Mathematical modeling of urea-formaldehyde resins: specific acid-base catalysis

M. A. CAULA⁽¹⁾, V.V. NICOLAU⁽¹⁾, D.A. ESTENOZ⁽²⁾

(1) GPol – Dpto. Ing. Química (UTN San Francisco), Av. de la Universidad 501, (2400) San Francisco, Córdoba, Argentina.

⁽²⁾ INTEC (UNL-CONICET), Güemes 3450 (3000) Santa Fe, Argentina

andrea_caula@hotmail.com

INTRODUCTION

Urea formaldehyde (U-F) base resins are obtained by reaction between urea (U) and formaldehyde (F) and are used mainly as adhesives in the manufacture of wood panels. The hydroxymethylation-condensation mechanism is very complex since it is catalyzed by acids and bases [Eqs. (1)-(4)]¹.

$$-NH_2 + F \xrightarrow[k_{m1}]{k_m} -NHCH_2OH$$
(1)

$$-\mathrm{NHCH}_{2}\mathrm{OH} + \mathrm{F} \xrightarrow{k_{m_{2}}} -\mathrm{N(CH}_{2}\mathrm{OH})_{2}$$
(2)

$$-NH_2 + -NHCH_2OH \xrightarrow{k_{MM}} -NHCH_2NH + H_2O$$
 (3)

$$2 - \text{NHCH}_2\text{OH} \xrightarrow{k_{\text{EB}}} - \text{NHCH}_2\text{OCH}_2\text{NH-} + H_2\text{O}$$
(4)

By-side reactions involve: *i*) the hydration/dehydration² of F and its polymerization [Eqs. (5) and (6)];

$$F + H_2O \xrightarrow{k_3} HOCH_2OH \qquad K_{MG} = [HOCH_2OH] / [F][H_2O]$$
(5)

$$HO(CH_2O)_{n-1}H + HOCH_2OH \xrightarrow{k_{MG2}} HO(CH_2O)_n H + H_2O$$
 (6)

and *ii*) the ionization of U in water [Eqs. (7) and (8)]:

$$U + H_2 O \longleftrightarrow UH^{+} + OH^{-} \qquad K_{U} = \left[UH^{+} \right] \left[OH^{-} \right] / \left[U \right]$$
(7)

$$2H_{2}O \longleftrightarrow H_{3}O^{+} + OH^{-} \qquad K_{W} = \left[H_{3}O^{+}\right]\left[OH^{-}\right] \qquad (8)$$

Also, hydroxymethylureas undergo hydrolysis in alkaline conditions [Eq. (9)]:³

 $-CH_{2}OH + ^{-}OH \rightleftharpoons -CH_{2}O^{-} + H_{2}O \quad K_{h} = \left[-CH_{2}O^{-}\right] / \left[-CH_{2}OH\right] \left[OH^{-}\right]$ (9)

where $[--CH_2OH] = [--NHCH_2OH] + 2[--N(CH_2OH)_2].$

EXPERIMENTAL METHODS

Four experiments were carried out at 48 °C and 60 °C, pH 4 and 9 for initial molar ratios $[F]^{\circ}/[U]^{\circ}= 2$ with $[F]^{\circ}=0.4$ mol/L. Along the reactions the total free F (F_T), the molar ratio $r_1 = [-N\underline{H}]/[-N\underline{H}_2]$, and the number average molecular weight (\overline{M}_n) were measured by the sulphite method, nuclear magnetic resonance (NMR) and size exclusion chromatography (SEC).

MATHEMATICAL MODELING

The model is based on the material and charge balances of Ecs. 1-9. The following hypotheses were considered: i) constant reaction volume; ii) the U has 3 (of 4) reactive H; iii) $k_{MB} = k_{EB}$ and $k_{MB} = k_{EB}$; iv) instantaneous equilibrium of hydration/ dehydration of F, (Eq. 5); v) chain length n = 2 of the poly(oxymethylene glycol) (Eq. 6); vi) instantaneous equilibrium of the ionization reaction of U (Eq. 7); vii) instantaneous equilibrium of the self-ionization of water (Eq. 8) viii) instantaneous equilibrium of the self-ionization of the hydrolysis of hydroxymethylureas (Eq. 9). The computer program was written in Matlab R 2011a, and the systems of equations were solved by routines for

non-linear systems (ode 15s). The kinetic hydroxymethylation-condensation constants were all adjusted in this work, to fit the measurements of Fig. 1 and Table 2. The parameters of the model are shown in Table 1.

Table 1.	Parameters	of the	model.*
----------	------------	--------	---------

(L/mol s ⁻¹)	Arrhenius expressions	(s⁻¹)	Arrhenius expressions	
k _{m1}	1.13x10 ¹¹ e ^(-7917/T)	k′ _{m1}	2.56x10 ²³ e ^(-22000/T)	
k _{m2}	2.66x10 ¹⁶ e ^(-14500/T)	k′ _{m2}	1.36x10 ¹² e ^(-13667/T)	
$k_{\text{EB}}, k_{\text{MB}}$	1.01x10 ² e ^(-3917/T)	k'_{EB}, k'_{MB}	8.37x10 ⁶ e ^(-9750/T)	

 $*K_{MG}$, k_{MG2} , \dot{K}_{MG2I} , K_{U} , K_{h} , K_{w} were taken from the literature.^{3,4,5,6}

RESULTS AND DISCUSSION

 F_T decreases with temperature and pH (Figure 1) whereas \overline{M}_n increases (Table 2).

Figure 1: Evolution of F_T. Measurements (in symbol) and model predictions (in continuous trace).

Table	2. Measurements	of NMR and	SEC at pH 9
	Simulation results	between bra	ackets.

	$r_1 = \left[-N\underline{H}\right] / \left[-N\underline{H}_2\right]$		- Mn		
t (min.)	48 °C	60 °C	48 °C	60 °C	
60	3.88(0.19)	3.34 (0.56)	74(54.84)	84(68.38)	
540	4.4(2.54)	4.2 (6.5)	101(99.94)	117 (138)	

The theoretical predictions showed an acceptable concordance with the volumetric, chromatographic and spectroscopic measurements.

CONCLUSIONS

A new mathematical model was developed that allows to predict the specific acid-base catalysis of the hydroxymethylation-condensation of the U employing a single set of model parameters in all pH range. The Arrhenius expressions of the hydroxymethylationcondensation kinetic constants were estimated.

REFERENCES

- 1. Nair B. *et al.*, Polymer 24, 626-630, 1983.
- 2.Walker, J. (1964) Formaldehyde. 3rd edition. R. E. Krieger Publising Company Huntington, New York.
- 3. Landqvist N. Acta Chem. Scand. 11, 792-803, 1957.
- Siling, M. & Akselrod, B. Russ. J. Phys. Chem., 42, 1479-1482, 1968.
- 5. Hahnenestein, I. et al., Ind. Eng. Chem. Res., 34, 440-450, 1955.
- 6. De Stefano, C. Et al., Journal of Solution Chesmistry, 21, 397-401, 1992.

