conductividad Térmica (W/m.K): 1

Resistencia termomecánica: 50% después de 150 h a 750°C

Eléctricas

Resistividad (ohm x cm): 1014 – 1015

Factor de disipación dieléctrica: 0.0019 a 105 Hz

Químicas

Absorción de humedad a 20°C y 60% de humedad relativa (%): 0.1

Resistencia a los disolventes: alta

Resistencia a la intemperie y los rayos UV: alta

Resistencia a microorganismos: alta

Aplicaciones

 Usos industriales: se utiliza como fibra de refuerzo en palas de helicópteros, componentes en aeronáutica, aerogeneradores, cisternas de cohetes, misiles, lanza-misiles.

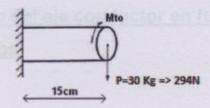
Marcas comerciales: VETROTEX

Superficie alar: 0,297m2

Espesor medio: 12% Cm =0,0162m

Volumen: 0,048 m3 =4800cm3

Peso total= N . Vol . Pesp.= 3 . 4800cm3 . 2,53g/cm3 = 36400 gr = 36,4 Kg


Al no ser maciza, se lo afecta por un coeficiente de vaciado= 0,83

Por lo tanto el peso total de las tres aspas es:

;[27]

Cálculo del momento Flector y Momento Resultante

En este caso podemos simular el peso total de la hélice por una carga puntual en el extremo de eje.

Siendo:

P= 30 Kg; ver pág. 61 ec: [27]

L=15 cm, Largo libre del eje hasta la hélice.

Momento flector que le produce la hélice al eje:

$$Mf = P.r = 30kg.15cm = 450kg.cm$$

;[28]

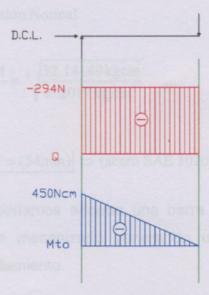


Diagrama de esfuerzos solicitados en el eje

Siendo:

Momento Resultante:

$$M_{\text{resultante}} = \sqrt{Mt^2 + Mf^2} = \sqrt{(14142 \text{ Kg.cm})^2 + (450 \text{kg.cm})^2}$$

$$M_{resultante} = 14149 Kg.cm$$

;[29]

Cálculo del diámetro del eje conductor en función a los momentos solicitados

Siendo:

$$W = \frac{\pi . d^3}{32} \qquad \leftarrow M\acute{o}dulo de Resistencia$$

$$\sigma = \frac{M}{W} \qquad \leftarrow \text{Tensión Normal}$$

$$\sigma = \frac{M}{W} = \frac{M}{\frac{\pi . d^3}{32}} \Rightarrow d^3 = \frac{32.M}{\pi . \sigma} = \sqrt[3]{\frac{32.14149 \,\text{kgcm}}{\pi . 2017 \,\text{kg.cm}^2}}$$

$$d = 4, 2 \text{ cm} \rightarrow \text{adopto} = 2^{1/8} \text{"} \approx (54 \text{mm}) \Rightarrow (\text{acero SAE 1020})$$
;[30]

NOTA: técnicamente podríamos adoptar una barra de menor sección, pero necesitamos realizar un mecanizado generando un rebaje a 50mm para producir un tope a un rodamiento.

Cálculo del diámetro del eje conducido en función a los momentos solicitados

Para el cálculo del eje conducido vamos a suponer una caja multiplicadora con una relación aproximadamente del doble de su velocidad principal, es decir 500 rpm. El motivo de esa velocidad se explica en la construcción del generador sincrónico, y se debe a una relación entre los pares de polo, la frecuencia y las rpm.

Siendo:

ω = 500 rpm ver pág. 95 P= 51,7 CV ver pág. 58 ec: [26] Fc = 1,3 ver pág. 73

$$Mt(kg.cm) = F_c \frac{71620.Pot(cv)}{\omega(rpm)} = 1, 3. \frac{71620.51,7 cv}{500 rpm} = 8838 kg.cm = 883,8 N.m$$
 ;[31]

Siendo:

σ = 2017 Kg.cm2 ver pág. 51 ec: [26_1] Mt=8838 Kg.cm ver pág. 64 ec: [31]

$$W = \frac{\pi . d^3}{32} \qquad y \qquad \sigma = \frac{M}{W}$$

$$\sigma = \frac{M}{W} = \frac{M}{\frac{\pi . d^3}{32}} \Rightarrow d^3 = \frac{32.M}{\pi . \sigma} = \sqrt[3]{\frac{32.8838 \, \mathrm{kg.cm}}{\pi . \, 2017 \mathrm{kg.cm}^2}} \Longrightarrow \underline{d = 3,6 \, \mathrm{cm}}) \Rightarrow 36 \mathrm{mm}$$

$$adopto = 1^{3/4\pi} (44, 4mm) \Rightarrow (acero SAE1020)$$
;[32]

NOTA: técnicamente podríamos adoptar una barra de menor sección, pero necesitamos realizar un mecanizado generando un rebaje a 40mm para producir un tope a un rodamiento.

Aceros disponibles en este producto

Aceros al carbono 1010X – 1020X – 1026X - 1040X – 1045X

Medidas nominales

Barras redondas

		Dn (Diáme	etro nominal)		
(mm)	(pulgadas)	(mm)	(pulgadas)	(mm)	(pulgadas)
15.9	5/8	46.0	1 - 13/16	81.0	3-3/16
17.5	11/16	47.6	1-7/8	82.5	3-1/4
19.1	3/4	49.2	1-15/16	84.1	3-5/16
20.6	13/16	50.8	2	87.3	3-716
22.2	7/8	52.4	2-1/16	88.9	3-1/2
23.8	15/16	54.0	2-1/8		
25.4	ermor 9/	55.6	2-3/16		
27.0	1-1/16	57.1	2-1/4		
28.6	1-1/8	58.7	2-5/16		
30.2	1-3/16	60.3	2-3/8		
31.8	1-1/4	61.9	2 -7/16		
33.3	1-5/16	63.5	21/2		
34.9	1-3/8	66.5	2-5/8		
36.5	1 - 7/16	69.8	2-3/4		
38.1	1-1/2	71.4	2-13/16		
39.7	1-9/16	73.0	2-7/8		
41.3	1-5/8	74.6	2 - 15/16		
42.8	1-11/16	76.2	3		
44.4	1-3/4	77.8	3-1/16		

Tabla de medidas comerciales ACINDAR

Características metalúrgicas

Tamaño de grano austenítico	72	5 Método: N	M E 112 a 8 Ic Quaid Ehn Oxidación
Microinclusiones	and the same		45 Método A máximos
	Serie Fina A B C	D	Serie Gruesa A B C D

CAPITULO 5

CAJA MULTIPLICADORA

Para que el generador sincrónico puede funcionar correctamente vamos a tener que multiplicar su velocidad mediante una "caja multiplicadora" con correas y poleas dentadas.

Siendo:

n1 = 263 rpm ver pág. 41 ec: [6]

n2 = 500 rpm ver pág. 95

P=51,7 CV ver pág. 58 ec: [26]

Mto=14142 Kg.cm ver pág. 58 ec: [25]

Rp1=radio de la Polea Mayor viene del catálogo de Poleas, pág. 68

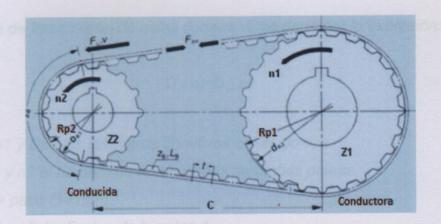
La potencia de cálculo o potencia corregida **Pc** se obtiene afectando a la potencia a transmitir (**P**) de los correspondientes coeficientes de corrección según la fórmula:

Siendo:

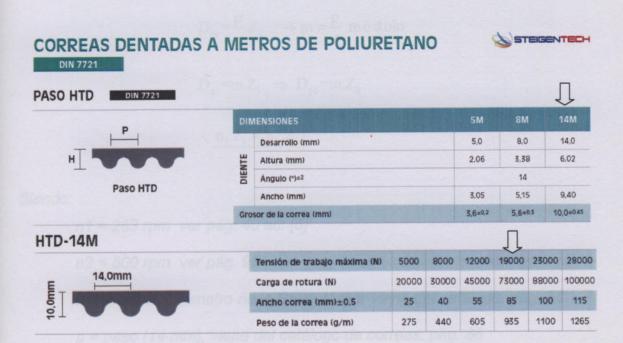
C1 = coeficiente de corrección debido a sobrecargas en la transmisión.

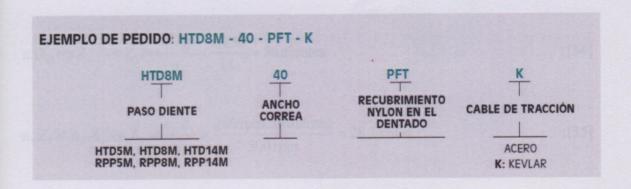
C1=1,2 (para dinamos y alternadores)

C2 = coeficiente de corrección debido al tiempo continuado de


funcionamiento. De 10 a 16 horas C2=0,1

Por lo Tanto la potencia corregida es


$$Pc=51,7 \text{ CV} \cdot (1,2+0,1) = 67,2 \text{ CV}$$


Cálculo de la Fuerza que tiene que soportar la correa

$$F = \frac{71620.P}{\eta.R_{pl}} = \frac{71620.67,2CV}{262rpm.12,45cm} = \frac{1475,47Kg}{262rpm.12,45cm} \Leftrightarrow \frac{14460N}{262rpm.12,45cm} \Rightarrow \frac{14460N}{262rpm.12,45cm} \Rightarrow \frac{1475,47Kg}{262rpm.12,45cm} \Leftrightarrow \frac{14460N}{262rpm.12,45cm} \Rightarrow \frac{1475,47Kg}{262rpm.12,45cm} \Rightarrow \frac{1475,4$$

Según el catálogo de correas, vamos a usar una correa dentada 14M paso milimétrico, HTD14MPFT con un ancho de 85 mm, que soporta una tensión máxima de 19000N de 14460N que necesitamos

La relación de transmisión de estas correas viene dada por la expresión:

$$D_{p1}.n_1 = D_{p2}.n_2$$

Donde:

Dp1 y Dp2 los diámetros primitivos de las poleas n1 y n2 el número de revoluciones de ambas poleas. p = paso (14 mm) Z1 = nº de dientes de la polea 1

Por una fórmula básica en engranajes

$$\pi.D_{p1} = p.Z_{1}$$

$$D_{p1} = \frac{p}{\pi}.Z_{1} \rightarrow m = \frac{p}{\pi} \text{ m \'o d ulo}$$

$$D_{p1} = m.Z_{1} \Rightarrow D_{p2} = m.Z_{2}$$

$$\therefore n_{1}.Z_{1} = n_{2}.Z_{2}$$

Siendo:

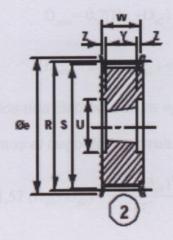
n1 = 263 rpm ver pág. 40 ec: [6] n2 = 500 rpm ver pág. 95

Dp1= 250m, Diámetro de la Polea Mayor viene del catálogo, pág. 68 p = paso (14 mm), viene del catálogo de correas, pág. 66

$$\pi.D_{pl} = p.Z_1 \rightarrow Z_1 = \frac{\pi.D_{pl}}{p} = \frac{\pi.250}{14} = 56 \text{ dientes}$$
 ;[34]

$$n_1.Z_1 = n_2.Z_2 \rightarrow Z_2 = \frac{n_1.Z_1}{n_2} = \frac{260 \text{ rpm.} 56 \text{ dientes}}{500 \text{ rpm}} = 28 \text{ dientes}$$
 ;[35]

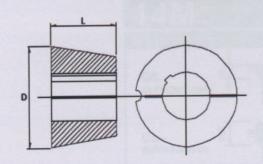
Del catálogo de poleas elijo:


La polea motriz o conductora tiene que tener 56 dientes, un paso de 14mm y un ancho de 102mm para correas de 85mm.

La polea conducida tiene que tener 28 dientes, y el mismo paso y ancho que la anterior.

Poleas Dentadas "Top Drive®-HTD" NORMAS: ISO5294-DIN7721

М		Mar.		BUS				P	OLEA	PARA 1	APER
	2	intes							IM85 102(mm)		
Referencia	Valones N* die nt	R Ø (mm)	S Ø (mm)	0 0	Ø (mm)	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper	
28-14M	F	28	124,78	121,98	134	98	2		45	28,5	2517
29-14M	F	29	129,23	126,44	134	100	2	-	45	28,5	2517
30-14M	F	30	133,69	130,90	142	100	2	174	45	28,5	2517
32-14M	F	32	142,60	139,81	150	104	2		45	28,5	2517
34-14M	F	34	151,52	148,72	158	110	2		45	28,5	2517
36-14M	F	36	160,43	157,63	166	120	2	-	51	25,5	3020
38-14M	F	38	169,34	166,55	177	130	2		51	25,5	3020
40-14M	F	40	178,25	175,46	186	138	2		51	25,5	3020
44-14M	F	44	196,08	193,28	209	154	2		76	13	3030
48-14M	F	48	213,90	211,11	216	172	2		76	13	3030
56-14M	F	56	249,55	246,76	261	207	2		89	6,5	3535
64-14M	F	64	285,21	282,41	288	243	5	178	89	6,5	3535
72-14M		72	320,86	318,06		279	7	178	89	6,5	3535



Casquillo cónico Taper-lock "SER-SIT""

TAPER LOCK

FIGURASYDIMENSIONES

		CASQ	UILLO	TORNILLOS							
RE E RENCIA	Diametrodeeje	L (mm)	D Øměx (mm)	N°	Rosca Withworth (*)	Long. (mm)	Tipo Nave hex.	Ms (Nm)			
2012	(mm) 14 15 16 1 8 1 9 2 0 2 2 2 4 2 5 2 6 2 8 3 0 3 2 3 5 3 8 4 0 4 2 4 5 4 8 5 0	31,8	70	2	7/16	22	M6	30			
2517	(mm) 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50 55 60 65	44,5	85	2	1/2	25	M6	50			
3020	(mm) 22 25 28 30 32 35 38 40 42 45 48 50 55 57 60 65 70 75	50,8	108	5	5/8	32	M8	90			
3030	(mm) 42 45 47 48 50 55 60 65 70 75	. 76,2	108	2	5/8	32	M8	90			
3535	(mm) 25 35 38 40 42 45 48 50 55 60 65 70 75 80 85 90 () 25 196 196 197 197 2 276 274 276 276 276 276 276 276 3 376 376 376	88,9	127	9	1/2	38	M10	115			
4040	(mm) 45 50 55 60 65 70 75 80 85 90 95 100 (7) 1 1/4 2 2 1/4 3 1/2 3 1/4 4	101,6	146	5	5/8	44	M14	170			

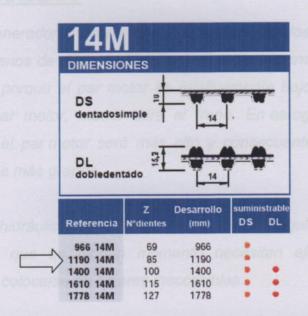
- Casquillo N1: 2517 para eje de 1 1/2 pulgada.
- Casquillo N2: 3535 para eje de 2 pulgadas.

Cálculo de la distancia entre ejes

$$D_{min} = 0.7(D_{p1} + D_{p2}) = 0.7(249mm + 124mm) = 263mm$$

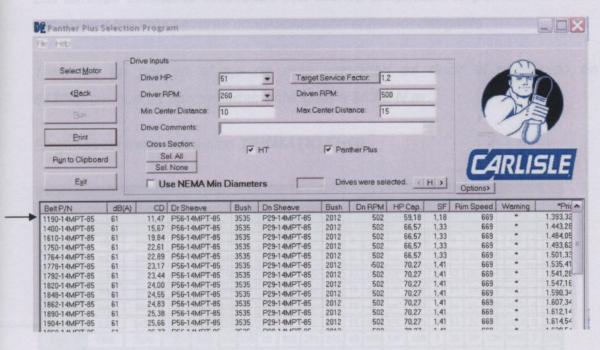
$$D_{max} = 2(D_{p1} + D_{p2}) = 2(249mm + 124mm) = 746mm$$

Adoptamos una distancia entre ejes de 296 mm


;[36]

Calculamos el largo de la correa.

$$L=2.C+1,57 (D_{p1}+D_{p2})+\frac{(D_{p1}-D_{p2})^2}{4C}$$


$$L=2.296\text{mm}+1,57 (249\text{mm}+124\text{mm}) + \frac{(249\text{mm}-124\text{mm})^2}{4.296\text{mm}} = 1190\text{mm}$$
;[37]

Según los cálculos obtenidos buscamos en el catálogo, una correa que tenga un desarrollo de 1190mm

Por lo tanto vamos a usar una polea de: 119014M (que tiene un paso 14 mm, un ancho de 85 mm, con un desarrollo de 1190mm y 85 dientes.

Verificación según Software Driver Engineer

Podemos observar que la primera opción es la correa calculada 1190-14M-85

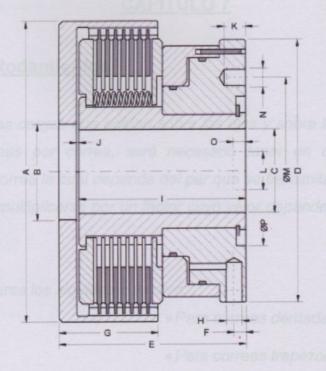
CAPITULO 6

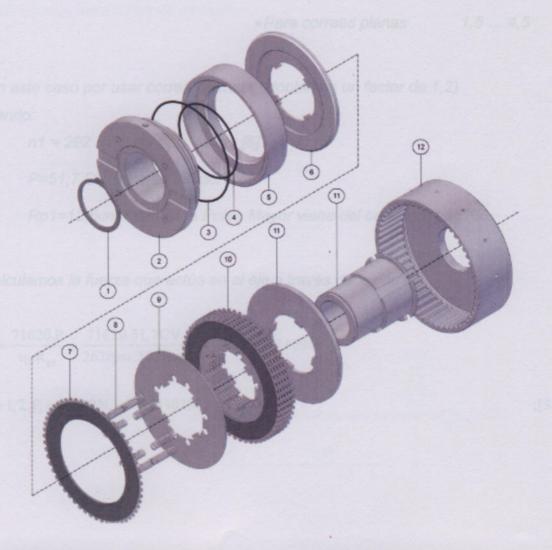
FRENO HIDRAULICO

En los aerogeneradores con caja multiplicadora, los frenos mecánicos (típicamente frenos de disco o hidráulico) se colocan normalmente en el eje de alta velocidad porque el par motor es relativamente bajo en él. Cuando más bajo sea el par motor, menor será el freno. En aerogeneradores sin caja multiplicadora el par motor será más alto y consecuentemente es necesario que el freno sea más grande.

Estos frenos hidráulicos multidisco no requieren regulación, cualidad muy importante ya que en ningún momento necesitan ajustes, pudiendo, en consecuencia, colocarse en lugares inaccesibles.

Pueden trabajar en seco y con lubricación por goteo, permitiendo en este caso una gran frecuencia de maniobra.


Las láminas exteriores revestidas con bronce sinterizado le permiten al freno trabajar en las más severas condiciones con el menor desgaste.


Tenemos un par en el eje de más velocidad es decir el conducido de 8838kg.cm que es aproximadamente igual a 883,8 N.m

Elegimos un freno hidráulico TEKMATIC FH90

TIPO	Torque dinám. Nm	Torque estát. Nm	Pres. Kg/ cm ²	Vel. Max rpm	A	B H7	C H7		D	E	F	0	H	l h9	J	K	L H8	M	N	0	P H8
							min	max		100											
FH-9	90	150	7	2500	120	48	20	36	122	77,5	8	32	1/8*	70,5	1	8	16	90	M8	5	72
FH-15	150	250	7	2000	145	55	25	45	147	90	9	39	1/8"	80	2	10	20	100	M10	6	85
FH-22	220	360	7	2000	168	68	30	55	170	101	10	46	1/8"	90	3	12	20	116	M10	6	100
FH-36	360	600	7	1600	200	80	32	62	202	117	11	65	1/4"	118	4	16	20	130	M12	6	114
FH-55	550	900	7	1300	252	80	36	70	220	156	12	83	1/4"	140	1	24	25	160	M12	6	125
FH-90	900	1450	7	1000	280	120	50	90	250	200	15	90	1/4"	185	3	13	25	170	M12	8	150
FH-130	1300	2000	7	900	305	130	55	100	275	215	16	100	1/4"	190	3	20	25	185	M16	8	150
FH-200	2000	2250	9	800	335	140	60	110	300	225	16	110	1/4"	205	3	20	25	200	M16	8	160

http://www.tekmatic.com.ar/freHidraMultidisco3.html

CAPITULO 7

Cálculo de Rodamientos

Para calcular las cargas que actúan sobre los ejes y sobre los rodamientos en las transmisiones por correa, será necesario tener en cuenta la tracción efectiva de la correa la cual depende del par que se transmita. La tracción de la correa deberá multiplicarse por un factor cuyo valor depende del tipo de correa usada.

Pueden emplearse los siguientes valores:

• Para correas dentadas 1,1 ... 1,3

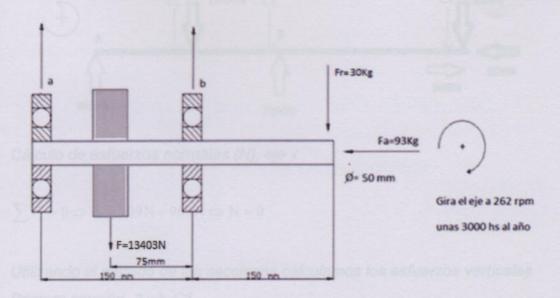
Para correas trapezoidales 1,2 ... 2,5

• Para correas planas 1,5 ... 4,5

(En este caso por usar correa dentada adoptamos un factor de 1,2) Siendo:

n1 = 262 rpm ver pág. 40 ec: [6]

P=51,7 CV ver pág. 58 ec: [26]


Rp1=12,5cn, radio de la Polea Mayor viene del catálogo, pág. 68

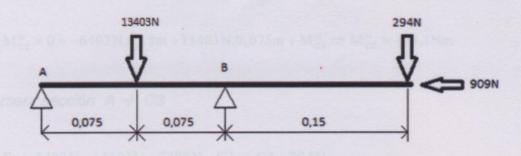
Calculamos la fuerza que actúa en el eje a través de la correa

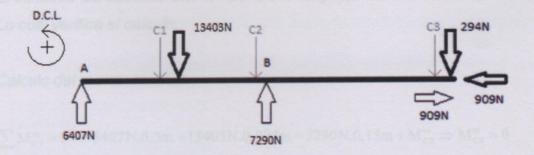
$$F_1 = \frac{71620.P}{\eta_1.R_{p1}} = \frac{71620.51,7CV}{262rpm.12,5cm} = 1140Kg \approx 11169N$$

$$F = 1, 2.F_1 = 11169N.1, 2 = 13403N$$

Rodamientos para el eje conductor

Cálculos de reacciones de vínculos


$$\sum F\mathbf{v} = F\mathbf{r} - \mathbf{b} + F - \mathbf{a} = 0$$


$$\sum Fh = Fa$$

$$\sum M_a^{to} = Fr.30 \text{ cm} - b.15 \text{ cm} + 13403 \text{ N}.7,5 \text{ cm} = 0$$

$$b = \frac{Fr.30 \text{ cm} + 13403 \text{ N}.7, 5\text{ cm}}{15 \text{ cm}} = \frac{294 \text{ N}.30 \text{ cm} + 13403 \text{ N}.7, 5\text{ cm}}{15 \text{ cm}} = 7290 \text{ N}$$

$$a = Fr + F - b = 294N + 13403N - 7290N = 6407N$$

Cálculo de esfuerzos normales (N), eje x

$$\sum F_x = 0 \Rightarrow N = 909N - 909N \Rightarrow N = 0$$

Utilizando el método de las secciones calculamos los esfuerzos verticales

Primera sección A → C1

$$\sum Fy = 6407N - C1 \Rightarrow C1 = 6407N$$

Cálculo del momento MC1

$$\sum M_{\text{C1}}^{\text{to}} = 0 = -6407 \, \text{N.0}, 075 \, \text{m} + M_{\text{C1}}^{\text{to}} \Longrightarrow M_{\text{C1}}^{\text{to}} = 480, 5 \, \text{Nm}$$

Segunda sección A → C2

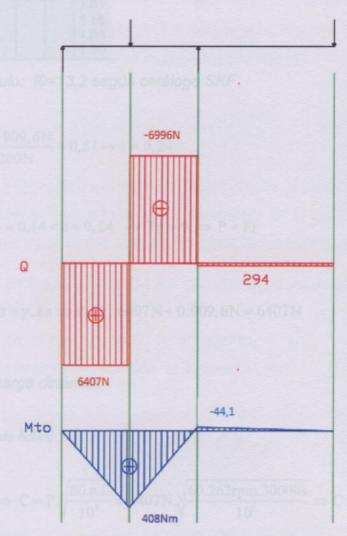
$$\sum \text{Fy} = 6407 \text{N} - 13403 \text{N} - \text{C2} \Rightarrow \text{C2} = -6996 \text{N}$$

Cálculo del momento MC2

$$\sum M_{\rm C2}^{\rm to} = 0 = -6407\,N.0, 15m + 13403\,N.0, 075m + M_{\rm C2}^{\rm to} \Rightarrow M_{\rm C2}^{\rm to} = -44, 1Nm$$

Tercera sección A → C3

$$\sum Fy = 6407N - 13403N + 7290N - C3 \Rightarrow C3 = 294N$$


El esfuerzo C3 coincide con el valor de la carga puntual en el extremo derecho. Lo cual verifica el cálculo.

