SILICATOS MESOPOROSOS TIPO SBA-15 MODIFICADOS CON HIERRO COMO CATALIZADORES PARA PROCESOS AVANZADOS DE OXIDACIÓN HETEROGÉNEOS.

V. Elías^{(1)*}, P. Ochoa⁽¹⁾, E. Vaschetto⁽¹⁾, S. Casuscelli⁽¹⁾, G. Eimer⁽¹⁾

(1) Centro de Investigación y Tecnología Química (CITEQ-CONICET), Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López esq. Cruz Roja Argentina, Córdoba, Argentina.

*Correo Electrónico (autor de contacto): velias@frc.utn.edu.ar

RESUMEN

Se sintetizaron tamices moleculares con estructura SBA-15 modificados con Fe por los métodos de incorporación directa (ID) y de impregnación húmeda (IH). Los sólidos se caracterizaron por DRX a bajo y alto ángulo, espectroscopia de UV-Vis RD, fisisorción de N_2 , reducción a temperatura programada (TPR) y micrografías de SEM-EDS. Los sólidos fueron evaluados como catalizadores en procesos foto-Fenton utilizando H_2O_2 y radiación UV-Vis. Se utilizó el colorante azoico Ácido Naranja 7 (AO7) como molécula modelo para estudiar la eficiencia del proceso de degradación propuesto. Con el objetivo de mejorar la eficiencia catalítica y disminuir el lixiviado de las especies de Fe, los catalizadores fueron además modificados por IH con especies de Ti. Se alcanzó una buena degradación del colorante sin modificar el pH del medio y se disminuyó el lixiviado del metal dando indicios que los catalizadores podrán ser reutilizados por varios ciclos catalíticos.

ABSTRACT

Molecular sieves with SBA-15 structure were modified with Fe by Direct Incorporation (DI) or Wet Impregnation (WI) methods. The solids were characterized by low and high XRD, UV-Vis DR spectroscopy, N_2 physisorption, Temperature Programmed Reduction (TPR) and SEM-EDS micrographies. The solids were tested as catalysts for foto-Fenton processes using H_2O_2 and UV-Vis radiation. The azo-dye Acid Orange 7 (AO7) was chosen as a model contaminant in order to test the efficiency of the degradation process. With the aim of enhance the catalytic efficiency and avoid the Fe species leaching, the catalysts were also modified by WI with Ti species. Good dye degradation was observed without variation of the AO7 solution pH, while the Fe leaching was notable decreased, giving account of the solids stability, indicating that it could be used after several catalytic cycles.

REFERENCIAS

- 1. M. Tomut and H. Chiriac, "Viscosity and surface tension of liquid Fe-metalloid glass-forming alloys"; Materials Science and Engineering A, Vol. 304 (2001), p. 272-276. (paper)
- 2. R.M. German, "Sintering, Theory and Practice"; 1996, John Wiley and Sons, Inc. (libro)
- 3. P. Liu y C. Lopez, "Segregación de Ni en Aluminio"; Anales SAM/CONAMET, 2004, p. 282-285. (artículo en acta de congreso)
- 1. K. Klabunde, R. Richards, "Nanoscale Materials in Chemistry", Wiley, New Jersey, 2009.

TÓPICO DEL CONGRESO O SIMPOSIO: 722.

PRESENTACIÓN (ORAL O PÓSTER): P (poster)

El formato del resumen debe ser enviado en versión de documento portable pdf.

El manuscrito debe ser cargado a través de la plataforma web de envío de resúmenes y trabajos del Congreso o Simposio en http://sam-conamet2016.congresos.unc.edu.ar; siguiendo los pasos que figuran en las pestañas: "Congreso" \rightarrow "Envío de Resúmenes y Trabajos" o "Simposio" \rightarrow "Envío de Resúmenes y Trabajos", según corresponda.

<u>Recuerde</u>: cuando envíe el **resumen** debe denominar el archivo con el nombre de la siguiente manera: **Tópico-Iniciales de los Nombres y Apellido. En el caso de enviar más de un trabajo, colocar el número del trabajo entre paréntesis luego del apellido.**

Por ejemplo:

a) Trabajos para el Congreso: T12-C.E.Acosta(2) b) Trabajos para el Simposio: S03-R.M.López