Cálculo del momento MC3

$$\sum M_{\text{C3}}^{\text{to}} = 0 = -6407 \, \text{N.0}, 3 \, \text{m} + 13403 \, \text{N.0}, 225 \, \text{m} - 7290 \, \text{N.0}, 15 \, \text{m} + M_{\text{C3}}^{\text{to}} \Rightarrow M_{\text{C3}}^{\text{to}} = 0$$

Diagrama de esfuerzos característicos

D.C.L.

Ahora con los valores de los esfuerzos en las reacciones producto de las cargas puntuales procedemos a calcular los rodamientos correspondientes.

Cálculo del Rodamiento A:

Carga radial dinámica equivalente

$P_r = XF_r + YF_a$									
fo·Fa	е	$\frac{F_{\rm a}}{F_{\rm r}}$	≦e	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
Cor		X	Y	X	Y				
0.172	0.19				2.30				
0.345	0.22				1.99				
0.689	0.26				1.71				
1.03	0.28				1.55				
1.38	0.30	1	0	0.56	1.45				
2.07	0.34				1.31				
3.45	0.38	1			1.15				
5.17	0.42				1.04				
6.89	0.44				1.00				

Factor de cálculo: f0=13,2 según catálogo SKF

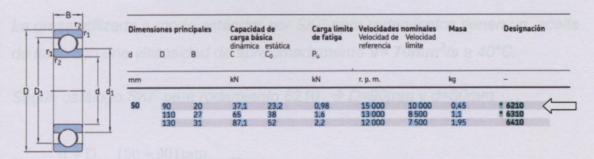
$$\frac{f_0.Fa}{C_0} = \frac{13,2.909,6N}{23200N} = 0,51 \rightarrow e \approx 0,24$$

$$\frac{\text{Fa}}{\text{Fr}_a} = \frac{909, 6\text{N}}{6407\text{N}} = 0, 14 < e = 0, 24 \rightarrow \text{Fa} = 0 \Rightarrow P = \text{Fr}$$

$$\begin{cases} x = 1 \\ y = 0 \end{cases}$$
 P = x.Fr + y.Fa \Rightarrow P = 1.6407N + 0.909, 6N = 6407N

Calculo de la carga dinámica

K=3 (rodamiento de bolas)


$$L = \frac{10^6}{60.n} \left(\frac{C}{P}\right)^k \implies C = P.\sqrt[3]{\frac{60.n.L}{10^6}} = 6407 \text{N}.\sqrt[3]{\frac{60.262 \text{rpm.} 3000 \text{hs}}{10^6}} \implies C = 23148 \text{N}$$

Las 3000 horas provienen de la página 35 Nota1.

Con el diámetro interno (Øi) y la capacidad de carga dinámica(C) adoptamos un rodamiento; Según catálogo SKF:

Øi=50mm y C=23148N → código del rodamiento: 6210

Rodamientos rígidos de una hitera de bolas d 40 - 55 mm

Cálculo de la vida útil utilizando el rodamiento SKF"6210"

$$L_{_{10h}} = \frac{10^6}{60.n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60.262 rpm} \left(\frac{37100N}{6407N}\right)^3 = 12351 \, Hs$$

El factor de modificación de la vida útil aSKF amplía el alcance del modelo de vida nominal básica, L10, que depende puramente de la carga y el tamaño, al tener en cuenta los siguientes factores de funcionamiento importantes:

- La carga límite de fatiga en relación con la carga equivalente que actúa sobre el rodamiento (Pu/P)
- El efecto del nivel de contaminación en el rodamiento (ηc)
- La condición de lubricación (relación de viscosidad: Κκ)

$$\operatorname{Lna} = a_1.a_{\operatorname{SFK}} \bigg(\frac{C}{P}\bigg)^k$$

Donde

Lna= vida nominal ajustada según la nueva teoría de la vida SFK.

a1=factor de ajuste por fiabilidad

aSFK= factor de ajuste de la vida basado en la nueva teoría SFK.

Cuando un rodamiento ha alcanzado su velocidad y temperatura de funcionamiento normal, la condición de lubricación del rodamiento es:

$$K = \frac{V}{V1}$$

; K= relación de viscosidad

La grasa utilizada a modo estándar por SKF para rodamientos tienen un aceite de base con una viscosidad de aproximadamente **V= 70mm²/s** a 40°C.

Según catálogo SKF para rodamiento 6210 → D=90mm y d=50mm

$${\rm Dm} = \frac{{\rm d} + {\rm D}}{2} = \frac{\left(50 + 90\right){\rm mm}}{2} = 70{\rm mm}$$

Y con n= 260 rpm

Según tabla N1 SKF (pág.80) nos da un valor aproximadamente igual a: V1=45 mm2/s.

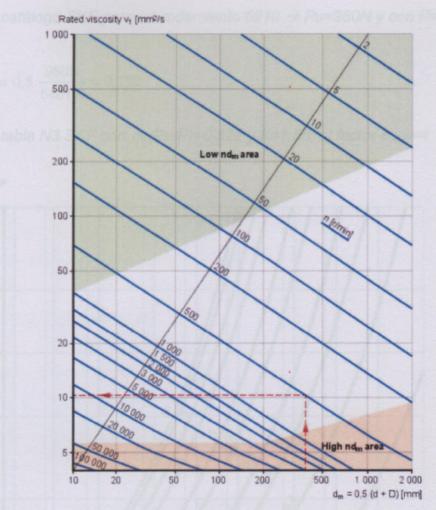


Tabla N1 SKF (V1)

Por lo tanto

$$K = \frac{V}{V1} = \frac{70 \text{ mm}^2 / \text{s}}{45 \text{ mm}^2 / \text{s}} = 1,55$$

Con K=1,55 y dm=70mm $\rightarrow \eta c$ = 0,8 Según tabla N2 SKF

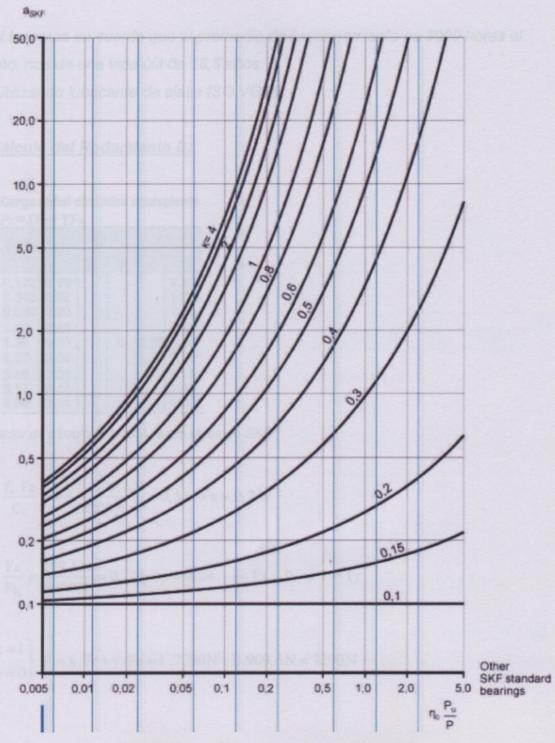



Tabla N2 SKF para nivel de contaminación

Según catálogo SKF para un rodamiento 6210 → Pu=980N y con P=6407N

$$\eta c \frac{Pu}{P} = 0, 8. \frac{980N}{6407N} = 0, 122$$

Según tabla N3 SKF con ηc(Pu/P)=0,122 y K=1,55, el factor a_{SKF}=4

Entonces la vida nominal ajustada del rodamiento queda definida por: Donde: a1=1 con 90% fiabilidad.

$$\mathrm{Lna} = \mathrm{a_1.a_{SFK}}.\,\mathrm{L_{10h}}$$

$$Lna = 1.4.12351 hs = 49400 hs$$

Si tenemos en cuenta que el promedio de funcionamiento es **3000** horas al año, nos da una vida útil de **16,5** años.

Utilizando lubricante de clase ISO VG46.

Cálculo del Rodamiento B:

Carga radial dinámica equivalente

I	$P_r = XF_r + YF_a$									
	fo·Fa Cor	e	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$					
ı	Cor		X	Y	X	Y				
1	0.172 0.345 0.689 1.03 1.38 2.07 3.45 5.17 6.89	0.22	1	0	0.56	2.30 1.99 1.71 1.55 1.45 1.31 1.15 1.04 1.00				

Factor de cálculo: f0=13,2 según catálogo SKF

$$\frac{f_0.Fa}{C_0} = \frac{13,2.909,6N}{23200N} = 0,51 \rightarrow e \approx 0,24$$

$$\frac{\text{Fa}}{\text{Fr}_{b}} = \frac{909,6\text{N}}{7290\text{N}} = 0,124 < \text{e} = 0,24 \rightarrow \text{Fa} = 0 \Rightarrow \text{P} = \text{Fr}$$

$$\begin{cases} x = 1 \\ y = 0 \end{cases}$$
 P = x.Fr + y.Fa = 1.7290N + 0.909, 6N = 7290N

Cálculo de la carga dinámica

K=3 (rodamiento de bolas)

$$L = \frac{10^{6}}{60.n} \left(\frac{C}{P}\right)^{k} \implies C = P.\sqrt[3]{\frac{60.n.L}{10^{6}}} = 7290 \text{N}.\sqrt[3]{\frac{60.262 \text{rpm.} 3000 \text{hs}}{10^{6}}} \implies C = 26338 \text{N}$$

Con el diámetro interno (Øi) y la capacidad de carga dinámica(C) adoptamos un rodamiento; Según catálogo SKF:

Øi=50mm y C=26338N → código del rodamiento: 6210

Rodamientos rígidos de una hilera de bolas d 40 - 55 mm

r ₁	Dimer	nsiones pri	ncipales	Capacidad de carga básica dinámica estática		Carga limite de fatiga	Velocidades nominales Velocidad de Velocidad referencia límite		Masa	Designació	Designación	
r ₁	d	D	В	C	Co	Pu	referencia	unince				
d d1	mm			kN		kN	r. p. m.		kg	-		
d di	50	90	20	37,1	23.2	0.98	15 000	10 000	0,45	* 6210	1	
		110	27	65	38	1,6	13 000	8 500	1,1	* 6310	4	
		130	31	87,1	52	2,2	12 000	7 500	1,95	6410		

Cálculo de la vida útil utilizando el rodamiento SKF"6210"

$$L_{10h} = \frac{10^6}{60.n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60.262 rpm} \left(\frac{37100N}{7290N}\right)^3 = 8384h$$

El factor de modificación de la vida útil a_{SKF} utilizando lubricación es:

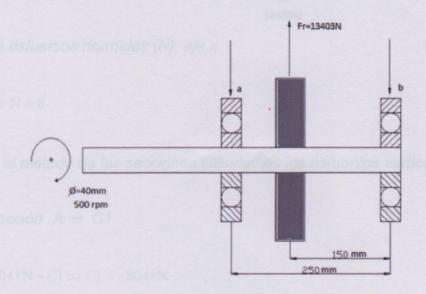
Como es el mismo rodamiento que se usa para el caso A, por lo tanto: K=1,55; dm=70mm y $\eta c=0,8$ van a ser los mismo que anteriormente calculamos.

Según catálogo SKF para un rodamiento 6210 → Pu=980N y con P=7290N

$$\eta c \frac{Pu}{P} = 0, 8. \frac{980N}{7290N} = 0, 107$$

Según tabla N3 SKF pág.81, con ηc(Pu/P)=0,107 y K=1,55, el factor a_{SKF}=3,7

Entonces la vida nominal ajustada del rodamiento queda definida por: Donde: a1=1 con 90% fiabilidad.

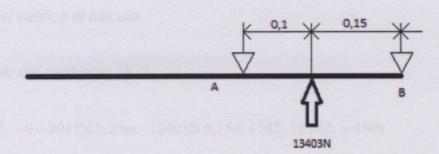

$$\mathrm{Lna} = \mathrm{a_1.a_{SFK}}.\,\mathrm{L_{10h}}$$

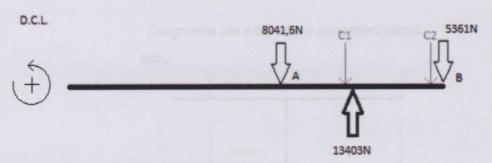
$$Lna = 1.3, 7.8384 \, hs = 31020 \, hs$$

Si tenemos en cuenta que el promedio de funcionamiento es **3000** horas al año, nos da una vida útil de **10,3** años.

Utilizando lubricante de clase ISO VG46.

Rodamientos para el eje conducido




Cálculos de reacciones de vínculos

$$Fa = 0$$
, $Fr = 13403N$

$$\sum M_a^{to} = 0 = -b.25 \, cm + Fr.10 \, cm = 0 \implies b = \frac{Fr.10 \, cm}{25 \, cm} = \frac{13403 \, N.10 \, cm}{25 \, cm} = 5361 \, N$$

$$\sum M_b^{to} = a.25 \text{ cm} - \text{Fr.}15 \text{ cm} = 0 \implies a = \frac{\text{Fr.}15 \text{cm}}{25 \text{ cm}} = \frac{13403 \text{ N.}15 \text{ cm}}{25 \text{ cm}} = 8041,6 \text{ N}$$

Cálculo de esfuerzos normales (N), eje x

$$\sum F_x = 0 \Rightarrow N = 0$$

Utilizando el método de las secciones calculamos los esfuerzos verticales

Primera sección A → C1

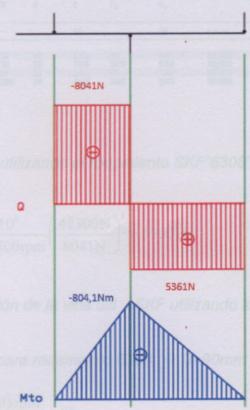
$$\sum Fy = -8041N - C1 \Rightarrow C1 = -8041N$$

Cálculo del momento MC1

$$\sum M_{\rm C1}^{\rm to} = 0 = 8041 N.0, 1 m + M_{\rm C1}^{\rm to} \Rightarrow M_{\rm C1}^{\rm to} = -804, 1 N m$$

Segunda sección A → C2

$$\sum Fy = -8041N + 13403N - C2 \Rightarrow C2 = 5361N$$


El esfuerzo C2 coincide con el valor de la carga puntual en el extremo derecho. Lo cual verifica el cálculo.

Cálculo del momento MC2

$$\sum M_{\rm C2}^{\rm to} = 0 = 8041 N.0, 25 m - 13403 N.0, 15 m + M_{\rm C2}^{\rm to} \Longrightarrow M_{\rm C2}^{\rm to} = 0 \, Nm$$

Diagrama de esfuerzos característicos

D.C.L.

Ahora con los valores de los esfuerzos en las reacciones producto de las cargas puntuales procedemos a calcular los rodamientos correspondientes.

Rodamiento A:

Calculo de la carga dinámica

$$L_{10h} = \frac{10^6}{60.n} \left(\frac{C_a}{P}\right)^k \Rightarrow C_a = P_a \sqrt[3]{\frac{60.n.L_{10h}}{10^6}} = 8041N. \sqrt[3]{\frac{60.500rpm.3000h}{10^6}} = 36034N$$

Con el diámetro interno (Øi) y la capacidad de carga dinámica(C) adoptamos un rodamiento; Según catálogo SKF:

Øi=40 mm y C=36034N → código del rodamiento: 6308

Rodamientos rígidos de una hilera de bolas

r ₂	Dimen	siones pr	rincipales	Capacida carga bás dinámica	sica	Carga límite de fatiga	Velocidad de referencia	velocidad limite	Masa	Designación
r ₁	d	D	В	C	Co	Pu				
	mm			kN		kN	r. p. m.		kg	-
d d1	40	80	18	32.5	19	0,8	18 000	11 000	0,37	* 6208
	1	80	18	35.8	20,8	0,88	18 000	11 000	0,34	6208 ETN9
		90	23	42,3	24	1.02	17 000	11 000	0,63	* 6308
		80 80 90 110	18 18 23 27	32,5 35,8 42,3 63,7	36,5	1,53	14 000	9 000	1,25	6408

Cálculo de la vida útil utilizando el rodamiento SKF"6308"

$$L_{_{10h}} = \frac{10^6}{60.n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60.500 rpm} \left(\frac{42300N}{8041N}\right)^3 = 5900 \, Hs$$

El factor de modificación de la vida útil aSKF utilizando lubricación es:

Según catálogo SKF para rodamiento 6308 → D=90mm y d=40mm

$$Dm = \frac{d + D}{2} = \frac{(40 + 90)mm}{2} = 65mm$$

Con Dm=65mm y con n= 500 rpm

Según tabla N1 SKF (pág.80) nos da un valor aproximadamente igual a: V1=30 mm²/s.

Por lo tanto

$$K = \frac{V}{V1} = \frac{70 \text{ mm}^2 / \text{s}}{30 \text{ mm}^2 / \text{s}} = 2{,}33$$

Con K=2,33 y dm=65mm → ηc=0,75 Según tabla N2 SKF, Pág.68

Según catálogo SKF para un rodamiento 6308 → Pu=1020N y con P=8041N

$$\eta c \frac{Pu}{P} = 0,75. \frac{1020N}{8041N} = 0,095$$

Según tabla N3 pág. 81, con ηc(Pu/P)=0,095 y K=2,33, el factor aSKF=4,9

Entonces la vida nominal ajustada del rodamiento queda definida por:

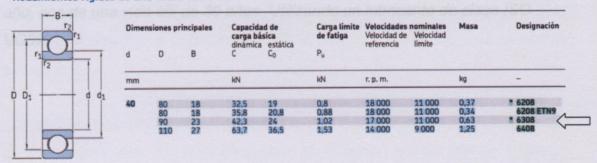
Donde: a1=1 con 90% fiabilidad.

$$\operatorname{Lna} = \operatorname{a_1.a_{SFK}}.\operatorname{L_{10h}} \quad \Rightarrow \quad \operatorname{Lna} = 1.4, 9.5900\,\mathrm{hs} = 29910\mathrm{hs}$$

Si tenemos en cuenta que el promedio de funcionamiento es **3000** horas al año, nos da una vida útil de **10** años. Utilizando un lubricante de clase ISO VG32.

Rodamiento B:

Calculo de la carga dinámica


$$L_{10h} = \frac{10^6}{60.n} \left(\frac{C_b}{P_b}\right)^k \Rightarrow C_b = P_b \sqrt[3]{\frac{60.n.L_{10h}}{10^6}} = 5361N. \sqrt[3]{\frac{60.500rpm.3000h}{10^6}} = 24024N$$

Nota: Como podemos observar tranquilamente podría usarse el rodamiento 6208, pero por una relación de costo/beneficio vamos a utilizar el mismo rodamiento que tiene a su par "A", el 6308 que es superior.

Con el diámetro interno (Øi) y la capacidad de carga dinámica(C) adoptamos un rodamiento; Según catálogo SKF:

Øi=40 mm y C=24024N → código del rodamiento: 6308

Rodamientos rígidos de una hilera de bolas

Cálculo de la vida útil utilizando el rodamiento SKF"6308"

$$L_{10h} = \frac{10^6}{60.n} \left(\frac{C}{P}\right)^k = \frac{10^6}{60.500 \text{rpm}} \left(\frac{42300 \text{N}}{5361 \text{N}}\right)^3 = 16374 \text{Hs}$$

El factor de modificación de la vida útil a_{SKF} utilizando lubricación es:

Como es el mismo rodamiento que se usa para el caso A, por lo tanto: K=2,33; $dm=65mm\ y\ \eta c=0,75\ van\ a\ ser\ los\ mismo\ que\ anteriormente\ calculamos.$

Según catálogo SKF para un rodamiento 6308 → Pu=1020N y con P=5361N

$$\eta c \frac{Pu}{P} = 0,75. \frac{1020N}{5361N} = 0,14$$

Según tabla N3 SKF pág 69, con ηc(Pu/P)=0,14 y K=2,33, el factor aSKF=6

Entonces la vida nominal ajustada del rodamiento queda definida por:

Donde: a1=1 con 90% fiabilidad.

$$Lna = a_1.a_{SFK}.L_{10h}$$

$$Lna = 1.6.16374 \, hs = 98244 hs$$

Si tenemos en cuenta que el promedio de funcionamiento es **3000** horas al año, nos da una vida útil de **30** años. Utilizando un lubricante de clase ISO VG32.

CAPITULO 8

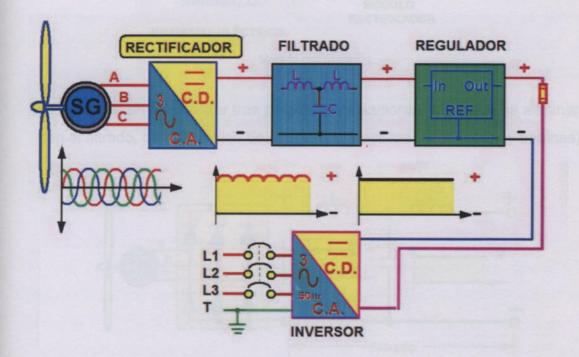
Generador Sincrónico

En este proyecto se va a diseñar y analizar un generador sincrónico de imanes permanentes de flujo radial.

En primer lugar, se ha realizado un estudio de los distintos generadores posibles a utilizar en el mercado, orientándonos por el generador sincrónico de imanes permanentes.

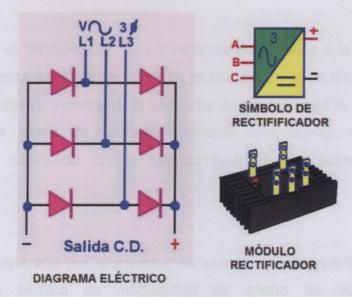
El generador sincrónico con rotor bobinado no resulta adecuado para generadores multipolares ya que, al disminuir el paso polar, aumenta el tamaño de los dientes, y esto repercute en el coste final de materia prima.

Posteriormente se realizó una búsqueda de los generadores de estas características disponibles en el mercado para hacernos una idea inicial de que diversidad había. Pero lamentablemente no pudimos encontrar un generador de tan baja potencia y bajas vueltas, por lo que se tomó la decisión de realizar la máquina.

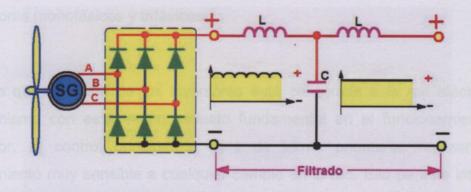

Los generadores de imanes permanentes son los más novedosos de la familia de los generadores. Ya que para generar el campo en el rotor utilizan imanes.

Actualmente se utilizan los imanes permanentes de las tierras raras, de descubrimiento reciente y con un gran potencial para estas máquinas. De esta forma, se evitan los inconvenientes de acceso en las máquinas síncronas convencionales con las escobillas.

Dentro de este tipo de generadores, el más usado es el de flujo radial, que crea un campo magnético en el entrehierro de dirección radial respecto al eje de giro. En este tipo de generador, los imanes van montados en la superficie cilíndrica del rotor.


Esta máquina también es llamada convencional al ser la más usada entre los tipos de generadores de imanes permanentes. La disposición de los imanes es en sentido axial en la superficie cilíndrica del rotor y las ranuras del estator también están en sentido axial en la superficie interior del estator. Como en el caso de estas máquinas en las que la velocidad de entrada es variable, vamos a tener que usar un convertidor a la salida.

Así, se comenzó con el dimensionamiento del generador a diseñar.

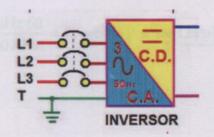

A la salida del aerogenerador no tenemos control del valor de la tensión (el valor del voltaje y frecuencia cambian con la velocidad de giro del rotor y este giro depende del viento). La corriente directa es más fácil de controlar.

Los rectificadores son dispositivos electrónicos utilizados para convertir de C.A. (corriente alterna) en C.D. (corriente directa). Están formados por diodos conectados en un circuito llamado "puente rectificador".

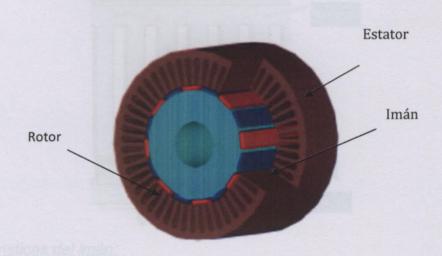
Modulo rectificador

La salida de un rectificador trae pequeñas pulsaciones rizos que se eliminan con el filtrado, con el empleo de elementos reactivos (capacitores y bobinas)

En la siguiente etapa "REGULADOR" se asegura que no pasa un valor de tensión (voltaje) mayor al regulado.



Y por último el "INVERSOR". Los inversores conectados a la red convierten la energía eléctrica de corriente continua producida por el rectificador en corriente alterna monofásica inyectando a cada una de las fases de la red de suministro eléctrico. La etapa de potencia presenta una configuración en puente monofásico, utilizando como semiconductores de potencia transistores MOSFET.


La tensión generada por el inversor es senoidal pura o perfecta y se obtiene mediante la técnica de modulación de ancho de pulsos PWM. Un microcontrolador determina el tipo de onda que se genera a partir de una tabla de valores disponibles en la memoria auxiliar del sistema.

Los inversores de red se pueden clasificar de diferentes formas. De acuerdo con el número de fases se pueden distinguir entre inversores monofásicos y trifásicos.

Puesto que la salida de los inversores está conectada a la red eléctrica, el sincronismo con esta es un aspecto fundamental en el funcionamiento del inversor. El control principal lo trata de forma prioritaria, realizando un seguimiento muy sensible a cualquier cambio en la red. Ello permite introducir las correcciones necesarias en milisegundos.

Diseño del Generador

Máquina síncrona de imanes permanentes de flujo radial

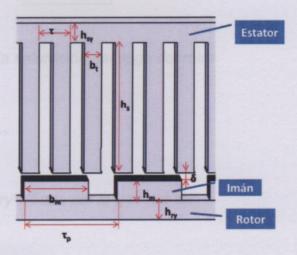
Vamos a necesitar un generador sincrónico de imán permanente de 220V/380V, 50 Hz que gire a 500 RPM.

Cálculo del número de Polos

Siendo:

 ω = 500 rpm velocidad nominal en el eje conducido

Pn= 2500W ver pág. 36 ec:[2]


f= 50Hz frecuencia industrial

$$n = \frac{f.60}{Pp} \Rightarrow Pp = \frac{f.60}{n} = \frac{50 \text{Hz}.60}{500 \text{ RPM}} = 6 \text{ Pares de Polos} = \underline{12 \text{ Polos}}$$
;[39]

Cálculo del Par Nominal

$$M_{n} = \frac{Pn.60}{2.\pi.\omega_{n}} = \frac{2500 \text{ w.}60}{2.\pi.500 \text{rpm}} = \underline{47,77 \text{N.m}}$$
;[40]

PARÁMETROS DE DISEÑO

Características del imán:

Usaremos 2 imanes de 50x30x10 mm lo cual nos queda una superficie 50x60 mm2

Largo= 60 mm

Ancho=50 mm

Espesor=10 mm

Prod, (B-H)= 279 KJ/m3

B= 1,45 Wb/m2

Área de los imanes=3000 mm2

Remanencia=12000 Gauus

Flujo producido por los imanes: φ

$$\phi = B_{ch}.B_{m}.L$$

;Beh=0,77.T

$$\phi = 0,77T.0,05m.0,06m = 0,0024Tm^2$$

;[41]

Comprobación de la saturación del yugo del estator

$$B_{sy} = \frac{B_{ch}.B_m}{2.h_{sy}} \leq B_{m\acute{a}x} \hspace{1cm} ; B_{m\acute{a}x} = 1,4T \label{eq:bsy}$$

$$; B_{máx} = 1,4T$$

Donde: hsy=15mm y Bm=50mm

$$B_{sy} = \frac{0.77T.50mm}{2.15mm} = 1.28T \le 1.4T$$
;[42]

Comprobación de la saturación del yugo del rotor

$$B_{\rm ry} = \frac{B_{\rm ch}.B_{\rm m}}{2.h_{\rm ry}} \leq B_{\rm m\,\acute{a}\,x}$$

Usamos también hry=15mm por lo que nos dá:

Energía máxima que los imanes pueden suministrar

$$E \max = \frac{(B - H).Vol.N}{2} = \frac{279 \text{ KJ} / \text{m}^3.0,003 \text{m}^3.12}{2} = \underline{50,22 \text{J}}$$
;[44]

Potencia máxima que puedo producir

$$P \max = E \max .\omega(\text{rad / seg}) = 50,22 \text{J}.\frac{\pi.500 \text{rpm}}{30} = \underline{2629,52 \text{W}}$$
;[45]

Perímetro del rotor

Perímetro= ancho + 9mm de holgura por cantidad de imanes

$$Perimetro = (50 \text{ mm} + 9 \text{mm}).12 \text{ imanes} = \underline{708 \text{mm}}$$
;[46]

Diámetro del rotor

$$Diámetro = \frac{Perímetro}{\pi} = \frac{708mm}{\pi} = \frac{225mm}{\pi}$$
;[47]

Diámetro del entrehierro

Diámetro con el entre hierro
$$= D + 1$$
mm del entre hierro $= 227$ mm ;[48]

Calculo del paso polar

$$\tau_{p}$$
 (Paso polar) = $\frac{\text{Diámetro del entre hierro }.\pi}{\text{N}^{\circ} \text{ polos}} = \frac{227 \text{mm.}\pi}{12} = \frac{59,52 \text{mm}}{12}$;[49]

Calculo del paso de ranuras

$$\tau(\text{Paso ranuras}) = \frac{\text{Diámetro del entre hierro }.\pi}{r(\text{N}^{\circ} \text{ de ranuras})} = \frac{227 \text{mm}.\pi}{18} = \frac{39,59 \text{mm}}{18}$$
;[50]

Se dispone del valor de τ=39.59 mm obtenido en el cálculo anterior. Para obtener un primer valor de bt, se va a calcular la proporción de dientes respecto a paso de ranura.

$$\frac{\text{Dientes}}{\text{paso de ranuras}} = 55\% \rightarrow \text{Bt} = 0,55.\tau = 0,55.39,59 \text{mm} => \underline{\text{Bt} = 21,77 \text{mm}}$$
 ;[51]

Velocidad Periférica

Vel Perif. =
$$\frac{\pi.D.n}{60} = \frac{\pi.0, 225m.500rpm}{60} = 5.9 \frac{m}{s}$$
 ;[52]

Ranuras por polo y por fase

Adoptamos 18 ranuras para el estator.

Npf =
$$\frac{\text{Ranuras}}{\text{N.p}} = \frac{18}{3.12} = 0.5$$
 ;[53]

Cantidad de bobinas

Nb =
$$\frac{3.p}{K} = \frac{3.12}{3} = \underline{12}$$
 K=1,2,3.. ;[54]

Tomando k = 3, y colocando 12 polos en el generador, se requiere 12 bobinas (4 por fase), las cuales es posible conectarlas de forma tal que los campos enlazados por ellas puedan sumarse.

Se concluye así que el generador tendrá 12 bobinas

Voltaje por espira

Para calcular el número de espiras por bobina, se utiliza la siguiente ecuación de diseño

Siendo:

P =12 polos ver pág. 95 ec:[39]

TSR= 8,5 ver pág. 95 ec:[7]

V= 7 m/s ver pág. 35 ec:[1]

r= 2,2m ver pág. 41 ec:[4]

B= 2,9 Wb/m2 ver pág. 100 catálogo del producto.

A = 3000mm2 ver pág. 100 catálogo del producto.

$$Ve = 4,44.f.B.A = 4,44.\frac{P.60.TSR.v}{120.2\pi.r}.B.A_i = \left[\frac{Volt}{espira}\right]$$

$$Ve = 4,44. \frac{12_{polos}.60.8, 5.7 \text{m/s}}{120.2\pi.2, 2\text{m}}.2, 9 \frac{\text{Wb}}{\text{m}^2}.0,003 \text{m}^2 = 1,013 \frac{\text{Volt}}{\text{espira}}$$
;[55]

Cálculo de la FEM

Fem =
$$4,44.f.n_{pf}.(\xi.Zn)(D.L).B_s$$

Fem =
$$4,44.50$$
hz. $0,5.(0,9.220)(0,227$ m. $0,06$ m). $0,77 = 230$ V ;[56]

Donde:

 ξ : Factor de bobinado = 0,9.

f: Frecuencia del voltaje generado.=50Hz

Bs: Inducción máxima en el entrehierro= 0,77T.

Zn=cantidad de espira por bobina.

D= 0,227m ver pág. 97 ec:[48]

L = 0,06m ver pág. 100 catálogo del producto.

Cálculo de la Corriente nominal In

$$In = \frac{P}{\sqrt{3}.U.\cos\phi} = \frac{2500W}{\sqrt{3}.220V.0.8} = 8.2A$$
 ;[57]

Una corriente mayor a ese valor se tiene que desconectar!

Dimensión de los conductores

Proponemos una densidad de corriente 3,2 A/mm² (dato extraído de tabla)

$$Sc = \frac{In}{\Delta} = \frac{8,2A}{3,2\frac{A}{mm^2}} = \frac{2,56mm^2}{3}$$
;[58]

Diámetro =
$$\sqrt{\frac{\text{Sc.4}}{\pi}} = \sqrt{\frac{2,56\text{mm}^2.4}{\pi}} = 1,80\text{mm}$$
 ;[59]

Elegimos de la tabla de Alambre de Cu esmaltado para bobinado: 13 AWG con un diámetro 1,828 mm estaría bien, pero In=7,5A<If =8,2A, tendría que adoptar el anterior.

✓ ADOPTAMOS: 12 AWG 9,5A>8,2A con un diámetro=2,053mm.

TABLA DE ALAMBRE ESMALTADO

11000	1	2	3	4	5	6	7
	9	2,906	6.63		58.9	2.56	19
	10	2,588	5.26		46.8	3.23	15
	11	2,305	4.17	-	32.1	4.07	12
\rightarrow	12	2,053	3.31	-	29.4	5.13	9.5
	13	1,828	2.63	-	23.3	6.49	7.5
	14	1,628	2.08	5.6	18.5	8.17	6.0
	15	1,450	1.65	6.4	14.7	10.3	4.8
	16	1,291	1.31	7.2	11.6	12.9	3.7

1 - Numero AWG (American Wire G-5 - Kg por kilometro

2 - Diametro en milimetros 6 - Resistencia en ohmios por kilometro

3 - Seccion en milimetros 7 - Capacidad de corriente en amperes

4 - Numero de espiras por centimet

Cálculo de la superficie ocupada por las espiras

$$Sc = \frac{\pi \cdot (2,053 \text{mm})^2}{4} = \frac{3,308 \text{mm}^2}{3}$$
;[60]

Cálculo de la Densidad de corriente real

$$\Delta = \frac{\text{In}}{\text{Sc}} = \frac{8,2\text{A}}{3,308\text{mm}^2} = 2,47\text{A}$$
 ;[61]

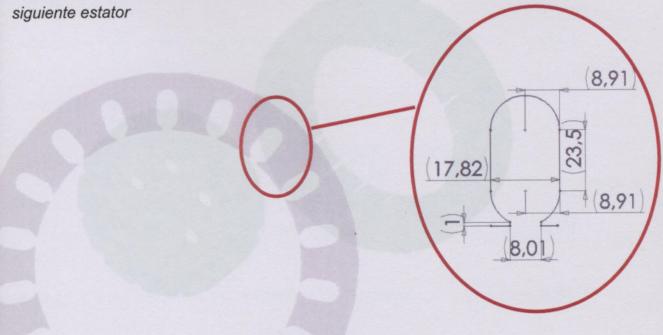
Con 220 espiras y si tenemos una factor de apilamiento=0,92

N° de conductores= 220 conductores.0,92= 202 Cond.

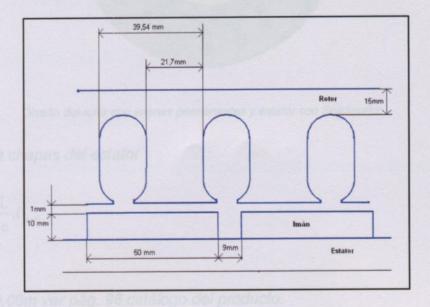
Siendo:

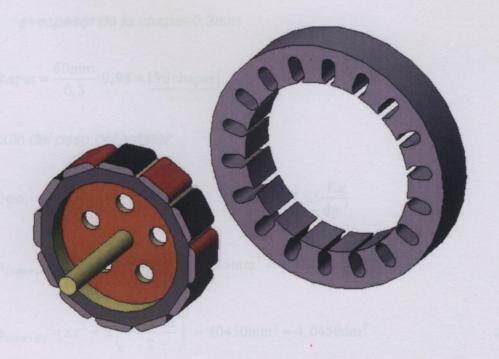
$$\tau$$
 =39,59mm ver pág. 98 ec:[50]

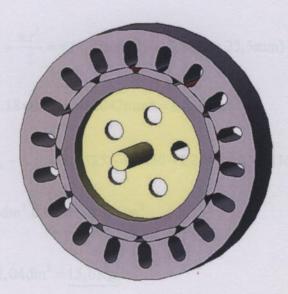
Entonces el ancho de la ranura (Bs) va a ser igual a:


$$Bs = \tau - Bt = 17,82 \text{ mm.}$$
 ;[63]

Luego si:


$$A_{cond} = Bs.hs \Rightarrow hs = \frac{A_{cond}}{Bs} = \frac{668,3mm^2}{17,82mm} \Rightarrow hs \cong 37,5mm$$
 ;[64]


El área de la Ranura =669,2mm2>668,6mm2 área del bobinado.


Adoptando un tipo de ranura y respetando su área interna nos queda el

Medidas internas de la ranura del estator

Diseño del rotor con imanes permanentes y estator con Solidworks

Cantidad de chapas del estator

$$N^{\circ}$$
chapas = $\frac{L}{e}$. f_{apil}

Donde:

L = 0,06m ver pág. 96 catálogo del producto.

f_{apil}= factor apilamiento= 0,98

e=espesor de la chapa=0,3mm

$$N^{\circ}$$
chapas = $\frac{60 \text{mm}}{0.3}$.0,98 = $\underline{196 \text{ chapas}}$;[65]

Calculo del peso del estator

Peso est. =
$$\delta \left[\frac{Kg}{dm^3} \right]$$
. Vol $\left[dm^3 \right]$; $\delta = 7,65 \frac{Kg}{dm^3}$

Area_(estator) =
$$\pi . r^2 = \pi . (166 \text{mm})^2 = 86525 \text{mm}^2 = 8,6525 \text{dm}^2$$
 ;[66]

Area_(rotor+eh) =
$$\pi . r^2 = \pi . \left(\frac{227 \text{mm}}{2}\right)^2 = 40450 \text{mm}^2 = 4,0450 \text{dm}^2$$
 ;[67]

Area_(ranura) =
$$\frac{\pi . r^2}{2}$$
 + b.h + $\frac{\pi . r^2}{2}$ = $\pi . (8,91 \text{mm})^2$ + $(17,82 \text{mm}.23,5 \text{mm})$ = 669mm^2

Area_(ranuras) =
$$669 \text{mm}^2$$
. $18 \text{ ranuras} = 12042 \text{mm}^2 = 1,2042 \text{dm}^2$;[68]

Area_{total} =
$$A_{est} - A_{rot+eh} - A_{ran} = 8,6525 - 4,0450 - 1,2042 = 3,4033 dm2$$
 ;[69]

$$Vol_{total} = A_{total}.L = 3,4dm^2.0,6dm = 2,04dm^3$$

Peso est. =
$$7,65 \frac{\text{Kg}}{\text{dm}^3}.2,04 \text{dm}^3 = \underline{15,6 \text{Kg}}$$
 ;[70]

Pérdidas del hierro en el estator

Las pérdidas magnéticas para una chapa acero al silicio con un espesor 0,3mm es de 0,97 W/Kg.

 P_{Fe} = (Peso total) .(Pérd específica Fe)

$$P_{FE} = 15,6 \text{Kg.} 0,97 \frac{\text{W}}{\text{Kg}} = \underline{15,13 \text{W}}$$
 ;[71]

Pérdidas del cobre en el estator

Donde:

L = 0,06m ver pág. 96 catálogo del producto.

τp=0,059 m ver pág. 98 ec:[49]

Sc=3,3 mm2 ver pág. 101 ec:[60]

I= 8,2A ver pág. 100 ec:[57]

$$\rho_{\text{\tiny cu}}: Resistividad \ del \ Cobre=0,0171 \\ \frac{\Omega.mm2}{m} \Longrightarrow x10^{-6} = 1,71x10^{-8} \\ \Omega.m$$

$$L_t = (L + \tau_p) \times N_{espiras}^\circ = (0,06 + 0,059) \text{m} \times 220 \text{ espiras} = 26,18 \text{m}$$
 ;[72]

$$R = \frac{\rho_{cu} L_{t}}{Sc} P = \frac{1,71 \times 10^{-8} \Omega m.26,18m}{3,31 \times 10^{-6} m^{2}} .12_{polos} = 1,62\Omega$$
;[73]

$$P_{CU} = I^2.R = (8, 2A)^2.1,62\Omega = 109W$$
 ;[74]

Rendimiento teórico

Siendo:

Pe =2500W ver pág. 36 ec:[2]

PCU =109W ver pág. 105 ec:[74]

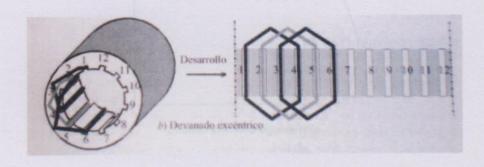
Pfe =15,13W ver pág. 104 ec:[71]

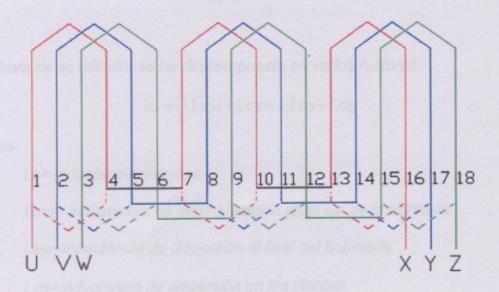
$$\eta = \frac{Pe}{Pe + P_{CU} + P_{FE}} = \frac{2500W}{2500W + 109W + 15,13W} = 95\%$$
;[75]

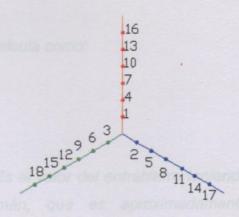
El ángulo entre ranuras

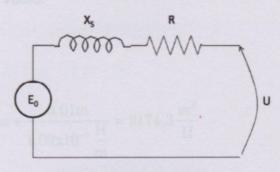
Siendo:

n =18 ranuras ver pág. 98 ec:[53]


P=6 Pp ver pág. 95 ec:[39]


$$\gamma = \frac{360^{\circ}}{\frac{n}{p}} = \frac{360^{\circ}}{\frac{18}{6}} = \underline{120^{\circ}}$$


;[76]


Configuración del devanado

Los inducidos de las máquinas se realizan en forma de arrollamientos distribuidos para cubrir toda la periferia de la máquina. Los devanados excéntricos son los formados por bobinas de igual paso pero desfasadas 120° entre sí en el espacio.

Circuito eléctrico equivalente

XS: reactancia síncrona del generador.

$$Xs = \frac{Ls.2\pi.f}{3}$$

A la hora de su cálculo, se ha descompuesto en varios factores:

$$Ls = \frac{4}{3}.Lmq + L\sigma ew + L\sigma s + L\sigma g$$

Donde:

Ls= inductancia sincrona

Lmq= inductancia de magnetización en el eje de cuadratura.

Lew=inductancia de dispersión al final del bobinado.

Lσs=inductancia de dispersión en los dientes.

 $L\sigma g$ =inductancia de dispersión en el entrehierro.

La XS modela las pérdidas por la dispersión del flujo en los distintos elementos descritos anteriormente. Para calcularlos hay que realizar unos cálculos intermedios.

Factor de Carter. Se calcula como:

$$K_{\text{Carter}} = \frac{\frac{\tau_p}{3}}{\frac{\tau_p}{3} - \gamma.g_t}$$

gt= Entrehierro total. Es el valor del entrehierro teniendo en cuenta el valor de permeabilidad del imán, que es aproximadamente igual al valor de permeabilidad en el vacío.

Se calcula como:

$$g_{_{t}} = \delta + \frac{h_{_{m}}}{\mu_{_{m}}} = 0,001m + \frac{0,01m}{1,09x10^{-6} \frac{H}{m}} = 9174,3 \frac{m^{2}}{H} \qquad ;[77]$$

Donde:

μm= permeabilidad del imán.

 δ = 0,001m ver pág. 97 ec:[48]

hm= 0,01m ver pág. 96 catálogo del producto.

$$\gamma = \frac{4}{\pi} \left[\frac{\mathrm{bs}}{2.\mathrm{g}_{_{t}}}.\mathrm{arctg} \, \frac{\mathrm{bs}}{2.\mathrm{g}_{_{t}}} - \mathrm{Log} \sqrt{1 + \frac{\mathrm{bs}}{2.\mathrm{g}_{_{t}}}} \, \right]$$

$$\gamma = \frac{4}{\pi} \left[\frac{0,01782 \mathrm{m}}{2.9174,3 \frac{\mathrm{m}^2}{\mathrm{H}}}. \mathrm{arctg} \frac{0,01782 \mathrm{m}}{2.9174,3 \frac{\mathrm{m}^2}{\mathrm{H}}} - \mathrm{Log} \sqrt{1 + \frac{0,01782 \mathrm{m}}{2.9174,3 \frac{\mathrm{m}^2}{\mathrm{H}}}} \right] = -2,1 \times 10^{-7} \quad ; [78]$$

Donde:

gt= 9174,3 m2/H ver pág. 108 ec:[77]

bs= 17,82 mm ver pág. 101 ec:[63]

Por lo tanto el factor de Carte queda:

$$K_{\text{Carter}} = \frac{\frac{\tau_p}{3}}{\frac{\tau_p}{3} - \gamma \cdot g_t}$$

$$K_{\text{Carter}} = \frac{\frac{0,059 \text{m}}{3}}{\frac{0,059 \text{m}}{3} - \left(-2,1 \text{x} 10^{-7}.9174,3 \frac{\text{m} 2}{\text{H}}\right)} = 0,91$$
;[79]

Donde:

gt= 9174,3 m2/H ver pág. 108 ec:[77]

τp= 59mm ver pág. 98 ec:[49]

Calculo del Entrehierro efectivo:

$$g_{cf} = g_{t}.Kc = 9174, 3.0, 91 = 8355, 7 \frac{m^{2}}{H}$$
 ;[80]

Con estos datos obtenidos, se calculan las distintas inductancias:

$$\mathrm{Lmq} = \frac{\mu_0.\pi.\mathrm{N}^2.\mathrm{L.D_{ch}}}{2.\mathrm{g_{cf}}} = \frac{1,256\mathrm{x}10^{-6}\,\frac{\mathrm{H}}{\mathrm{m}}.\pi.220^2.0,06\mathrm{m.0},227\mathrm{m}}{2.8355,7} = \underline{1,55\mathrm{x}10^{-7}\mathrm{H}} \qquad ;[81]$$

$$L\sigma \mathrm{ew} = \frac{\mathrm{p}}{2}.\mu_{\mathrm{o}}.\tau_{\mathrm{p}} = \frac{12}{2}.1,256\mathrm{x}10^{-7}\,\frac{\mathrm{H}}{\mathrm{m}}.0,059\mathrm{m} = \underline{0,000000444\mathrm{H}} \label{eq:eta_p_sigma} \ ; [82]$$

$$\mathrm{L}\sigma s = \mathrm{p.}\mu_0.\mathrm{L.N^2}.\frac{\mathrm{hs} + 2}{3.\mathrm{bs}} = 12.1,256 \mathrm{x} 10^{-7} \, \frac{\mathrm{H}}{\mathrm{m}}.0,06 \mathrm{m.220^2}.\frac{0,0375 \mathrm{m} + 2}{3.0,01782 \mathrm{m}} = \underline{38,15 \mathrm{H}} \ ; [83]$$

$$L\sigma g = p.\mu_0.L.N^2.\frac{5.\frac{g_{\rm ef}}{bs}}{5+4.\frac{g_{\rm ef}}{bs}}$$

$$L\sigma g = 12.1, 256 \times 10^{-7} \frac{H}{m}.0, 06 \text{m}.220^{2}. \frac{5.\frac{8355, 7\frac{\text{m}^{2}}{\text{H}}}{0,01782 \text{m}}}{5 + 4.\frac{8355, 7\frac{\text{m}^{2}}{\text{H}}}{0,01782 \text{m}}} = \underbrace{0,0547 \text{H}}_{\text{5}}$$
;[84]

Ahora con los datos obtenidos podemos calcular la inductancia síncrona:

$$Ls = \frac{4}{3}.Lmq + L\sigma ew + L\sigma s + L\sigma g$$

$$Ls = \frac{4}{3}.1,55x10^{-7}H + 0,000000444H + 38,15H + 0,0547H = \underline{38,2H}$$
 ;[85]

Por tanto, el valor de XS en estrella queda definida como:

$$X_S = \frac{L_{S.2\pi.f}}{3} = \frac{38, 2H.2.\pi.50Hz}{3} = \underline{3998, 7\Omega}$$
 ;[86]

Sistema colector

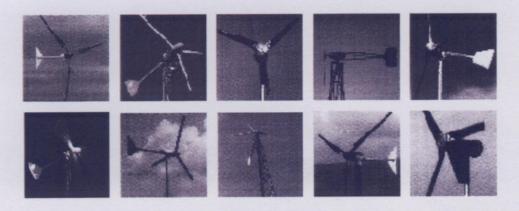
Para poder trasmitir la energía que es producida por el generador y llevarla hasta el rectificador o cargador de baterías sin que los cables se dañen, producto de la orientación de las palas. Si dispuso de un sistema anillos colectores, escobillas y portaescobillas. Adoptamos un sistema completo de la Fabrica MERSEN, que tiene una línea especial para Aerogeneradores.

MERSIN ARGENTINA Experto global en especialidades eléctricas y materiales en grafito, Mersen crea productos innovadores adaptados a las necesidades específicas de sus clientes para que puedan optimizar sus procesos de fabricación en sectores como la energía, el transporte, etc.

División Energía Eólica

Mersen es el fabricante de referencia de soluciones eléctricas para motores y generadores (conjunto de anillos colectores, escobillas y portaescobillas).

GENERADORES Y



CAPITULO 9

Sistema de orientación

El diseño de la cola y la distancia de ésta al generador y al conjunto motriz le confieren el equilibrio exacto permitiendo que al producirse un cambio en la orientación del viento, por débil que sea, el equipo gira exponiendo la hélice al cuadrante de donde sopla el viento.

El aerogenerador de eje horizontal tienen un cojinete alrededor del cual gira y se coloca de frente al viento. A la línea vertical que pasa por este cojinete se le conoce como eje de orientación. Debido a las pequeñas dimensiones, los pequeños aerogeneradores no tienen espacio para instalar los mecanismos de transmisión y los motores eléctricos que orientan al rotor de frente al viento, presentes en los grandes aerogeneradores. Por esto, el sistema de orientación de estos pequeños aerogeneradores es por veleta de cola, Aparecen las veletas tanto de forma recta horizontal, como elevada con respecto al eje de rotación del rotor.

El sistema de orientación de casi todos los aerogeneradores pequeños es por veleta de cola.

La veleta se coloca al final de un brazo. Ésta captura el viento y aparece una fuerza lateral resultante sobre la veleta, que actúa sobre el brazo que hace girar la máquina sobre el eje de orientación para colocarla de frente al viento.

UTN-FRVT Página 112

El momento producido por la veleta es simplemente la fuerza lateral multiplicada por la longitud del brazo. La fuerza lateral depende del área de la veleta y de la velocidad del viento al cuadrado. Como regla simple se puede asumir que la longitud del brazo debe ser igual a la longitud de la pala del rotor.

El área de la veleta no debe ser menor que 3% del área de barrido del rotor.

UTN-FRVT Página 113

CAPITULO 10

CALCULO DE LA TORRE

tramo 1

tramo 2

tramo 3

tramo 4

Adoptamos para nuestro cálculo una torre del tipo tubular auto soportada, la misma mide 16 metros de altura y la dividimos en cuatro tramos de 4 metros cada uno con diámetro creciente hacia la base. El cálculo lo realizamos para las peores condiciones climáticas este incluye la torre.

Altura de la torre H = 16 m (Ver pág 5)

Altura del tramo 1, 2, 3 y 4 = 4 m

Analizaremos cada tramo en particular y adoptaremos la sección correspondiente.

Los datos técnicos de tubos son de la empresa Sinfines Fas.

Calculo del tramo 1

Velocidad del viento máxima es 120 km/h

El peso del equipo es de 70 kg

Calcularemos la fuerza resultante para este viento.

L = Fuerza sustentadora

D = Fuerza de arrastre o resistente

V = 120 km/h = 33.33 m/seg

Ver pág. 57 ec: [24]:

$$S_{sp} = C_m \cdot R = 0.135 \cdot 2.2 = 0.297 \text{ m}^2$$

$$L = C_y \cdot \frac{1}{2} \cdot \rho \cdot V^2 \cdot S_{sp}$$

$$L = 1,43 \cdot \frac{1}{2} \cdot 1,27 \cdot \frac{kg}{m^3} \cdot 33,33^2 \cdot \frac{m^2}{seg^2} \cdot 0.297$$

$$L = 300 \text{ N}$$

$$D=C_{x.}\ \frac{\scriptscriptstyle 1}{\scriptscriptstyle 2}\ .\rho\,.V^2\,.S_{sp}$$

$$D = 0.21 \cdot \frac{1}{2} \cdot 1.27 \cdot \frac{kg}{m^3} \cdot 33.33^2 \cdot \frac{m^2}{seg^2} \cdot 0.297$$

$$D = 44 \text{ N}$$

Fuerza aerodinámica total

$$F = \sqrt{L^2 + D^2}$$

$$F = \sqrt{(300 \text{ N})^2 + (44 \text{ N})^2}$$

$$F = 303.2 \text{ N}$$

Fuerza del viento sobre las 3 palas

$$F = 303,2 \text{ N}.3 \text{ palas} = 909,6 \text{ N} = 93\text{kg}$$

Adoptamos un tubo de acero SAE 1010 costura helicoidal de las siguientes características :

Diámetro exterior = $D_2 = 200 \text{ mm} \rightarrow R_2 = 100 \text{ mm}$

Diámetro interior = $D_1 = 193,6 \text{ mm} \rightarrow R_1 = 96,8 \text{ mm}$

Espesor = 3,2 mm

Longitud = 4 m

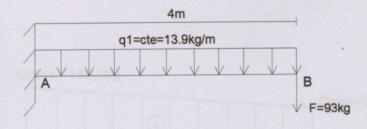
Densidad del acero $\delta = 7900 \frac{kg}{m^3}$

Peso del tramo 1

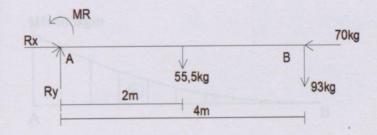
Peso = Vol .
$$\delta$$
 =
$$P_{tubo \, 1} = \, \pi \, . \left(\, R_{2}^{\, 2} \, - \, R_{1}^{\, 2} \, \, \right) . L \, . \delta$$

$$P_{tubo \, 1} = \, \pi \, . \left(\, (0.1 \text{m})^{\, 2} \, - \, (0.0968 \text{m})^{2} \, \, \right) . 4 \, \text{m} \, . 7900 \, \frac{\text{kg}}{\text{m}^{3}}$$

$$P_{tubo \, 1} = \, 62,5 \, \text{kg}$$


Fuerza del viento sobre el tramo

$$F_v = \frac{V^2}{16}$$
 . L. $D_2 = (33.33 \frac{m}{s})^2 \cdot \frac{1}{16}$. 4m. 0.2m = 55,5 kg

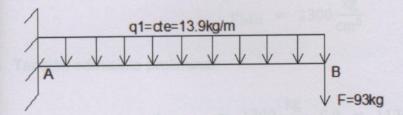

Carga del viento por metro

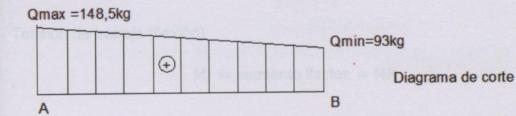
$$q_1 = \frac{55,5 \text{ kg}}{4 \text{ m}} = 13,9 \frac{\text{kg}}{\text{m}}$$

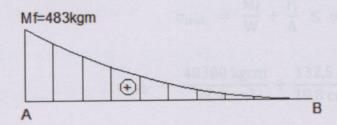
Análisis de carga

Diagrama de cuerpo libre

Calculamos


$$\sum fy = 0 = R_y - 55,5kg - 93kg = 0$$


$$R_y = 148,5 kg$$


$$\sum MA = 0 = MR - 55,5 \text{kg}.2 \text{m} - 93 \text{kg}.4 \text{m} = 0$$

$$MR = 483 \text{ kgm}$$

Diagrama de esfuerzos

Módulo resistente

$$W = \frac{1}{4} \cdot \text{Area} \cdot D_2 = \frac{1}{4} \cdot \pi \cdot (R_2^2 - R_1^2) \cdot D_2$$
$$= \frac{1}{4} \cdot \pi \cdot ((10\text{cm})^2 - (9,68\text{cm})^2) \cdot .20\text{cm} = 98,9 \text{ cm}^3$$

Peso total

$$P_{t} = P_{e} + P_{tubo} = 70 \text{kg} + 62,5 \text{kg} = 132,5 \text{kg}$$

Area de corte

$$A = \pi.(R_2^2 - R_1^2) = \pi.((10cm)^2 - (9.68cm)^2) = 19.8 cm^2$$

Tensión admisible

$$\sigma_{adm} \ = \ 1300 \, \frac{kg}{cm^2}$$

Tensión admisible preliminar

$$\sigma_{adm \, pre} = 1300 \frac{kg}{cm^2} .0.9 = 1170 \frac{kg}{cm^2}$$

Tensión de trabajo (flexión)

$$M_f$$
 = momento flector = MR

$$\sigma_{\text{trab}} = \frac{M_{\text{f}}}{W} + \frac{P_{\text{t}}}{A} \le \sigma_{\text{adm pre}}$$

$$\sigma_{\text{trab}} = \frac{48300 \text{ kgcm}}{98,9 \text{ cm}^3} + \frac{132,5 \text{ kg}}{19,8 \text{ cm}^2} = 495 \frac{\text{kg}}{\text{cm}^2}$$

$$\sigma_{\text{trab}} = 495 \frac{\text{kg}}{\text{cm}^2} < 1170 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de corte

$$Q_{max} = R_y = 148,5 \text{ kg}$$

$$\tau_{trab} = \frac{Q_{max}}{A} = \frac{148,5 \text{ kg}}{19.8 \text{ cm}^2} = 7,5 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de comparación

$$\sigma_{comp} = \sqrt{(\sigma_{trab})^2 + 3 \cdot (\tau_{trab})^2} \le \sigma_{adm}$$

$$\sigma_{\text{comp}} = \sqrt{(495 \frac{\text{kg}}{\text{cm}^2})^2 + 3 \cdot (7.5 \frac{\text{kg}}{\text{cm}^2})^2}$$

$$\sigma_{\text{comp}} = 495,2 \frac{\text{kg}}{\text{cm}^2} < 1300 \frac{\text{kg}}{\text{cm}^2}$$

Por lo tanto el primer tramo verifica

Calculo del tramo 2

Para este caso debemos sumarle la fuerza ejercida por el viento en el segundo tramo

Adoptamos acero SAE 1010 costura helicoidal de las siguientes características:

Diámetro exterior =
$$D_2 = 250 \text{ mm} \rightarrow R_2 = 125 \text{ mm}$$

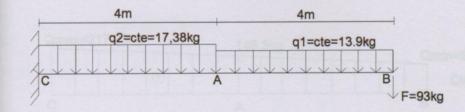
Diámetro interior =
$$D_1 = 243.6 \text{ mm} \rightarrow R_1 = 121.8 \text{ mm}$$

Espesor = 3,2 mm

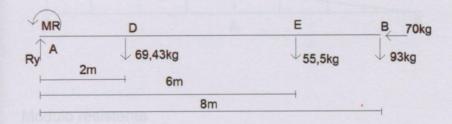
Longitud = 4 m

Peso del tramo 2

Peso = Vol .
$$\delta$$
 = $P_{\text{tubo 2}} = \pi . (R_2^2 - R_1^2) . L . \delta$ $P_{\text{tubo 2}} = \pi . ((0.125\text{m})^2 - (0.1218\text{m})^2) . 4 \text{ m} . 7900 \frac{\text{kg}}{\text{m}^3}$ $P_{\text{tubo 2}} = 78.4 \text{ kg}$


Fuerza del viento sobre el tramo

$$F_v = \frac{V^2}{16}$$
 . L. $D_2 = (33.33 \frac{m}{s})^2 \cdot \frac{1}{16}$. 4m. 0.25m = 69,43 kg

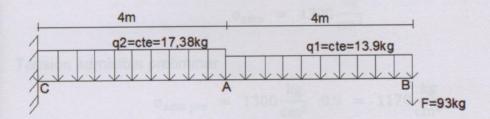

Carga del viento por metro

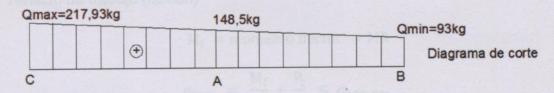
$$q_2 = \frac{69,43 \text{ kg}}{4 \text{ m}} = 17,38 \frac{\text{kg}}{\text{m}}$$

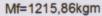
Análisis de carga

Diagrama de cuerpo libre

Calculamos


$$\sum fy = 0 = R_y - 69,43 - 55,5kg - 93kg = 0$$


$$R_y = 217,93 \text{ kg}$$


$$\sum$$
 MA = 0 = MR - 69,43kg .2m - 55,5kg .6m - 93kg .8m = 0

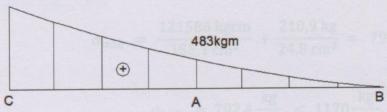

$$MR = 1215,86 \text{ kgm}$$

Diagrama de espuerzos

Módulo resistente

$$W = \frac{1}{4}$$
. Area. $D_2 = \frac{1}{4} . \pi . (R_2^2 - R_1^2). D_2$

W =
$$\frac{1}{4}$$
. π . ((12,5cm)² – (12,18cm)²) .25cm = 155,1 cm³

Peso total

$$P_{t} = P_{e} + P_{tubo 1} + P_{tubo 2} = 70 \text{kg} + 62,5 \text{kg} + 78,4 \text{kg} = 210,9 \text{ kg}$$

Area de corte

$$A = \pi.(R_2^2 - R_1^2) = \pi.((12,5cm)^2 - (12,18cm)^2) = 24,8 cm^2$$

Tensión admisible

$$\sigma_{\text{adm}} = 1300 \frac{\text{kg}}{\text{cm}^2}$$

Tensión admisible preliminar

$$\sigma_{\text{adm pre}} = 1300 \frac{\text{kg}}{\text{cm}^2} .0.9 = 1170 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de trabajo (flexion)

$$M_f$$
 = momento flector = MR

$$\sigma_{trab} = \frac{M_f}{W} + \frac{P_t}{A} \le \sigma_{adm \, pre}$$

$$\sigma_{\text{trab}} = \frac{121586 \text{ kgcm}}{155,1 \text{ cm}^3} + \frac{210,9 \text{ kg}}{24,8 \text{ cm}^2} = 792,4 \frac{\text{kg}}{\text{cm}^2}$$

$$\sigma_{\text{trab}} = 792,4 \frac{\text{kg}}{\text{cm}^2} < 1170 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de corte

$$Q_{max} = R_y = 217,93 \text{ kg}$$

$$\tau_{\text{trab}} = \frac{Q_{\text{max}}}{A} = \frac{217,93 \text{ kg}}{24,8 \text{ cm}^2} = 8,8 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de comparación

$$\sigma_{comp} = \sqrt{(\sigma_{trab})^2 + 3 \cdot (\tau_{trab})^2} \le \sigma_{adm}$$

$$\sigma_{\text{comp}} = \sqrt{(792,4 \frac{\text{kg}}{\text{cm}^2})^2 + 3 \cdot (8,8 \frac{\text{kg}}{\text{cm}^2})^2}$$

$$\sigma_{comp} = 792,5 \frac{kg}{cm^2} < 1300 \frac{kg}{cm^2}$$

Por lo tanto el segundo tramo verifica

Calculo del tramo 3

Operamos de la misma manera y adoptamos acero SAE 1010 costura helicoidal de las siguientes características:

Diámetro exterior = $D_2 = 300 \text{ mm} \rightarrow R_2 = 150 \text{ mm}$

Diámetro interior = $D_1 = 293,6 \text{ mm} \rightarrow R_1 = 146,8 \text{ mm}$

Espesor = 3,2 mm

Longitud = 4 m

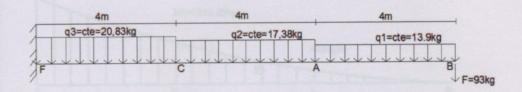
Peso del tramo 3

Peso = Vol . δ =

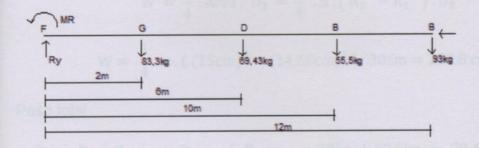
$$P_{\text{tubo }3} = \pi. (R_2^2 - R_1^2).L.\delta$$

$$P_{\text{tubo }3} = \pi . ((0.15\text{m})^2 - (0.1468\text{m})^2).4 \text{ m}.7900 \frac{\text{kg}}{\text{m}^3}$$

$$P_{\text{tubo }3} = 94,3 \text{ kg}$$


Fuerza del viento sobre el tramo

$$F_{\rm v} = \frac{{\rm V}^2}{16} \cdot {\rm L} \cdot {\rm D}_2 = (33.33 \frac{\rm m}{\rm s})^2 \cdot \frac{1}{16} \cdot 4 \,{\rm m} \cdot 0.3 \,{\rm m} = 83.3 \,{\rm kg}$$

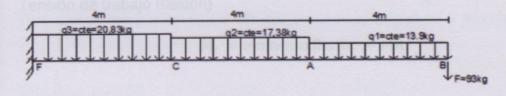

Carga del viento por metro

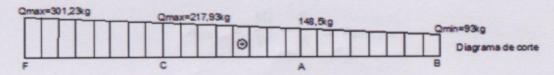
$$q_3 = \frac{83,3 \text{ kg}}{4 \text{ m}} = 20,83 \frac{\text{kg}}{\text{m}}$$

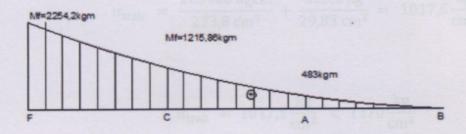
Análisis de carga

Diagrama de cuerpo libre

Calculamos


$$\sum fy = 0 = R_y - 83,3kg - 69,43 - 55,5kg - 93kg = 0$$


$$R_y = 301,23 \text{ kg}$$


$$\sum MA = 0 = MR - 83,3 \text{kg}.2m - 69,43 \text{kg}.6m - 55,5 \text{kg}.10m$$
$$- 93 \text{kg}.12m = 0$$

$$MR = 2254,2 \text{ kgm}$$

Diagrama de espuerzos

Módulo resistente

$$W = \frac{1}{4} \cdot \text{Area. } D_2 = \frac{1}{4} \cdot \pi \cdot (R_2^2 - R_1^2) \cdot D_2$$

$$W = \frac{1}{4} \cdot \pi \cdot ((15\text{cm})^2 - (14,68\text{cm})^2) \cdot .30\text{cm} = 223,8 \text{ cm}^3$$

Peso total

$$P_{t} = P_{e} + P_{tubo 1} + P_{tubo 2} + P_{tubo 3} = 70 \text{kg} + 62,5 \text{kg} + 78,4 \text{kg} + 94,3 \text{kg}$$

= 305,2 kg

Area de corte

$$A = \pi . (R_2^2 - R_1^2) = \pi . ((15cm)^2 - (14,68cm)^2) = 29,83 cm^2$$

Tensión admisible

$$\sigma_{adm} = 1300 \frac{kg}{cm^2}$$

Tensión admisible preliminar

$$\sigma_{adm \, pre} = 1300 \frac{kg}{cm^2} .0.9 = 1170 \frac{kg}{cm^2}$$

Tensión de trabajo (flexión)

$$M_f = momento flector' = MR$$

$$\sigma_{trab} = \frac{M_f}{W} + \frac{P_t}{A} \le \sigma_{adm \, pre}$$

$$\sigma_{\text{trab}} = \frac{225420 \text{ kgcm}}{223,8 \text{ cm}^3} + \frac{305,2 \text{ kg}}{29,83 \text{ cm}^2} = 1017,5 \frac{\text{kg}}{\text{cm}^2}$$

$$\sigma_{\text{trab}} = 1017.5 \frac{\text{kg}}{\text{cm}^2} < 1170 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de corte

$$Q_{max} = R_y = 301,23 \text{ kg}$$

$$\tau_{\text{trab}} = \frac{Q_{\text{max}}}{A} = \frac{301,23 \text{ kg}}{29,83 \text{ cm}^2} = 10,1 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de comparación

$$\sigma_{comp} = \sqrt{(\sigma_{trab})^2 + 3 \cdot (\tau_{trab})^2} \le \sigma_{adm}$$

$$\sigma_{\text{comp}} = \sqrt{(1017.5 \frac{\text{kg}}{\text{cm}^2})^2 + 3 \cdot (10.1 \frac{\text{kg}}{\text{cm}^2})^2}$$

$$\sigma_{\text{comp}} = 1017,7 \frac{\text{kg}}{\text{cm}^2} < 1300 \frac{\text{kg}}{\text{cm}^2}$$

Por lo tanto el tercer tramo verifica

Calculo del tramo 4

Operamos de la misma manera que en el caso anterior y adoptamos acero SAE 1010 costura helicoidal de las siguientes características:

Diámetro exterior =
$$D_2 = 370 \text{ mm} \rightarrow R_2 = 185 \text{ mm}$$

Diámetro interior =
$$D_1 = 363.6 \text{ mm} \rightarrow R_1 = 181.8 \text{ mm}$$

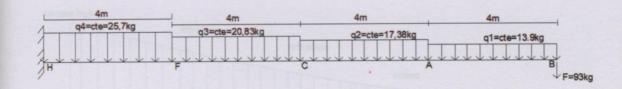
Peso del tramo 4

Peso = Vol .
$$\delta$$
 =

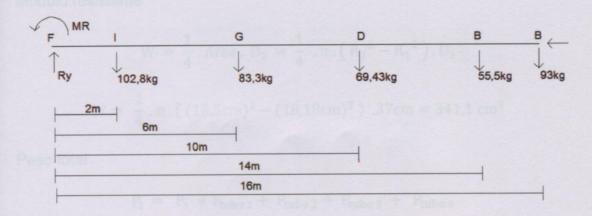
$$P_{\text{tubo }4} = \pi. (R_2^2 - R_1^2).L.\delta$$

$$P_{\text{tubo 4}} = \pi . ((0.185\text{m})^2 - (0.1818\text{m})^2).4 \text{ m}.7900 \frac{\text{kg}}{\text{m}^3}$$

$$P_{\text{tubo 4}} = 116,5 \text{ kg}$$


Fuerza del viento sobre el tramo

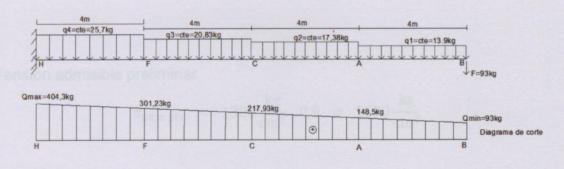
$$F_v = \frac{V^2}{16}$$
 . L. $D_2 = (33.33 \frac{m}{s})^2 \cdot \frac{1}{16}$. 4m. 0.37m = 102,8 kg

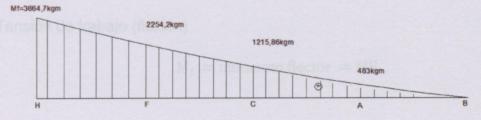

Carga del viento por metro

$$q_4 = \frac{102,8 \text{ kg}}{4 \text{ m}} = 25,7 \frac{\text{kg}}{\text{m}}$$

Análisis de carga

Diagrama de cuerpo libre


Calculamos


$$\sum fy = 0 = R_y - 102,8kg - 83,3kg - 69,43 - 55,5kg - 93kg = 0$$

$$R_y = 404,03 \text{ kg}$$

$$\sum MA = 0 = MR - 102,8 \text{kg}.2 \text{m} - 83,3 \text{kg}.6 \text{m} - 69,43 \text{kg}.10 \text{m}$$
$$- 55,5 \text{kg}.14 \text{m} - 93 \text{kg}.16 \text{m} = 0$$
$$MR = 3664,7 \text{ kgm}$$

Diagrama de esfuerzos

Módulo resistente

$$W = \frac{1}{4}$$
. Area. $D_2 = \frac{1}{4} . \pi . (R_2^2 - R_1^2) . D_2$

W =
$$\frac{1}{4} \cdot \pi \cdot ((18,5 \text{cm})^2 - (18,18 \text{cm})^2) \cdot .37 \text{cm} = 341,1 \text{ cm}^3$$

Peso total

$$P_t = P_e + P_{tubo 1} + P_{tubo 2} + P_{tubo 3} + P_{tubo 4}$$

$$P_t = 70 \text{kg} + 62,5 \text{kg} + 78,4 \text{kg} + 94,3 \text{kg} + 116,5 \text{kg} = 421,7 \text{kg}$$

Area de corte

$$A = \pi.(R_2^2 - R_1^2) = \pi.((18,5cm)^2 - (18,18cm)^2) = 36,9 cm^2$$

Tensión admisible

$$\sigma_{adm} = 1300 \frac{kg}{cm^2}$$

Tensión admisible preliminar

$$\sigma_{adm \, pre} = 1300 \frac{kg}{cm^2} .0.9 = 1170 \frac{kg}{cm^2}$$

Tensión de trabajo (flexion)

$$M_f$$
 = momento flector = MR

$$\sigma_{trab} \; = \; \frac{M_f}{W} + \frac{P_t}{A} \; \leq \; \sigma_{adm \; pre} \;$$

$$\sigma_{trab} = \frac{366470 \text{ kgcm}}{341,1 \text{ cm}^3} + \frac{421,7 \text{ kg}}{36,9 \text{ cm}^2} = 1085,8 \frac{\text{kg}}{\text{cm}^2}$$

$$\sigma_{\text{trab}} = 1085,8 \frac{\text{kg}}{\text{cm}^2} < 1170 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de corte

$$Q_{max} = R_v = 404,03 \text{ kg}$$

$$\tau_{\text{trab}} = \frac{Q_{\text{max}}}{A} = \frac{404,03 \text{ kg}}{36.9 \text{ cm}^2} = 10,9 \frac{\text{kg}}{\text{cm}^2}$$

Tensión de comparación

$$\sigma_{comp} = \sqrt{(\sigma_{trab})^2 + 3 \cdot (\tau_{trab})^2} \le \sigma_{adm}$$

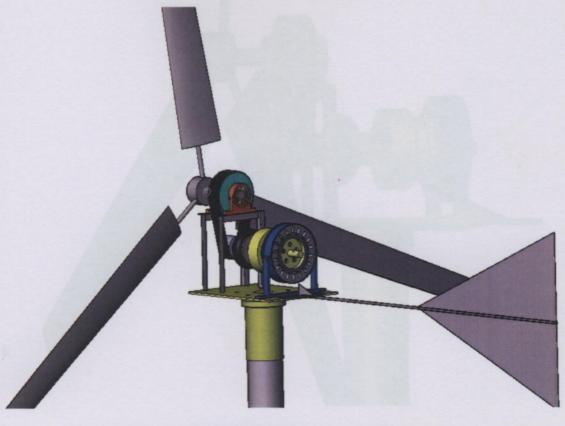
$$\sigma_{\text{comp}} = \sqrt{(1085, 8 \frac{\text{kg}}{\text{cm}^2})^2 + 3 \cdot (10, 9 \frac{\text{kg}}{\text{cm}^2})^2}$$

$$\sigma_{comp} = 1086 \ \frac{kg}{cm^2} \ < 1300 \ \frac{kg}{cm^2}$$

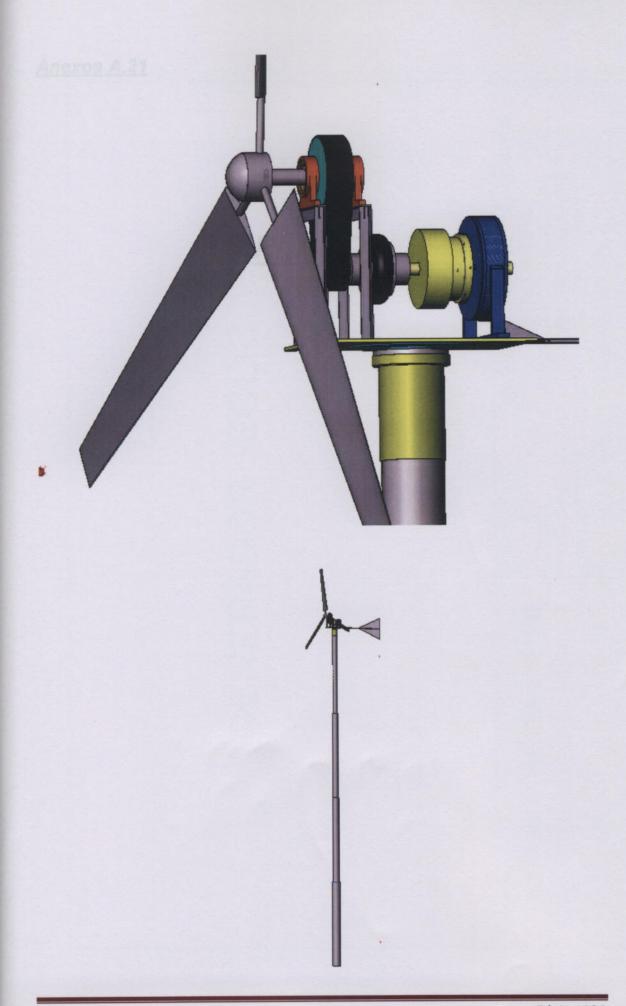
Por lo tanto el cuarto tramo verifica.

Costos

Al no ser una unidad de fabricación en serie y la mayorías de los elementos son de fabricación artesanal, los costos obtenidos son estimativos y orientativos.

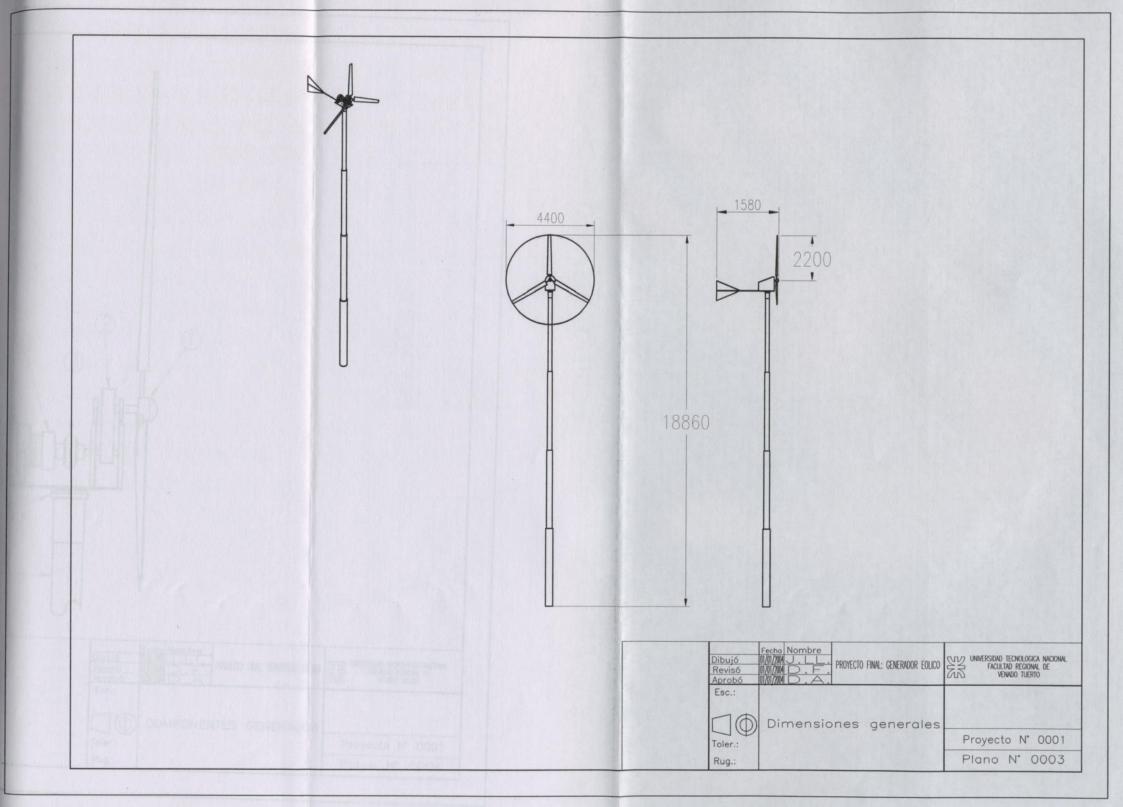

Itens	Descripción	Precio unitario	Cant.	Total (\$)	
1	Rodamiento SKF Modelo 6210	2	568		
2	Rodamiento SKF Modelo 6308	396	2	792 11970	
4	Fibra de vidrio tipo R c/resina y catalizador	399	30		
5	planchuela de huirro ángulo 1 1/4 x 1/8	162	1	162	
6	plancha de hierro 800mmX500mmx10mm	350	1	350	
7	Tubo estructural redondo 200mmx3,2mm	696	1	696	
8	Tubo estructural redondo 250mmx3,2mm	855	1	855	
9	Tubo estructural redondo 300mmx3,2mm	1400	1	1400	
10	Tubo estructural redondo 370mmx3,2mm	2900	1	2900	
11	Imanes Neodimio 50x30x10	400	12	4800	
12	alambre cobre 12 AWG	. 980	1	980	
13	Polea dentada 28D 14mm HTD	1700	1	1700	
14	Polea dentada 56D 14mm HTD	2400	1	2400	
15	Correa HTD 14mm 1190-14M/85	3200	1	3200	
16	Freno hidráulico FH90	15000	1	15000	
17	Módulo Rectificador MDS30/100	704	1	704	
18	Regulador Aero3	2073	1	2073	
19	Inversor Solar River2600TLS	20535	1	20535	
			Total (\$) =	71085	

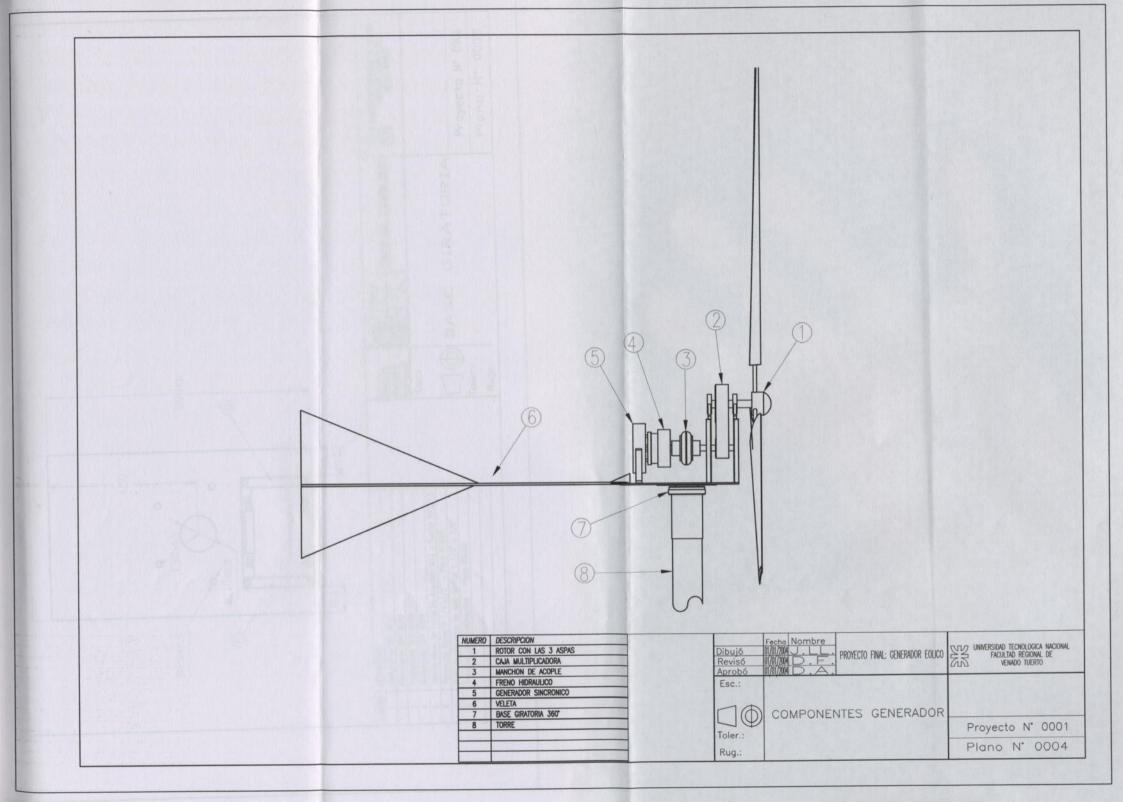
A esos costos de materiales le incluimos un 20% más por valores de materiales adicionales. Y no incluye la mano de obra.

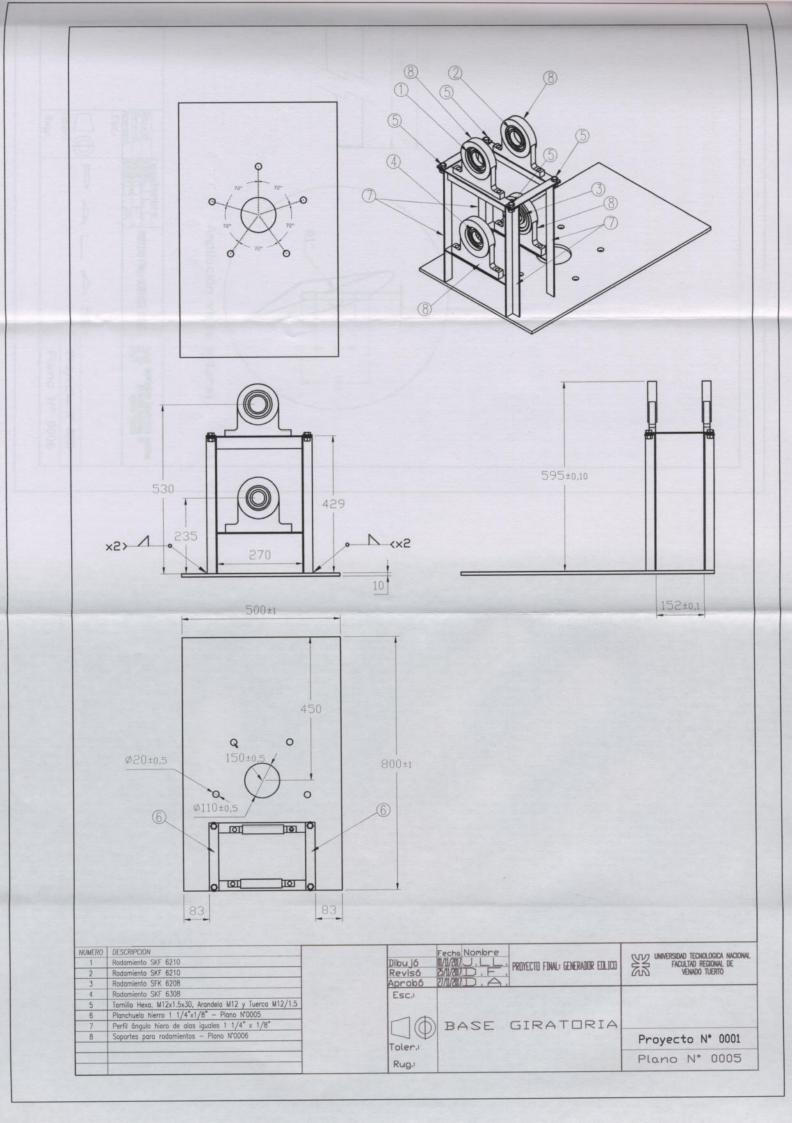

UTN-FRVT Página 132

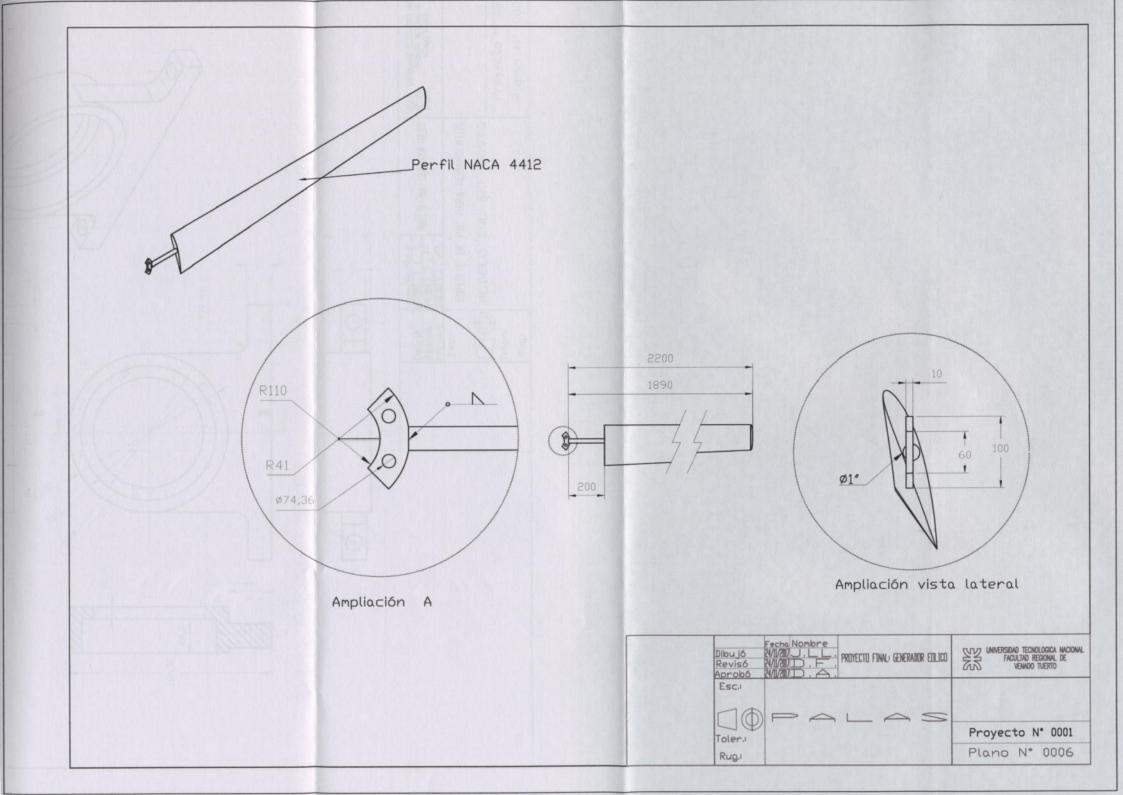
ANENOX A.1

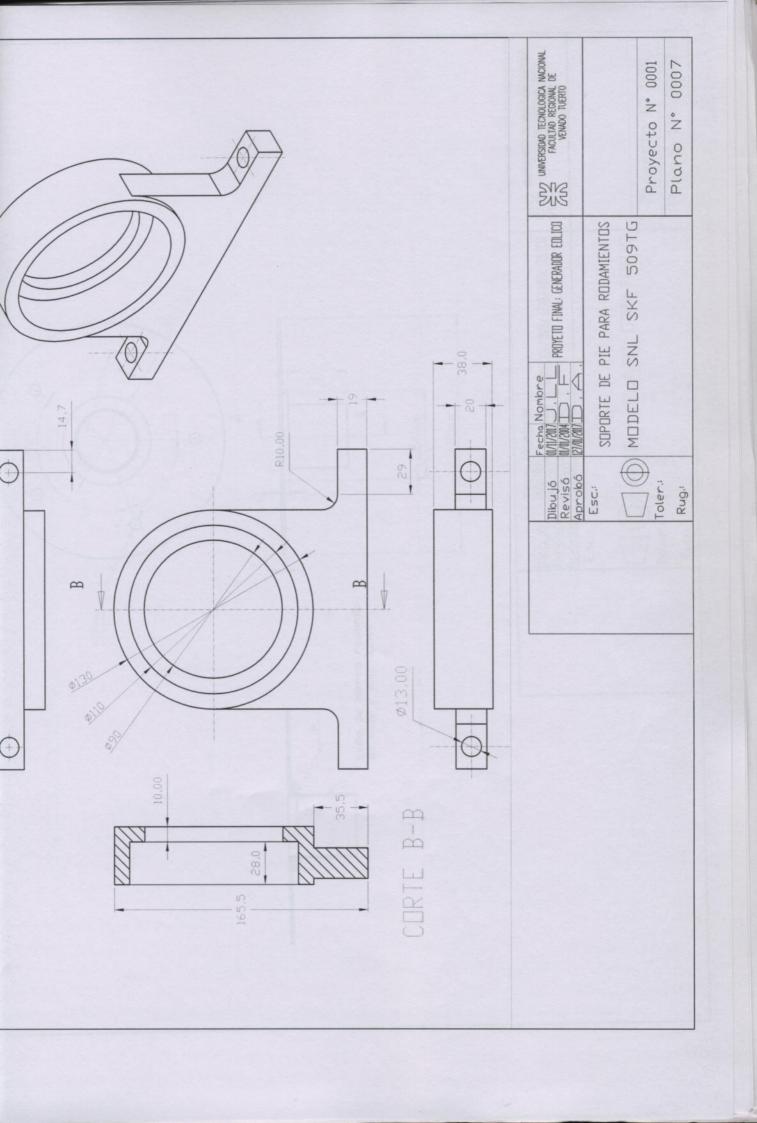
Aerogenerador diseñado en Solidworks

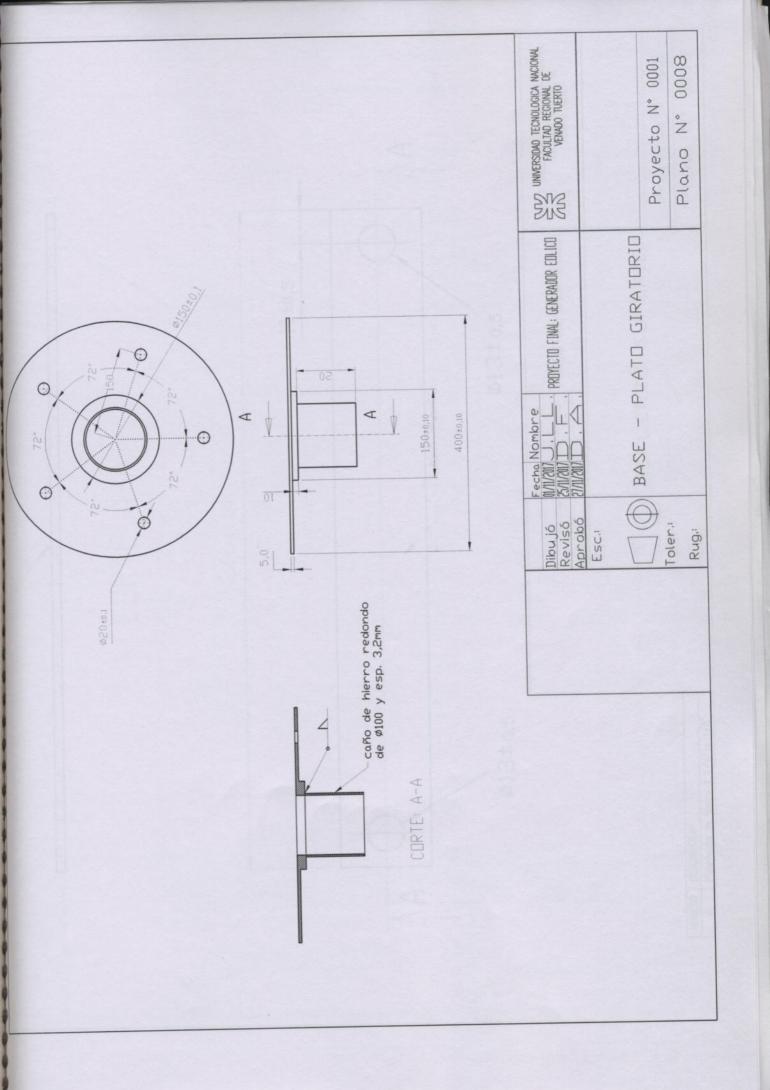

UTN-FRVT Página 134

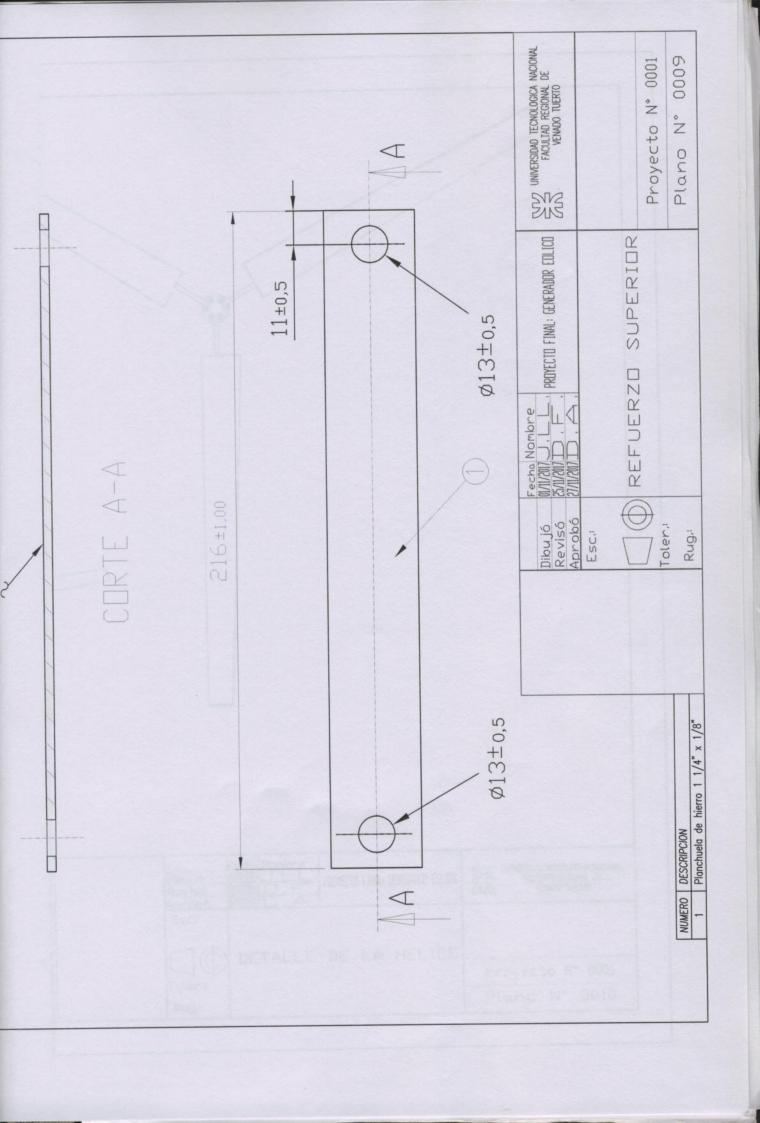

PLANOS

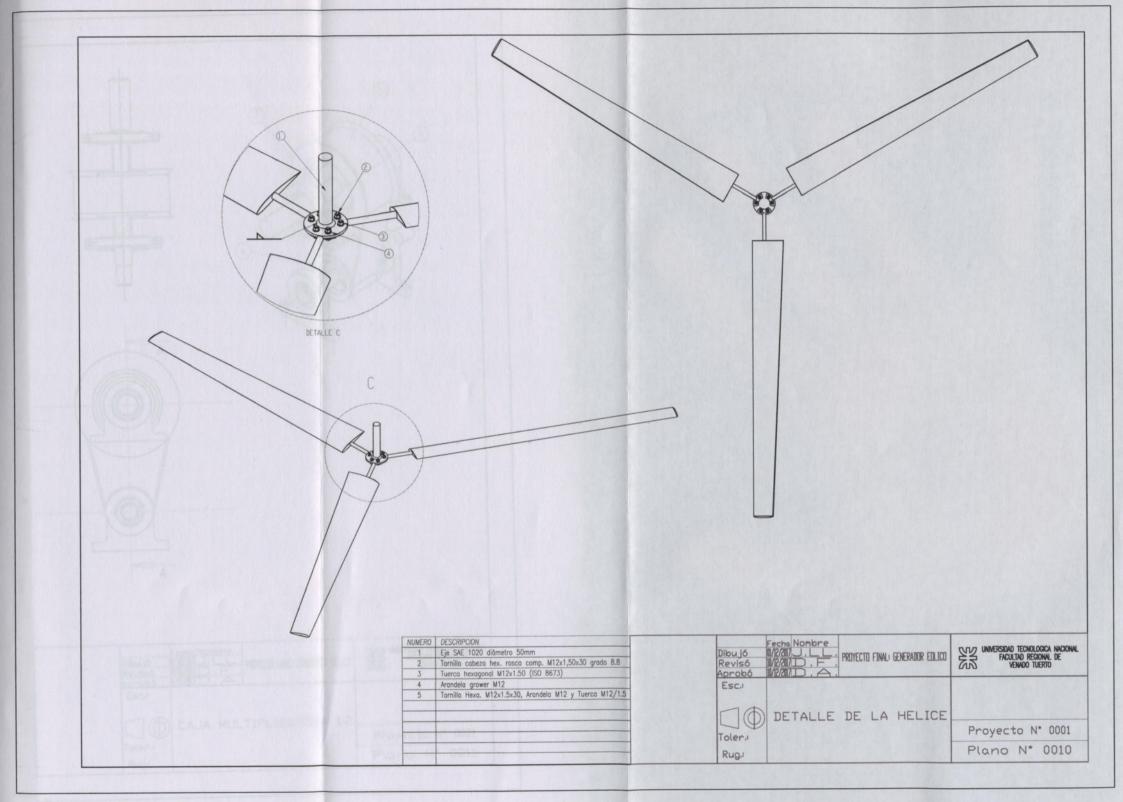

UTN-FRVT . Página 135

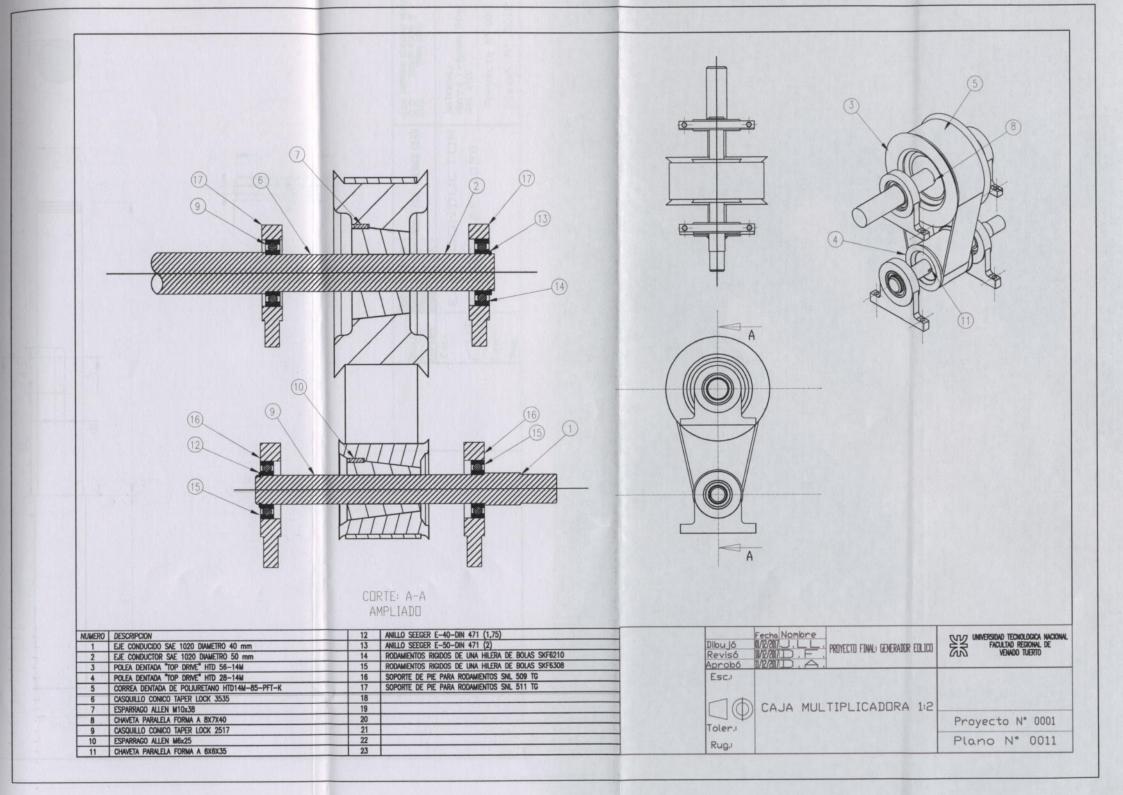

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL DE VENADO TUERTO GENERADOR EOLICO JFLL D.F PLANIMETRIA DEL GENERADOR EOLICO, DIEMNSIONES Y COMPONENTES DESCRIPCION CONJUNTO PROYECTO

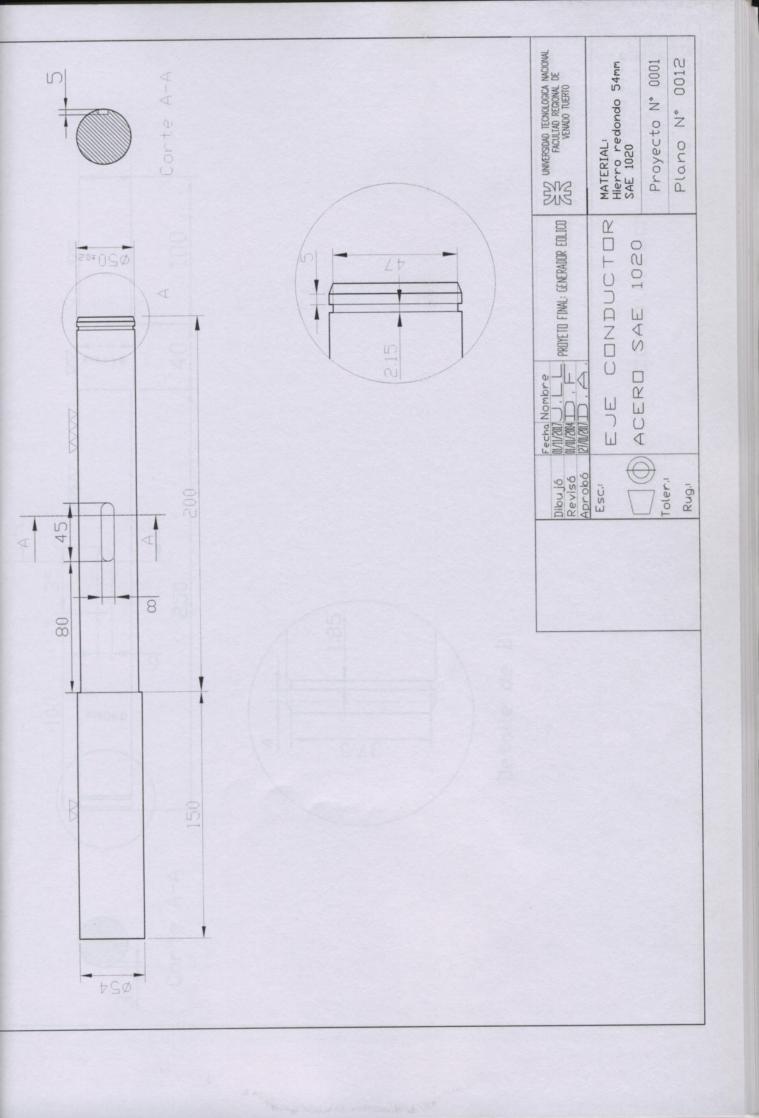

INDICE DE MODIFICACION														MODE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DESCRIPCION														CVZ UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL DE NOTATION TO THE PROPERTY OF THE PROP
PAG														GENERADOR EOLICO
INDICE DE MODIFICACION	0	0	0	0	0	0	0	0	0	0	0	0	0	PROTECTO
CION							,SNL							PAGINA DE RESUMEN
DESCRIPCION	CARATULA	PAGINA RESUMEN	AEROGENERADOR - DIMENSIONES GENERALES	COMPONENTES PRINCIPALES	BASE GIRATORIA 360"	ASPAS	SOPORTE DE PIE PARA RODAMIENTOS SKF/SNL	PLATO GIRATORIO DE BASE	REFUERZO SUPERIOR	HELICE	CONJUNTO CAJA MULTIPLICADORA	EJE CONDUCOR 50mm	EJE CONDUCIDO 40mm	0 1981/7 0939W, ATL
PAG	01		03 A							10 H			13 E	7,1081

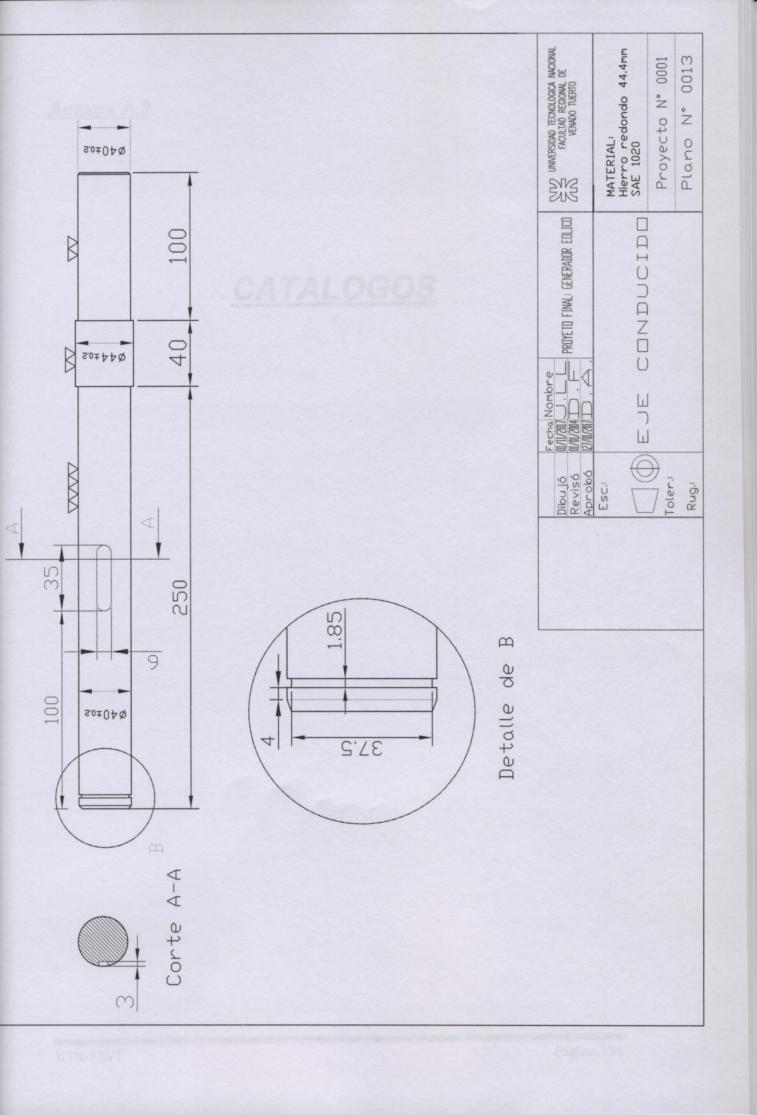












CATALOGOS

UTN-FRVT Página 136

CATÁLOGO DE PRODUCTOS

ACEROS AL CARBONO

SUMINISTRO LAMINADO Y TREFILADO

SAE 1020

Descripción: Acero de bajo carbono, blando, responde bien al trabajo en frío y al tratamiento térmico de cementación. Tiene un alto índice de soldabilidad, y por su alta tenacidad y baja resistencia mecánica es adecuado para elementos de maquinaria y usos convencionales de baja exigencia.

Usos: Se utiliza en ejes, cadenas, remaches, tornillos, pernos, sujetadores, engranajes, piñones, piezas de maquinaria, pasadores de baja resistencia, prensas y levas.

SAE 1020

Composici	ón química (%)
С	0,18 - 0,23
Mn	0,30 - 0,60
Р	0,04 Máx.
S	0,05 Máx.

Tratamiento térn Valores en °C	nico						
Forjado	820 - 1100						
Normalizado	870 - 890						
Revenido	150 - 180						
Recocido	65	0 - 700					
Templado	Agua	820 - 850					
Cementación	90	0 - 950					

Propiedades mecánio Laminado en caliente	as
Resistencia a la tracción	40 - 45 kgf/mm²
Limite de fluencia	27 kgf/mm ²
Elongación	20%
Reducción de área	50%
Maquinabilidad	72%
Dureza (HB)	110 - 140

Formas: Redonda, cuadrada y hexagonal



rras laminadas uso mecánico

is barras poseen características que las hacen aptas para mpleo en aplicaciones como la trefilación, el mecanizado y as de menor exigencia.

derivados de estos productos se emplean en las cipales industrias como la automotriz, la agroindustria y la almecánica.

acterísticas metalúrgicas

ciones

ras redondas ras hexagonales

didas nominales

ras redondas

mm) (pulgadas) (mm) (pulgadas) (mm) (pulgadas) 5.9 5/8 46.0 1-13/16 81.0 3-3/16 7.5 11/16 47.6 1-7/8 82.5 3-1/4 9.1 3/4 49.2 1-15/16 84.1 3-5/16 0.6 13/16 50.8 2 87.3 3-716 2.2 7/8 52.4 2-1/16 88.9 3-1/2 3.8 15/16 54.0 2-1/8 5.4 1 55.6 2-3/16 7.0 1-1/16 57.1 2-1/4 8.6 1-1/8 58.7 2-5/16 80.2 1-3/16 60.3 2-3/8 11.8 1-1/4 61.9 2-7/16 33.3 1-5/16 63.5 21/2												
(mm)	(pulgadas)	(mm)	(pulgadas)	(mm)	(pulgadas)							
5.9	5/8	46.0	1 - 13/16	81.0	3-3/16							
7.5	11/16	47.6	1-7/8	82.5	3-1/4							
9.1	3/4	49.2	1-15/16	84.1	3 - 5/16							
0.6	13/16	50.8	2	87.3	3-716							
2.2	7/8	52.4	2-1/16	88.9	3-1/2							
3.8	15/16	54.0	2-1/8									
5.4	1	55.6	2-3/16									
7.0	1-1/16	57.1	2-1/4									
28.6	1-1/8	58.7	2-5/16									
10.2	1-3/16	60.3	2-3/8									
11.8	1-1/4	61.9	2-7/16									
33.3	1-5/16	63.5	21/2									
34.9	1-3/8	66.5	2-5/8									
36.5	1-7/16	69.8	2-3/4									
38.1	1-1/2	71.4	2-13/16									
39.7	1-9/16	73.0	2-7/8									
41.3	1-5/8	74.6	2-15/16									
42.8	1-11/16	76.2	3									
111	1-3/4	77.8	3-1/16									

rras hexagonales (1)

	EC (Entre cara)											
(mm)	(pulgadas)	(mm)	(pulgadas)									
19.1	3/4	31.8	1-1/4									
20.6	13/16	33.3	1-5/16									
22.2	7/8	34.9	1-3/8									
23.8	15/16	36.5	17/16									
25.4	1	38.1	1-1/2									
27.0	1-1/16	39.7	1-9/16									
28.6	1-1/8	41.3	1-5/8									
30.2	1-3/16	42.8	1-11/16									

Barras laminadas mayores a 42,8 mm bajo pedido.

onsulte la posibilidad de producción de otras medidas.

Aceros disponibles en este producto

Aceros al carbono 1010X – 1020X – 1026X – 1040X – 1045X

Composición química según Tabla 1

Consulte la posibilidad de producción de otros aceros.

Rectitud

Rectitud máxima (acumulable): 4 mm/m

Tolerancias en medida

Diámetro / Entre cara (mm)	Tolerancia estándar (mm)	Ovalización/Dif. entre caras Máxima (mm)
15.9 <dn≤18.0< td=""><td>+/-0.35</td><td>0.52</td></dn≤18.0<>	+/-0.35	0.52
18.0 <dn≤30.0< td=""><td>+/-0.42</td><td>0.63</td></dn≤30.0<>	+/-0.42	0.63
30.0 <dn≤50.0< td=""><td>+/-0.50</td><td>0.75</td></dn≤50.0<>	+/-0.50	0.75
50.0 <dn≤80.0< td=""><td>+/- 0.60</td><td>0.90</td></dn≤80.0<>	+/- 0.60	0.90
80.0 <dn≤88.9< td=""><td>+/- 1.10</td><td>1.65</td></dn≤88.9<>	+/- 1.10	1.65

Tipos de corte

Corte de cizalla de fraccionamiento en caliente. Observaciones: consultar por otros tipos de corte.

Largos y tolerancias

Sección	Dn (mm)	Largo estándar (mm)	Tolerancia (mm)
	Dn ≤ 63.50	6000 (a)	0/+100
Redondos	63.5 <dn 88.9<="" td="" ≤=""><td>5000 a 7000</td><td>-</td></dn>	5000 a 7000	-
Hexágonos	EC ≤ 42.80	6000 (a)	0/+100

(a) Paquetes con barras cortas hasta 10% en largos mayores a 4.0 m

Observaciones: otros largos entre 6.0 y 12.0 m pueden ser fabricados por consulta previa.

Largos fijos distintos de 6.0 m, paquetes con 10% de barras cortas con largo mínimo del 75% del fijo.

Acondicionado e identificación

Peso: paquetes de 2.000 kg, aproximadamente (Otros pesos de paquetes pueden ser acordados)

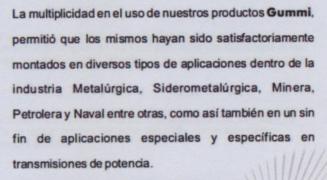
Identificación: 2 chapas con etiqueta

Acoplamientos Elásticos Tipo A

LINEAS ROTATIVAS
(011) 4214-5544 | 4293-7434

Envios diarios al interior

info@tisatransmisiones.com.ar



Gummi cuenta con una experiencia de más de 40 años en el rubro de las transmisiones mecánicas industriales y con una activa participación en distintos e importantes mercados industriales locales e internacionales, ofreciendo una amplia gama de acoplamientos elásticos, neumáticos e hidráulicos, como también embragues y frenos neumáticos industriales, estandarizados o especiales.

Gummi es sinónimo de Calidad y Servicio, haciendo de estas dos características nuestro paradigma más preciado. Todos los productos son fabricados según las Normas Internacionales ISO 9001, certificados desde el año 1999.

Un continuo e innovador desarrollo en nuestra línea de productos, a los cuales debemos sumarle un asesoramiento técnico brindado por nuestro departamento de ingeniería y orientado siempre a la aplicación práctica, nos ha permitido formar las bases que sustentan nuestros logros en materia de una asistencia técnica incomparable.

Largos años de experiencia y modernos sistemas de diseño con avanzados equipos de producción, convierten a nuestros productos **Gummi** en un componente de alta tecnología necesario para todo sistema de transmisión de calidad.

Gummi no es sólo un BUEN PRODUCTO, es CALIDAD, CONFIANZA, SEGURIDAD y TRANQUILIDAD.

TISH (9)

Características generales

Absorbe desalineamientos

El desalineamiento es el 50% de las causas de las roturas en rodamientos, además de otros elementos de las máquinas (sellos, retenes, engranajes), que normalmente no están preparados para la flexión introducida al eje. El acoplamiento Gummi, por ser elástico, absorbe desalineamientos, reduciendo los esfuerzos y aumentando la vida útil de los componentes.

Amortiguación de vibraciones y choques

La gran absorción de vibraciones y choques, proporciona una mayor vida útil a su equipamiento. La media de vibraciones que se transmiten en un sistema, de un lado al otro, es del orden del 70%, siendo este último minimizado por la capacidad de absorción del centro elástico.

Simple instalación

El reemplazo es más rápido por tratarse de un solo elemento. Utilizando tolerancias de alineación menores, aumenta la vida útil del centro elástico. No es necesario mover las partes para su reemplazo.

Simetria - Seguridad - Balanceo

Al no presentar cortes en el centro elástico, se garantiza el balanceo y seguridad al usuario.

Diversos modelos

- Espaciador (Back-Pull-Out) - Motores diésel - Desplazamiento axial - Grandes diámetros de ejes - Ejes flotantes - Limitadores de torque - Bloqueo de seguridad - Ejes cónicos (Motor Mill) - Ambientes agresivos

Sin Jubricación

Por sus características constructivas, ninguno de sus componentes requieren lubricación.

Economía

Aumenta el intervalo entre recambios, reduciendo el tiempo de parada de máquina. Economía en reposición de componentes, lubricantes e inventario. El centro elástico trabaja un tiempo prolongado sin sustituirlo.

Calidad asegurada

Producido bajo un Sistema de Aseguramiento de la Calidad y empleando materias primas de calidad superior.

Asesoramiento técnico permanente: A través de nuestros distribuidores oficiales o nuestro sitios web: www.gummiusa.com - www.gummi.com.ar - www.gummi.com.br

Al solicitar un Acoplamiento Elástico Gummi, deben ser informados los siguientes campos.

Ej: Acoplamiento modelo A 105 con dos cubos integrales y un espaciador L=250 mm

Antes de iniciar el montaje de un acoplamiento elástico Gummi, recomendamos leer atentamente las instrucciones de montaje. (ver pág. 8)

1- MODELO

De acuerdo a la selección (Tablas I y III)

2- TIPO DE CUBO

Informar el tipo de cubo seleccionado Sin indicación - Dos cubos normales

CN Cubo normal

CI Cubo integral

CX Cubo axial

EC Cubo normal para punta de ejes cónicos

ECI Cubo integral para punta de ejes cónicos

3- CONFIGURACION

EF Eje flotante

ES Espaciador

LT Limitador de torque

BS Trabas de seguridad

RE Recubrimiento especial

DF Disco de freno

CIN Cubo Invertido

APF Con polea de freno

CE Cubos encastrados

CF Con plato brida

CC Con cubo carretel

4- INFORMACIÓN SUPLEMENTARIA

Indicar dimensiones solicitadas

étodo de selección

Datos necesarios:

- Potencia en HP, CV o Kw.
- Velocidad de giro en R.P.M.
- Diámetros de los ejes.
- Factor de servicio (conforme a tabla II).

Selección rápida:

Multiplicar la potencia por el factor de servicio

HP x fs , CV x 1.014 x fs ó Kw x 1.34 x fs

El valor obtenido, igual o superior, se compara en la Tabla I, en la columna de velocidades (R.P.M.) correspondiente; la parte superior de la columna indica el tamaño de acople a utilizar. Verificar en la Tabla III el diámetro de cada uno de los ejes en función del máximo y del mínimo.

Tabla I - Temp. máx. en el acople 80°C

MODELO	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
RPM	20	25	30	35	45	50	60	70	80	90	95	105	120	140	155	165	170	200	240	300	350	400
100	0.5	0.8	1.1	1.6	2.9	6.0	8.9	16.3	22.5	30.0	33.8	43.8	70.0	120.0	136	170	207.5	356.3	610.0	1220.0	1681.3	2390.0
200	1.0	1.6	2.3	3.1	5.6	12.0	17.5	33.8	43.8	60.0	67.5	88.8	140.0	241.3	272	340	413.8	713.8	1220.0	2438.8	3363.8	4778.8
300	1.6	2.4	3.5	4.8	8.5	17.5	26.3	50.0	66.3	90.0	101.3	132.5	210.0	361.3	408	511	621.3	1070.0	1830.0	3658.8	5045.0	7168.8
400	2.1	3.1	4.6	6.4	11.3	23.8	35.0	66.3	87.5	120.0	135.0	177.5	280.0	481.3	545	682	828.8	1426.3	2438.8	4878.8	6726.3	9558.8
500	2.6	4.0	5.8	8.0	13.8	30.0	43.8	83.8	110.0	150.0	168.8	221.3	350.0	601.3	680	852	300000	1783.8	3048.8	6097.5	8407.5	11948.8
600	3.1	4.8	6.9	9.5	17.5	36.3	52.5	100.0	131.3	180.0	201.3	265.0	420.0	722.5	817	1022		2140.0	3656.8	7317.5	10090.0	14337.5
700	3.8	5.6	8.0	11.1	20.0	42.5	62.5	116.3	153.8	211.3	235.0	310.0	490.0	842.5	953	1192		2496.3	4268.8	8537.5	11771.3	16727.5
720	3.9	5.8	8.3	11.5	20.0	43.8	63.8	120.0	157.5	216.3	242.5	318.8	503.8	866.3	980	1226		2567.5	T 18 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	and the same	12107.5	17205.0
800	4.3	6.4	9.3	12.5	22.5	48.8	71.3	132.5	175.0	241,3	268.8	353.8	558.8	962.5	1090	1363	III I STEEL STATE	2853.8	Maria Cara	9756.3	13452.5	19117.5
850	4.5	6.8	9.8	13.8	23.8	51.3	75.0	141.3	186,3	256.3	286.3	376.3	593.8	1022.5	1158	1448	about more	3031.3	and the latest designation of the latest des	10366.3	14293.8	20312.5
900	4.8	7.1	10.4	13.8	25.0	53.8	80.0	150.0	197.5	271.3	302.5	398.8	628.8	1083.8	1225	1533		3210.0	The same of the same of	10976.3	15135.0	21506.3
1000	5.3	8.0	11.5	16.3	28.8	60.0	88.8	166.3	220.0	301.3	336.3	442.5	698.8	1203.8	1361	1703	-	3566.3				
1100	5.9	8.8	12.5	17.5	31.3	66.3	97.5	182.5	241.3	331.3	370.0	486.3	768.8	1323.8	1497	1874	-	3923.8	6707.5			
1150	6.1	9.1	13.8	18.8	32.5	68.8	101.3	191.3		346.3	386.3	508.8	803.8	1383.8	1565	1959		4101.3				
1200	6.4	9.5	13.8	18.8	33.8	72.5	106.3			361.3	403.8	531.3	838.8	1445.0	1633	2044	-	4636.3				
1300	6.9	10.4	15.0	21.3	36.3	78.8	115.0	NAME OF TAXABLE	285.0	391.3	437.5	575.0	908.8		1770 1906	2214		4993.8				
1400	7.4	11.1	16.3	22.5	40.0	83.8	123.8			- William	471.3	620.0	978.8	1685.0	2045	2555	2500.0	4555,0				
1500	8.0	12.0	17.5	23.8	42.5	90.0	132.5	250.0	328.8	451.3	505.0	663.8	1048.8	1926.3	2043	2000						
1600	8.5	12.5	18.8	25.0	45.0	The second	141.3			481.3	537.5	707.5	termina de la constitución de la	2046.3								
1700	9.0	13.8	20.0	27.5	48.8	102.5	150.0			526.3	588.8	775.0	1100.0	2040.0								
1750	9.3	13.8	20.0	27.5	50.0	105.0	155.0			541.3	605.0	796.3										
1800	9.5	13.8	21.3	28.8	51.3	120.0			438.8	STATE OF THE PARTY	No. of Contract of	885.0										
2000	10.6	16.3	22.5	36.3	63.8	135.0	-	N. M. MORELON.	-	677.5	756.3	996.3										
2250	12.0	20.0	28.8	40.0	71.3	150.0		416.3			841.3											
2500	15.0	22.5	31.3	43.8	77.5	-	243.8			827.5	925.0											
3000	16.3	23.8	35.0	I MINISTER OF	85.0		Section 1	498.8			1212.5											
3250	17.5	26.3	37.5	51.3	92.5	195.0												H.P.	Nomi	nales		
3500	18.8	27.5	-		98.8		310.0										P	ara to	dos lo	s valore	es	
3600	18.8	28.8	41.3	57.5	102.5	ALUMAN .											e			lebajo (de	
3750	20.0	30.0	43.8		106.3	226.3											RESE			cubos	E	

serán encastrados (CE)

Para rpm menores a 100 ver catálogo BR

 4000
 21.3
 31.3
 46.3
 63.8

 4500
 23.8
 36.3
 51.3
 71.3
 5000 26.2 40.0 57.5 80.0

Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

Motores a explosión:

Para motores con cuatro o más cilindros, adicionar 1.0 al factor de servicio seleccionado, para motores con menos cilindros, consultar.

FACTORES DE SERVICIO	(Aplica	ciones ge	enerales)				Tabla II
AGITADORES Líquidos Líquidos c/sólidos en	1.00	Mont	VADORES tacargas. la de pasajeros. Isultar fábrica)	1.75	Ro	PRESORA otativa. ensa.	1.00 1.50
suspensión. Líquidos con densidad variable.	1.25	EXT Mate Dens	RUSORAS erial de: sidad constante. sidad variable.	1.50	Ce Ce Pr	AQUINAS HERRAMIENTAS spillo. alandras. ensa de estampado. sscadora.	1.50 2.00 2.00 2.50
Centrifugas: Normales. Alta densidad y sobrecarga. Rotativas, a engranajes,	1.00 1.25	SOP	PLADORES trifugos.	1.00	De	EZCLADORAS e tambor. e concreto.	1.50 1.75
paletas o lóbulos. A pistón: De 3 o más cilindros.	1.50	Lóbu	ilos.	1.50	A	OLINOS martillos. bolas.	2.00 2.25
De 2 o un cilindro. De doble efecto.	2.50 2.50	Tiraj Tiraj	trífugos. e reforzado. e inducido. e de enfriamiento.	1.00 1.50 2.00 2.50	De	ORNOS e cemento, rotativos secadores.	2.00
TRITURADOR De piedra. COMPRESORES	2.75	GEN Carg	IERADORES ga uniforme.	1.00	D	ARANDA e lavadero. otativa.	1.00 1.50 2.50
Centrifugo. Rotativo. Alternativos: > 4 cil.	1.25 1.50 2.50		osoldadores. NCHES O PUENTES JAS		Vi	bratoria. RANSPORTADORES éreos, cintas, correas	
< 4 cil. (Consultar en fábrica)			raslación. acate principal.	1.75	di	scos, a tornillo. bratorios.	1.50 2.50
FACTORES DE SERVICI	O (Aplica	ciones e	speciales)				
DRAGAS Bombas, enrollador de cable, guinche de maniobra, zaranda.		1.75	ASERRADEROS Transportadores. Sierras. Descargadores de tambor.		1.50 1.75 2.00	PETROLEO Filtros de parafina. Equipos de bombeo.	1.25 2.00
Cortador. INDUSTRIAS ALIMENTICI Y DE BEBIDAS	IAS	2.00	Rolos de transporte. Mesa de transferencia: Sin reserva. Con reserva.		2.00 2.00 2.50	SIDERURGICA Bobinadora y desbobinadora. Formadora de espiras.	1.50
Envasadores y embotelladoras. Mezclador de masa, moled	lor	1.00	CERÁMICA Extrusora.		1.50	Trefiladora. Mesa de cilindros S/ reversión.	1.75 2.00 2.00
de carne, cortadores.		1.75	Molinos. Prensa.		2.00 2.25	C/ reversión. Alimentadora.	2.50 3.00
Calandras. Molinos. Mezcladores (Banbury).		2.00 2.25 2.50	CELULOSA Y PAPEL Bombas servicios. Bobinadora y desbobinador	a.	1.00 1.50 1.75	INDUSTRIA DEL AZUCAR Mesa inclinada. Molienda.	1.75
Conformadora de neumáticos. INDUSTRIA TEXTIL		2.50	Cilindros. Tela. Desfibradores. Calandras.		1.75 1.75 1.75 2.00	MINERACION Y PUERTO	
INDUSTRIA I EXTIL			- Culditului			Deenlazamiento máquina	2 00

Selección del cálculo por torque nominal (tn)

INDUSTRIA TEXTIL

Lavadora de ropa.

Bobinadora.

Cardas.

Calandra.

Se utiliza la siguiente fórmula conforme a la unidad de potencia:

1.50

1.50

tn: 706.17 x HP x fs R.P.M.

tn: 716.2 x CV x fs R.P.M.

Cortadores.

Prensas.

Lavadores.

Desecadores. Picadores.

Refinadores.

tn: 946.27 x Kw x fs R.P.M.

2.00

2.00

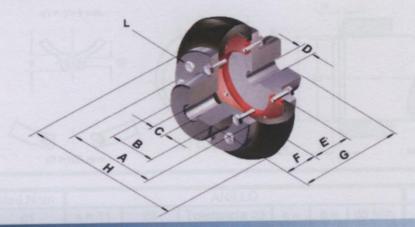
2.00

2.00

2.25

3.00

Se busca en la Tabla III el modelo cuyo torque Nominal sea igual o superior al calculado, verificar el diámetro de los ejes en función del máximo y el mínimo. (ver pág. 4)


Desplazamiento máquina. Elevación de lanza. Giro de lanza.

Rueda de descarga.

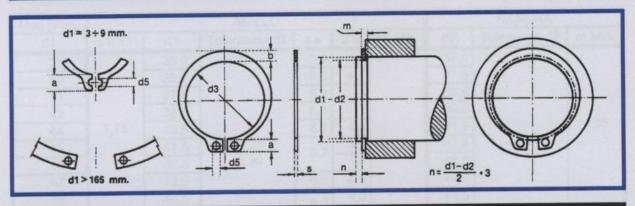
2.00 2.50 2.50 2.00

Con 2 cubos normales (fig. 1)

- A Ø Brida Cubo
- B Ø Cuello Cubo
- C Ø Máx. aleasaje
- D Ø Agujero piloto
- E Ancho centro
- F Ancho cubo
- G Long. total
- H Ø Centro
- L Tipo tornillo

-	4 11		a		۰	
-	-	-	-	•	۰	т

CON CUBO	NORMAL												BI	JLONE	S
MODELO	Torq. Nom. Nm	Angulo Torsión (°)	Peso (Kg.)	Gd2 (Kg m2)	A	В	C Máx	D Min	E	F	G	н		L- Cab	
A-20	38	2°	1.05	0.0017	74	36	20	10	30	25	80	95	12	1/4 X	3/4
A-25	56	5°	1.09	0.0018	74	36	23	10	30	25	80	95	12	1/4 X	3/4
A-30	82	20	2.40	0.0094	96	49	30	10	40	35	110	127	16	5/10 X	7/8
A-35	113	40	2.65	0.0098	96	49	32	10	40	35	110	127	16	5/16 X	7/10
A-45	250	3°	5.00	0.0382	127	70	40	15	50	45	140	167	20	5/16 X	
A-50	420	6°	5.32	0.0402	127	70	46	15	50	45	140	167	20	5/16 X	
A-60	620	5°	12.50	0.1065	169	100	55	25	65	60	185	224	24	3/0 X	
A-70	1170	90	13.30	0.1593	169	100	65	25	65	60	185	224	24	3/6 X	
A-80	1550	5°	24.90	0.594	218	116	75	30	90	80	250	302	20	1/2 X	
A-90	2170	6°	26.00	0.639	218	116	85	30	90	80	250	302	20	1/2 X	
A-95	2380	40	34.90	0.912	235	138	90	40	90	80	250	330	24	1/2 X	
A-105	3130	80	44.00	0.982	235	138	100	40	90	80	250	330	24	1/2 X	1 3/4
A-120/120	4940	5°	86.00	3.80	297	195	120	45	120	130	380	403	20	5/8 X	2 1/4
A-140/140	8500	90	94.00	3.82	297	195	140	45	120	130	380	403	20	5/8 X	2 1/4
A-155/155	9750	60	126.00	5.76	350	220	155	50	140	150	440	470	14	5/8 X	2 1/4
A-165/165	12200	10°	135.00	5.85	350	220	165	50	140	150	440	470	14	5/8 X	2 1/4
A-170/70	The state of the s		170.20	12.22		150	70	30		80	345				
A-170/130	14630	70	211.80	13.75	436	236	130	70	185	130	445	550	24	3/4 X	2 3/
A-170/170			242.80	17.65		276	170	120		180	545				
A-200/90			192.60	13.30		186	90	40		100	385				
A-200/140	25190	11°	202.40	13.75	436	200	140	70	185	130	445	550	24	3/4 X	2 3/
A-200/200	20100		276.80	19.20		276	200	120		180	545				
A-240/150	Marie San Park		364.70	51.50		225	150	100		160	556				
A-240/200	43060	40	447.40	55.35	535	290	200	100	236	180	596	740	60	³/4 X	3 1
A-240/240	40000		633.60	84.50		390	240	100		275	786				
A-300/150			370.00	50.70		225	150	110		160	556				
A-300/130			450.00	54.50		290	200	100		200	636				
A-300/250	86120	10°	640.00	69.40	535	350	250	100	236	275	786	740	60	3/4 X	3 1
	00120	10	695.00	83.70		390	300	100		275	786				
A-300/300 A-350/200			1049.00	453.20		290	200	120		200	735				
and the same of	118750	6°	1211.00	466.40	820	350		120	335	275	885	1130			
A-350/250	110730		2237.00	691.00		600		120		375	1085				
A-350/350	168750	10°	1219.00	459.20	820	350	The second second	120	335	275	885	1130			
A-400/250 A-400/400	108730	10	2245.00	697.00		600		120	10-10	375	1085				


Las dimensiones son exclusivamente como referencia y quedan sujetas a cambios sin previo aviso.

ANILLOS SEEGER PARA EJES

Anillos de Retención

DIN 471

Med.Nom.		- 7/0/ph	ANILLO		RO			RANURA	Sec. Si									
d1	sh 11	d3	Tolerancia d3	a≈	b≈	d5 Min.	d2	Tolerancia d2	m Min.									
3	0.4	2,7		1,9	0,8		2,8		0,50									
4	0,4	3,7	+0,04	2,2	0,9	1,0	3,8	-0,04										
5	0,6	4,7	-0,15	2,5	1,1		4,8	0,01	0,70									
6	0,7	5,6		2,7	1,3		5,7		0,80									
7	0,8	6,5	+0,06	3,1	1,4	1,2	6,7		0,90									
8	0,0	7,4	-0,18	3,2	1,5	1,2	7,6	-0,06										
9		8,4	0,10		1,7		8,6											
10		9,3		3,3		1,5	9,6											
11		10,2		0,0	1,8	.,,•	10,5	0.00										
12		11,0	10,40		0.0		11,5		440									
13	1,0	11,9		3,4	2,0		12,4		1,10									
14		12,9	+0,10	3,5	2,1		13,4	-0,11										
15		13,8	-0,36	3,6	2,2	1,7	14,3		- 3,03									
16		14,7		3,7			15,2											
17		15,7		3,8	2,3		16,2											
18	12	16,5		3,9	2,4		17,0											
19		17,5			2,5		18,0											
20		18,5		4,0	2,6	-	19,0											
21		12	19,5	+0,13	4,1			20,0	-0,15									
22			1.2	1.2	1.2	12	12	1.2	1.2	1,2	1.2	1.2	20,5	-0,42	4,2			21,0
23	.,-	21,5		4,3	2,9		22,0											
24	450	22,2		4,4	3,0 2,0		22,9	0.35	3,15									
25		23,2		1.5			23,9											
26		24,2		4,5			24,9 25,6											
27		24,9	+0,21	4,6		-	26,6											
28		25,9	-0,42	4,7		-	27,6											
29	-	26,9	40.59	4,8	3.4	-	28,6	4										
30	-	27,9	E LINE	5,0	3,5		29,3											
31	1,5	28,6			26	-	30,3		1,60									
32	-	29,6		5,2	3,7		31,3											
33	4.0	30,5	-	5,4			32,3		4,15									
34	-	32,2	+0,25		3.0		33,0											
35		33,2	-0,50	5,6	4,0		34,0											
36	1,75	34,2	- 0,00	5,7		-	35,0		1,85									
37 38	1,75	35,2	-	5,8			36,0											
38		35,2		3,0	4,2		50,0											

ANILLOS SEEGER PARA EJES

Anillos de Retención

DIN 471

Med.Nom.			ANILLO					RANURA	
d1	sh 11	d3	Tolerancia d3	a≈	b≈	d5 Min.	d2	Tolerancia d2	m Min.
39		36,0		5,9	4,3		37,0		
40		36,5		6,0	4,4		37,5		
41		37,5		6,2	4,5		38,5		
42		38,5		6,5	4,5		39,5		
44	1,75	40,5		6,6	4,6		41,5		1,85
45		41,5	+0,39	6,7	4,7		42,5	-0,25	
46		42,5	-0,90	0,7	4,8		43,5		
47		43,5		6,8	4,9		44,5		
48		44,5		6,9	5,0		45,5		
50		45,8		0,9	5,1	2,5	47,0		
52		47,8		7,0	5,2		49,0		
54		49,8		7,1	5,3		51,0		
55		50,8		7,2	5,4		52,0		
56	20	51,8		188	5,5		53,0		2,15
57	2,0	52,8		7,3	5,5		54,0		2,10
58		53,8			5,6		55,0		
60		55,8		7,4	5,8		57,0		
62		57,8		7,5	6,0		59,0		
63		58,8		7,6	6,2		60,0		
65		60,8		7,8	6,3		62,0	-0,30	1100
67		62,5	+0,46	7,9	6,4		64,0		
68		63,5	-1,10	8,0	6,5		65,0		
70		65,5		8,1	6,6	-	67,0		
72	2,5	67,5		8,2	6,8		69,0		2,65
75	2,5	70,5		8,4	7,0		72,0		
77	1	72,5		8,5			74,0		
78		73,5		8,6	7,3		75,0		W. S. S.
80		74,5		0,0	1,4	-	76,5		
82		76,5		8,7	7,6		78,5		
85		79,5		0,,,	7,8	-	81,5		
87		81,5			7,9		83,5		
88		82,5		8,8			84,5		
90		84,5			8,2		86,5		0.45
92	3,0	86,5		9,0		_	88,5		3,15
95		89,5		9,4	8,6		91,5		
97		91,5		-	8,8	4	93,5		
98		92,5		9,5	9,0		94,5		
100		94,5	+0,54	9,6		35	96,5		
102	1	95,0	-1,30	9,7		4	98,0		
105	1	98,0		9,9	9,3	4	101,0		
107	-	100,0		10,0	9,5	5	103,0		
108	4	101,0		40.4		- 32 5 5	104,0	The state of the s	4,15
110	4,0	103,0	A RESTRICT	10,1			106,0		4,10
112	1	105,0		10,3			108,0		
115	-	108,0		10,6			111,0		S Sales
117	0000	110,0	VILLETT D	10,8			113,0		
118		111,0		10,9	10,1		114,0		

REGULADOR AERO

Aplicación In-grid off-grid

VENTAJAS

AC A DC

PANTALLA LCD
RETROILUMINADA
Y LEDS
LUMINOSOS

PARADA DE SEGURIDAD

ELECCIÓN DE TIPO DE BATERÍA

Los reguladores sont elementos indispensables para proteger la instalación, optimizar la carga y aumentar el ciclo de vida de los acumuladores para una instalación aislada. Protegerá también el inversor en una conexión a red.

Los reguladores SOLENER® vienen provistos de una pantalla LCD con leds que te permitirán observar el funcionamiento en curso.

La elección debe hacerse en función de la potencia deseada.

	REG	IULA	DOI	KAE	KU	MIS PARK		Aktor!
Modelo	AER 1	AER 2	AER 3	AER 5	AER 7,5	AER 10	AER 15	AER 20
	A STATE	Dat	os técnic	os				
Tensión de la batería			24 / 48 Vdc			24 / 48 / 300 Vdc	300 / 5	
Potencia de entrada máxima	1.000 W	2.000 W	3.000 W	5.000 W	7.500 W	10.000 W	15.000 W	20.000 V
Desconexión automática de la carga					Sí			
Sonda de temperatura de la batería					Sí			
Compensación de temperatura					Sí			
Consumo en espera					< 15 m	A		
Lectura de información de carga				Pantall	a LCD y LEG	os luminosos		
Idiomas disponibles				Francés,	inglés, espa	nnol, portugués		
Toma de tierra	SHEET ST				Sí			
		Datos	predefin	nidos				
Programable				Elecc	ión del tipo	de batería		
Carga de absorción / profunda					Sí			
Carga de flotación	1990				Sí			
Carga de ecualización					Sí			
Desconexión de carga	100000		≥2	29,4 V (prog	gramable se	egún tipo de batería)	
Reconexión de carga			≤	26 V (progr	amable se	gún tipo de batería)		
	a Familia	Dispositi	ivo de pro	otección	Philippe 6			
Cortocircuito	an.	- 4	4111		Sí			
Inversión de polaridad	PERM				No			
onexión / Desconexión automática batería					Sí			
Exceso de temperatura	Ingging.			Sí pa	ra tempera	turas > 80°C		
Sobretensión			Descone	xión a 120,	5% de la te	nsión nominal de la	batería	
	S CONTRACT	Dat	os genera	ales				
Dimensión en mm (A x A x L)					810 x 282	x 212		
Transformador	En la	carcasa *			Separa	do de la carcasa (2 p	oartes)	
Peso	3	5 Kg			20	Kg + transformado	r	
Rango de temperatura de trabajo	TRAPA				de -10°C a	+50°C		
Índice de protección (IP)					IP 2	0		
Normas	TO SHARE			New York	CE			

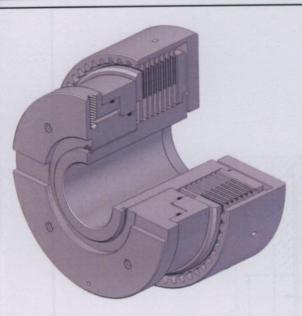
APLICACIONES:

EÓLICA

AISLADAS

INYECCIÓN A LA RED

AUTOCONSUMO



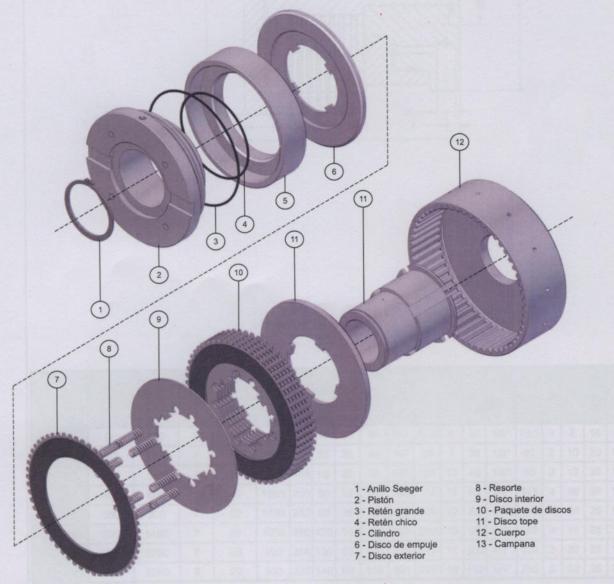
EMBRAGUES Y FRENOS HIDRAULICOS MULTIDISCO

EMBRAGUES HIDRAULICOS FRENOS HIDRAULICOS

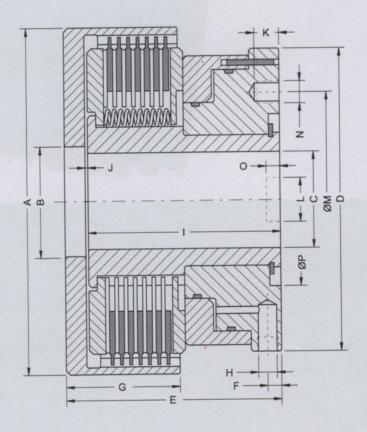
FRENO HIDRAULICO MULTIDISCO

Estos frenos hidráulicos multidisco no requieren regulación, cualidad muy importante ya que en ningún momento necesitan ajustes, pudiendo, en consecuencia, colocarse en lugares inaccesibles.

Pueden trabajar en seco y con lubricación por goteo, permitiendo en este caso una gran frecuencia de maniobra.


Las láminas exteriores revestidas con bronce sinterizado le permiten al freno trabajar en las más severas condiciones con el menor desgaste.

Destacamos algunos puntos importantes: facilidad de montaje y desmontaje, mínima dimensión axial y diametral, máxima robustez mecánica y absoluta intercambiabilidad de sus partes.


Los materiales utilizados y tratamientos térmicos empleados en los frenos hidráulicos les aseguran prolongada vida útil.

La sujeción del freno se hace centrándolo por el diámetro P y fijándolo mediante los agujeros roscados N y los chaveteros L.

FORMA CONSTRUCTIVA TIPICA



DATOS TECNICOS

TIPO	Torque dinám. Nm	Torque estát. Nm		Q bomba L/min		A	B H7	H	7 max	D	E	F	G	H Gas	l h9	J	к	L H8	M	N	0	P H8
FH-9	90	150	7	12	2500	120	48	20	36	122	77,5	8	32	1/8"	70,5	1	8	16	90	M8	5	72
FH-15	150	250	7	17	2000	145	55	25	45	147	90	9	39	1/8"	80	2	10	20	100	M10	6	85
FH-22	220	360	7	20	2000	168	68	30	55	170	101	10	46	1/8"	90	3	12	20	116	M10	6	100
FH-36	360	600	7	20	1600	200	80	32	62	202	117	11	65	1/4"	118	4	16	20	130	M12	6	114
FH-55	550	900	7	20	1300	252	80	36	70	220	156	12	83	1/4"	140	1	24	25	160	M12	6	125
FH-90	900	1450	7	20	1000	280	120	50	90	250	200	15	90	1/4"	185	3	13	25	170	M12	8	150
FH-130	1300	2000	7	20	900	305	130	55	100	275	215	16	100	1/4"	190	3	20	25	185	M16	8	150
FH-200	2000	2250	9	20	800	335	140	60	110	300	225	16	110	1/4"	205	3	20	25	200	M16	8	160

IVERSOR CON CONEXIÓN A RED - SolarRiver 2600TL-S

* VALOR PARA PAGO AL CONTADO EXPRESADO EN PESOS ARGENTINOS CON IVA INCLUIDO, SEGÚN LA COTIZACIÓN DEL DÓLAR.

VENTAJAS

Alta potencia de pico

Tamaño y peso reducidos

MPPT de alta velocidad para el seguimiento en tiempo real de energía y la mejora de la recolección de energía

Operación sin transformador para una mayor eficacia al 97%

Protección IP65

Certificaciones III v TÜV

Fácil de instalar y usar, seguro y fiable

Pantalla LCD multi-idioma

Construcción robusta

PROTECCIONES DEL EQUIPO

Monitorización de toma de tierra y de red

Inversion polaridad

Cortocircuito

Monitorización de corriente residual omnipolar

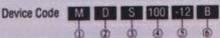
Protección I / II (DC) -según IEC 62103

Categoría III (AC) de sobretensión -según IEC 60664-1

Bridge Rectifier Module

atures

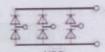
Base & chip insulation AC voltage 2500V nternational standard packing Excellent temperature feature


Easy to install

Popular size OW VEM

Applications

- Instrument's DC powers upply
- PWM frequency transformet
- Input rectificate power supply
- DC motor field power supply
- Switch power supply input rectificate


Ordering Information Table

- -Power Module
- T=thyristor modules 2 -D=diode modules
 - F=diode-thyristor modules
 - H=with free wheel diode modules
- 3 -S=three phase Q=single phase
- 4 -Current Code=IF(AV)/IT(AV)
- 5 -Voltage code=Code × 100=VRBM
- B=Sanrex type 6 -None=Fuji type
 - D=IXYS type C=IR type

rt number type & circuit

HREE-PHASE BRIDGE RECTIFIER MODULES (MDS)

HKEE-PHASE			THE IER MED CO			THE RESIDENCE			I	Ric	T _{jm}	Viso	
	100	QT _C	VRRM	VFMC	UlfM	IRRM	IF(AV)	IF(RMS)	ITSM				Outline
Туре	A	°C	V	V	A	mA	A	A	A×10 ³	°C/W	°C	V(AC)	
MDS60	60	100	600-2000	1.55	60	8	20	39	0.75	0.55	150	2500	M16/
MDS80	80	100	600-2000	1.47	80	8	25	47	1.00	0.32	150	2500	M17/
MDS100	100	100	600-2000	1.53	100	10	33	51	1.50	0.24	150	2500	M18
MDS150	150	100	600-2000	1.50	150	10	50	71	2.50	0.15	150	2500	M19/
MDS200	200	100	600-2000	1.47	200	10	75	105	2.50	0.15	150	2500	M20
MDS250	250	100	600-2000	1.47	250	10	100	157	2.75	0.14	150	2500	IVIZO
MDS300	300	100	600-2000	1.48	300	9	125	200	2.90	0.14	150	2500	M21
THE RESERVE OF THE PARTY OF THE	400	100	600-2000	1.45	400	10	150	240	2.95	0.13	150	2500	IVIZI
MDS400	500	100	600-2000	1.49	500	10	200	320	3.15	0.12	150	2500	M22
MDS500	-	-		1.49	600	10	250	400	3.50	0.10	150	2500	IVIZZ
MDS600	600	100	600-2000	1.49	600	10	250	400	3.30	0.10	100	2000	

INGLE-PHASE BRIDGE RECTIFIER MODULES (MDQ)

NOLL 1 III		Tc	V _{RRM}	VFMC	DIEM	IRRM	I _{F(AV)}	I _{F(RMS)}	ITSM	Rjc	T _{jm}	Viso	Outline
Type	A	°C	V	V	A	mA	A	A	A×10 ³	°C/W	°C	V(AC)	Outilite
MDQ60	60	100	600-2000	1.55	60	8	30	60	0.75	0.55	150	2500	M16/
MDQ80	80	100	600-2000	1.47	80	8	40	70	1.00	0.32	150	2500	M17/
MDQ100	100	100	600-2000	1.53	150	10	50	86	1.50	0.24	150	2500	M18
MDQ100	150	100	600-2000	1.47	230	10	75	106	2.00	0.15	150	2500	M19/
MDQ150	200	100	600-2000	1.50	315	10	100	157	2.50	0.15	150	2500	M20
MDQ200	250	100	600-2000	1.48	380	8	125	200	2.75	0.14	150	2500	10120
	300	100	600-2000	1.50	450	10	150	240	2.90	0.13	150	2500	M21
MDQ300	400	100	600-2000	1.50	500	9	200	320	3.20	0.12	150	2500	IVIZI
MDQ400 MDQ500	500	100	600-2000	1.53	600	10	250	400	3.50	0.10	150	2500	M22
MDQS00	300	100	000-2000	1,00	100	1							

Poleas Dentadas

NORMAS: ISO5294-DIN7721

INTRODUCCIÓN

Estecatálogo es una síntes is de la gama completa de la spolea s denta das.

Estaspoleastienen los fresados longitudina les axiales igualmente espaciados, recortados en susuperficie periférica de modo que tenga un acoplamiento correcto con los dientes de la correa al entraren la ranura correspondiente y o hagan con un rozamiento insignificante.

 $\Gammaodas la spole as destocktien en un m\'inimoju ego de a coplamiento con la correa correspondiente.$

Eldiámetroprimitivo de la polea essi empremas grande que su diámetro exterior.

Identificacionde las poleas

aspoleasdentadas estánreferenciadasmedianteuncódigoconvencionalformadoportresgrupos.

I primer grupo indica elnumero de dientes. El segundo indica elpasodeldentado(talcomoseprecisaenta cabeceradecadatabla). Eltercergrupoindica el anchodela correa que se utilizará en dichapolea:

Paralaspoleas XL, L, H, XH, XXH, elancho de la correa se indicará en centésimas depulgada(100=1").

Ej.: PoleadentadaPD

15	L	100
N° dientes	Paso	Anchode lacorrea (1")

 $Paralas poleas TOPDRIVE {\tt \$} \ HTDy SuperTorque el ancho de la scorreas se indica en milímetros.$

Ej.: PoleadentadaHTD

34	8M	50
N° dientes	Paso	Anchode lacorrea (mm)

 $En caso de pole as denta das conbujec\'onico SERSIT^{\circledR} al c\'odigo convenciona la nterior mente descrito se le constant de la constant de la$

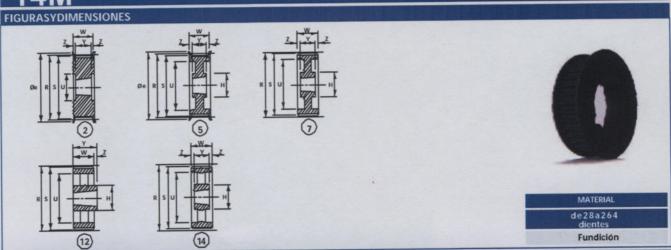
añadirán lassiglas "TL".

34	8M	50	TL
N° dientes	Paso	Anchode lacorrea (mm)	Taper Lock

paralaspoleasdentadasmétricas(T2.5,T5,T10,T20,AT5,AT10),elprimergrupodeladescripciónindicaráel anchototal dela polea en mm., el segundo el paso yel tercero el número de dientes

Ej.: Poleadentadamétrica

Г	40	T10	20
	nchototal elapolea (mm)	Paso	N° dientes



Poleas Dentadas "Top Drive®-HTD" NORMAS: ISO5294-DIN7721

POLEA PARA TAPER-LOCK

		intes							4M40					4M55 /=70(mm					M85 02(mm)		
Referencia	Valonas	N. die	R Ø (mm)	S Ø (mm)	e Ø (mm)	U Ø (mm)	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper
28-14M	F	28	124,78	121,98	134	98	2		32	11	2012	2		32	19	2012	2	-	45	28,5	2517
29-14M	F	29	129,23	126,44	134	100	2	-	32	11	2012	2	-	32	19	2012	2		45	28,5	2517
30-14M	F	30	133,69	130,90	142	100	2		32	11	2012	2		45	12,5	2517	2		45	28,5	2517
32-14M	F	32	142,60	139,81	150	104	2		32	11	2012	2		45	12,5	2517	2		45	28,5	2517
34-14M	F	34	151,52	148,72	158	110	2		45	4,5	2517	2	*	45	12,5	2517	2		45	28,5	2517
36-14M	F	36	160,43	157,63	166	120	2		45	4,5	2517	2		45	12,5	2517	2		51	25,5	3020
38-14M	F	38	169,34	166,55	177	130	2		45	4,5	2517	2	•	45	12,5	2517	2		51	25,5	3020
40-14M	F	40	178,25	175,46	186	138	2		45	4,5	2517	2		45	12,5	2517	2		51	25,5	3020
44-14M	F	44	196,08	193,28	209	154	2		51	1,5	3020	2		51	9,5	3020	2		76	13	3030
48-14M	F	48	213,90	211,11	216	172	2		51	1,5	3020	2	-	51	9,5	3020	2		76	13	3030
56-14M	F	56	249,55	246,76	261	207	5	146	51	1,5	3020	5	146	51	9,5	3020	2		89	6,5	3535
64-14M	F	64	285,21	282,41	288	243	5	146	51	1,5	3020	5	146	51	9,5	3020	5	178	89	6,5	3535
72-14M		72	320,86	318,06		279	7	146	51	1,5	3020	7	146	51	9,5	3020	7	178	89	6,5	3535
80-14M		80	356,51	353,71	-	314	14	146	51	1,5	3020	. 14	146	51	9,5	3020	14	178	89	6,5	3535
90-14M		90	401.07	398.28		359	14	146	51	1,5	3020	14	146	51	9,5	3020	14	178	89	6,5	3535
112-14M		112	499,11	496.32		457	14	146	51	1,5	3020	14	146	51	9,5	3020	14	178	89	6,5	3535
144-14M		144		The second second second		600	14	146	51	1,5	3020	14	146	51	9,5	3020	14	178	89	6,5	3535
168-14M		168	748,66	745,87		705	14	146	51	1,5	3020	14	146	51	9.5	3020	14	178	89	6,5	3535
192-14M		192		852,82	-	812	12	178	89	35	3535	12	178	89	19	3535	14	215	102		4040
216-14M		216	962.57	959,77		920	12	178	89	35	3535	12	178	89	19	3535	14	215	102		4040
264-14M		-	1176,47			1133	12	178	89	35 14M	3535 115	12	178	89	19	3535	14	215 4M170	102		4040

204-14101	,		70,47				A		14M115 W=133(mm					14M170 W=187(mm)		
Referencia	Velone	Ne die ntes	R Ø (mm)	S Ø (mm)	e Ø (mm)	Ø (mm)	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper	Figura	H Ø(mm)	Y (mm)	Z (mm)	Ref. Taper
28-14M	F	28	124,78	121,98	134	98	2		45	44	2517					
29-14M	F	29	129,23	126,44	134	100	2		45	44	2517					
30-14M	F	30	133,69	130,90	142	100	2		45	44	2517					
32-14M	F	32	142,60	139,81	150	104	2		45	44	2517					
34-14M	F	34	151,52	148,72	158	110	2		45	44	2517					
36-14M	F	36	160,43	157,63	166	120	2		51	41	3020			7/	CC C	3030
38-14M	F	38	169,34	166,55	177	130	2		51	41	3020	2		76	55,5	
40-14M	F	40	178,25	175,46	186	138	2		51	41	3020	2		76	55,5	3030 3535
44-14M	F	44	196.08	193,28	209	154	2		76	28,5	3030	2	10.00	89	49	100000000000000000000000000000000000000
48-14M	F	48	213.90	211,11	216	172	2		76	28,5	3030	2		89	49	3535
56-14M	F	56	249.55	246,76	261	207	2		89	22	3535	2		89	49	3535
64-14M	F	64	285.21	282,41		243	5	178	89	22	3535	2		102	42,5	4040
72-14M		72	320,86	CONTRACTOR CONTRACTOR		279	7	178	89	22	3535	7	215	102	42,5	4040
80-14M		80	356.51	353,71	_	314	14	178	89	22	3535	7	215	102	42,5	4040
90-14M		90	401,07	398.28		359	14	178	89	22	3535	14	215	102	42,5	4040
112-14M		112	499,11	496.32		457	14	178	89	22	3535	14	267	127	30	5050
144-14M		144	641.71	638.92		600	14	215	102	15,5	4040	14	267	127	30	5050
168-14M		168	748.66		_	705	14	215	102	15.5	4040	14	267	127	30	5050
192-14M		192	855,62	THE RESIDENCE OF THE PARTY OF T		812	14	215	102	15.5	4040	14	267	127	30	5050
216-14M		216	962.57	-		920	14	215	102	15.5	4040	14	267	127	30	5050
264-14M			1176,47			1133	14	267	127	3	5050	14	267	127	30	5050

DINAMICADistribuciones, sa BARCELONA-MADRID-BILBAO-OURENSE

Tel.:902198131 - dinamica@dinamica.net - www.dinamica.net

Página 10

Página 44

3 Datos del producto 2 Recomendaciones 1 Información del producto Soporte de pie SNL para rodamientos Página 10 Página 3 sobre manguito de fijación da 40-55 mm **Obturaciones Taconite** Obturaciones de laberinto Obturaciones de doble labio Diseño ND Diseño S Diseño G Eje Soporte Designaciones Masa Dimensiones Soporte Componentes Solo Obturaciones Tapa completo con H₁ H₂ J N₁ G A₁ H da lateral dos obturaciones soporte kg mm mm TSN 509 G **ASNH 509 SNL 509 SNL 509 TG** 60 109 60 25 170 205 20 15 12 2,90 40 85 **ASNH 509** SNL 509 TA SNL 509 TC **SNL 509 TSN 509 A SNL 509 TSN 509 C ASNH 509** SNL 509 TS SNL 509 TND **SNL 509 TSN 509 S ASNH 509** SNL 509 **TSN 509 ND ASNH 509** SNL 511-609 SNL 511-609 SNL 511-609 SNL 511-609 SNL 511-609 ASNH 511-609 **SNL 609 TG** TSN 609 G 4,40 70 127 70 28 210 255 24 18 95 TSN 609 A ASNH 511-609 SNL 609 TA SNL 609 TC TSN 609 C ASNH 511-609 ASNH 511-609 TSN 609 S **SNL 609 TS** ASNH 511-609 **TSN 609 ND** SNL 609 TND TSN 510 G **ASNH 510-608** SNL 510-608 205 20 15 12 3.20 **SNL 510 TG** 113 60 25 170 45 90 TSN 510 A ASNH 510-608 **SNL 510 TA** SNL 510-608 TSN 510 C **ASNH 510-608** SNL 510-608 **SNL 510 TC ASNH 510-608** SNL 510-608 **TSN 510 S SNL 510 TS** ASNH 510-608 **TSN 510 ND** SNL 510 TND SNL 510-608 ASNH 512-610 ASNH 512-610 SNL 512-610 TSN 610 G **SNL 610 TG** 5 10 105 70 133 70 30 210 255 24 18 16 **SNL 610 TA** SNL 512-610 TSN 610 A ASNH 512-610 **SNL 610 TC** SNL 512-610 **TSN 610 C** ASNH 512-610 SNL 512-610 **TSN 610 S SNL 610 TS** ASNH 512-610 SNL 512-610 **TSN 610 ND** SNL 610 TND ASNH 511-609 **SNL 511 TG** SNL 511-609 TSN 511 G 70 128 70 28 210 255 24 18 16 4,40 50 95 SNL 511 TA SNL 511 TC SNL 511 TS TSN 511 A TSN 511 C ASNH 511-609 ASNH 511-609 SNL 511-609 SNL 511-609 SNL 511-609 TSN 511 S ASNH 511-609 **TSN 511 ND** ASNH 511-609 SNL 511 TND SNL 511-609 ASNH 513-611 SNL 611 TG SNL 611 TA SNL 513-611 TSN 611 G 110 80 148 80 30 230 18 6,50 275 24 16 TSN 611 A ASNH 513-611 SNL 513-611 TSN 611 C ASNH 513-611 SNL 513-611 **SNL 611 TC** TSN 611 S **ASNH 513-611** SNL 513-611 **SNL 611 TS** ASNH 513-611 SNL 513-611 **TSN 611 ND** SNL 611 TND TSN 512 G ASNH 512-610 SNL 512-610 **SNL 512 TG** 105 70 134 70 30 210 255 24 18 16 5.10 55 TSN 512 A TSN 512 C SNL 512-610 ASNH 512-610 **SNL 512 TA** ASNH 512-610 **SNL 512 TC** SNL 512-610 TSN 512 S ASNH 512-610 SNL 512-610 **SNL 512 TS**

SNL 512 TND

SNL 612 TG

SNL 612 TA

SNL 612 TC

SNL 612 TS

SNL 612 TND

7,00

24 18 16

SNL 512-610

SNL 515-612

SNL 515-612

SNL 515-612

SNL 515-612

SNL 515-612

115 80 154 80 30 230 280

ASNH 512-610

ASNH 515-612

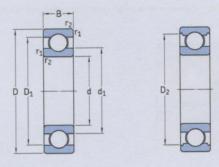
ASNH 515-612

ASNH 515-612

ASNH 515-612

ASNH 515-612

TSN 512 ND


TSN 612 G

TSN 612 A TSN 612 C

TSN 612 S

TSN 612 ND

1.1 Rodamientos rígidos de una hilera de bolas d 12 – 22 mm

imen	siones pi	rincipales	Capacidas carga bás dinámica	ica	Carga límite de fatiga	Velocidad de referencia		Masa		Designación
	D	В	C	Co	Pu					
nm			kN		kN	r. p. m.		kg		+
	-	-	4.77	0.915	0.039	70 000	43 000	0.0063		61801
2	21	5	1,74		0.062	67 000	40 000	0.011		61901
	24	6	2,91	1,46 2,36	0,062	60 000	38 000	0.021		6001
	28	8	5.4		0.1	60 000	38 000	0.021	-	16101
	30	8	5,07 7,28	2,36	0.132	50 000	32 000	0.037		6201
	32	10		4.15	0,132	45 000	28 000	0.06		6301
	37	12	10,1	4,15	0,170	43 000	20.000	Jun	-	The same of the sa
5	24	5	1.9	1.1	0.048	60 000	38 000	0.0065		61802
	28	7	4,36	2.24	0.095	56 000	34 000	0.016		61902
	32	8	5,85	2,85	0.12	50 000	32 000	0.03		
	32	9	5,85	2.85	0.12	50 000	32 000	0.03		6002
	35	11	8.06	3.75	0.16	43 000	28 000	0.045		6202
	42	13	11.9	5.4	0.228	38 000	24 000	0,082		6302
	ME	23	2217		0,000	-		The state of the s		
7	26	5	2,03	1.27	0.054	56 000	34 000	0.0075		61803
	30	7	4.62	2,55	0,108	50 000	32 000	0,016		61903
	35	8	6.37	3.25	0.137	45 000	28 000	0.038		16003
	35	10	6,37	3,25	0,137	45 000	28 000	0.038		6003
	40	12	9,95	4.75	0,2	38 000	.24 000	0,065		6203
	40	12	11,4	5,4	0,228	38 000	24 000	0.064		6203 ETN9
	47	14	14,3	6,55	0,275	34 000	22 000	0,11	- 1	6303
	62	17	22,9	10,8	0,455	28 000	18 000	0,27		6403
0	32	7	4.03	2,32	0.104	45 000	28 000	0.018		61804
u	37	9	6,37	3,65	0.156	43 000	26 000	0,037		61904
	42	8	7,28	4,05	0.173	38 000	24 000	0,05		16004
	42	12	9,95	5	0.212	38 000	24 000	0,067		6004
	92	12	1543.00	-	Marian.					
	47	14	13.5	6.55	0,28	32 000	20 000	0,11		6204
	47	14	15,6	7,65	0,325	32 000	20 000	0,098		6204 ETN9
	52	15	16.8	7,8	0,335	30 000	19 000	0,14		6304
	52	15	18.2	9	0,38	30 000	19 000	0,14		6304 ETN9
	72	19	30,7	15	0.64	24 000	15 000	0.41		6404
							Lance Control			
22	50	14	14	7,65	0,325	30 000	19 000	0.13		62/22
	56	16	18,6	9,3	0,39	28 000	18 000	0.18		63/22

^{*} Rodamiento SKF Explorer

SKF

Tabla 7

Juego radial interno de los rodamientos rígidos de bolas de acero inoxidable con un diámetro del agujero < 10 mm

Diámetr		Juego radial interno											
agujero d más de	hasta incl.	C1 min.	máx.	C2 min.	máx.	Normal min.	máx.	C3 min.	máx.	C4 min.	máx.	C5 min.	máx.
mm	2016	μm		MAIN							1000	A COLUMN	
	9,525	0	5	3	8	5	10	8	13	13	20	20	28

Factores de cálculo para los rodamientos rígidos de bolas										
f ₀ F _a /C ₀	Rodamientos de una hilera y de dos hileras Juego normal			Rodamientos de una hilera Juego C3			Juego C4			
	e	x	Y	е	x	Y	e	X	Y	
0,172	0,19	0,56	2,3	0.29	0,46	1,88	0,38	0,44	1,47	
0,345	0,22	0,56	1,99	0,32	0,46	1,71	0,4	0,44	1,4	
0,689	0,26	0,56	1,71	0,36	0,46	1,52	0,43	0,44	1,3	
1,03	0,28	0,56	1,55	0,38	0,46	1,41	0,46	0,44	1,23	
1,38	0,3	0,56	1,45	0.4	0,46	1,34	0,47	0,44	1,19	
2,07	0,34	0,56	1,31	0,44	0,46	1,23	0,5	0.44	1,12	
3,45	0,38	0,56	1,15	0,49	0,46	1.1	0,55	0,44	1,02	
5,17	0,42	0,56	1,04	0,54	0,46	1,01	0,56	0,44	1	
6,89	0,44	0,56	1	0,54	0,46	1	0,56	0,44	1	

Los factores de cálculo deben seleccionarse según el juego de funcionamiento en el rodamiento, que puede diferir del juego interno antes del montaje. Para obtener más información o conocer los factores de cálculo para otras clases de juegos, comuniquese con el Departamento de Ingenieria de Aplicaciones de SKF.
Los valores intermedios se pueden obtener por interpolación lineal.

SKF

BIBLIOGRAFÍA

- CATÁLOGO GENERAL SKF PUBLICACIÓN 6000 ES MAYO 2006.
- DIEGO F. GALINDO "TESIS: DISEÑO DE PERFILES AERODINÁMICOS" INGENIERÍA. AERONÁUTICA, INSTITUTO POLITÉCNICO NACIONAL, MEXICO D.F. 2006
- JESUS FRAILE MORA, "MÁQUINAS ELÉCTRICAS". ED. MAC GRAW HILL, 5TA EDICIÓN.
- LOPEZ VILLARUBIA MIGUEL, "INGENIERIA DE LA ENERGIA EOLICA", EDICIONES TECNICAS MARCOMBO. 2012
- M. KOSTENKO Y L PIOTROVSKY "MÁQUINAS ELÉCTRICAS II" MONTANES Y SIMON S.A. ED 1968.
- PEDRO FERNANDEZ DIEZ, "ENERGÍA EÓLICA" PRIMERA EDICION- ED.
 SERVICIOS PUBLICACIONES E.T.S.I. SANTADER ESPAÑA 1993.
- STEPHEN CHAPMAN, "MÁQUINAS ELÉCTRICAS" -. MAC GRAW HILL, ED.2005
- VIRGIL M. FAIRES," DISEÑO DE ELEMENTOS DE MÁQUINAS" 4TA ED.
 MONTANER Y SIMON BARCELONA.
- YURI LOPEZ CASTRILLON," ENERGÍA EÓLICA, INTEGRACION A LA RED ELECTRICA", EDITORIAL: UNIVERSIDAD AUTONOMA DE OCCIDENTE, PRIMERA EDICION. 2016.

