PRODUCCIÓN DE PAC A PARTIR DE CHATARRA DE ALUMINIO

Integración V

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian Garrido Juan

Año: 2022

Pablo Antiñir

pabloantinir@gmail.com

Integración V INGENIERIA QUIMICA

Antiñir
Pablo
(pabloantinir@gm
ail.com)

Proyecto Final Año: 2022

Fecha Ayudante: 21/10/2022 C.Silva J. Garrido JTP: E.Krumrick Profesor titular: H.Spesot

Página 1 de 36

Contenido

Definición del proyecto:	2
Análisis del mercado:	2
Justificación económica:	2
Mercado consumidor y materia prima:	3
Mercado Proveedor:	4
Análisis FODA:	5
Descripción del proceso	6
Análisis de Procesos:	6
Nombre del proceso:	7
Reacciones del proceso:	7
Diagrama de Flujo:	7
Diagrama de flujo	8
Balance de masa y energía del proceso:	8
Primera simulación:	9
Segunda simulación.	12
P&ID del proceso:	14
Lay Out	17
Descripción de Seguridad de la planta:	21
DISEÑO EN DETALLE	21
Separador de Gotas V-101	21
Aeroenfriador E-101	26
ESTUDIO ECONOMICO	28
Materias Primas:	28
Productos	29
Costos	30
Flujo de caja	31
Análisis de sensibilidad	31
Punto de Equilibrio	34

FACULTAD

Integración V

TECNOLOG NACIONA	ICA	REGIONAL NEUQUEN		INGENIERIA QUIMICA		VAP
Proyecto F	inal				Año: 2022	
Fecha 21/10/2022	C.Si	dante: Iva arrido	JTP: E.Krumrick	Profesor titular: H.Spesot	Página 2 de	36

Conclusiones	35
Bibliografía	36

Definición del proyecto:

Definimos el proyecto como: "Producción de Policloruro de Aluminio a partir de chatarra de Aluminio".

Análisis del mercado:

Justificación económica:

La principal justificación de este proyecto es de tipo económica y social, y se basa en la ubicación del mismo, ya que, si nos centramos en la planta de tratamiento de agua de la zona, EPAS, ente provincial de agua y saneamiento de Cutral-Có y Plaza Huincul, utiliza aproximadamente 360 toneladas al año de policloruro de aluminio, y se sabe que en la actualidad una planta en Buenos Aires, Makinthal s.a. es quien provee este producto a gran parte del país. El invertir en este proyecto de producción generaría tanto ahorro en costo como en tiempo de traslado del producto, se estima que aproximadamente se tarda un tiempo de cinco días en transporte. Con respecto a lo social, es un problema la cantidad de aluminio que se está quedando en las chacaritas, aunque algunas tienen salida a empresas reutilizadoras de aluminio con fines metalúrgicos.

Esta planta lograría satisfacer las necesidades de las ciudades, en el sector industrial, y con posibilidad de expansión de la producción para satisfacer la demanda de la provincia del Neuquén, con aspiraciones muy esperanzadas.

En cuanto al beneficio a la población es una gran entrada para las dos ciudades ya que aumenta la generación de empleo, disminuye la cantidad de aluminio ayudando al medio ambiente.

Dentro del marco de justificación técnica, se empleará como materia prima aluminio proveniente del reciclado de diferentes productos de la industria, de modo que obtenemos un beneficio económico en cuanto al costo del principal insumo, además de un beneficio medio ambiental.

Comparado con otros productos utilizados como floculantes, el Policloruro de aluminio da la ventaja de ser un único producto que interviene en el proceso de potabilización y tratamiento de agua, en cambio al utilizar compuestos de sulfato de aluminio se debe además utilizar otros compuestos para obtener los mismos resultados. Esto se debe a que la utilización de sulfatos trae aparejado la

Integración V INGENIERIA QUIMICA

Antiñir
Pablo
(pabloantinir@gm
ail.com)

	_				
Proyecto Fi	inal			Año: 2022	
Fecha 21/10/2022	C.Sil	 JTP: E.Krumrick	Profesor titular: H.Spesot	Página 3 de	36

producción de residuos indeseables por lo que a dicho proceso se lo debe tratar con otros químicos, aumentando el gasto económico a la empresa potabilizadora, razón por la que en el mundo se están reemplazando las sales por la utilización de Policloruro de Aluminio.

A esto se le suma que mediante el uso de PAC obtenemos las siguientes ventajas:

- Mejora la velocidad de formación de flóculos.
- Mejora la remoción de turbidez.
- Genera mayor velocidad de sedimentación.
- Requiere menores tiempos de mezclado para coagular.
- Aumenta la remoción de carbón orgánico total.
- Mejora la eficiencia de la filtración.
- Aumento de la operación de filtros.
- Reducción de lodos de un 25-75%.
- Trabaja en un amplio rango de pH.
- No modifica el valor de pH del influente.
- Menor costo de operación.
- Sirve para el tratamiento tanto de aguas superficiales como así también aguas profundas y aguas residuales.

Mercado consumidor y materia prima:

Para la obtención de aluminio se recolectará toda la chatarra que se produce en Cutral-Có y Plaza Huincul, provenientes de chacaritas, rectificadoras de motores y carpinterías de aluminio de las ciudades.

La materia prima, además de aluminio, que se necesita es ácido clorhídrico e hidróxido de sodio. Los cuales se comprarán en Soda Solvey, por los bajos costos de transporte ya que se ubican en la ciudad de Allen, provincia de Río Negro.

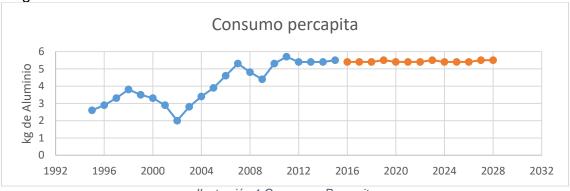
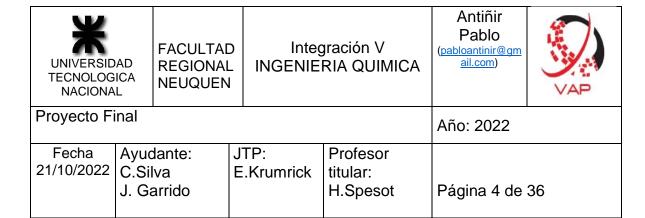



Ilustración 1 Consumos Percapita

Según datos oficiales, (Afines, 2015) el consumo per cápita se ha mantenido constante en los últimos años. Se estima un consumo aparente per cápita de 5,5 kg de aluminio por habitante. Con esto se dan los datos de habitantes en las ciudades de Cutral-Có y Plaza Huincul, según (Públicas, 2017), son 77.580 personas.

Basándonos en datos estadísticos no oficiales, se puede estimar un porcentaje de recuperación del 12%.

La demanda de nuestro producto será una base de 1000 toneladas por año, con una capacidad de producción máxima de 500 toneladas por año, solo para Cutral Có y alrededores y 500 toneladas para Neuquén y proximidades. Basado en cálculos realizados para toda la provincia del Neuquén, teniendo en cuenta una turbidez promedio del río y el consumo aparente de agua por persona. Los datos de cantidad de habitantes fueron importados del último censo nacional del año 2010.

Mercado Proveedor:

En cuanto al mercado proveedor, se encuentran diferentes empresas proveedoras de PAC en la nación. Las mismas se detallan a continuación:

ARQUIMIA S.A.:

Fabricante de sulfato de aluminio en todas sus variedades, bauxita e hidrato.

Ubicación: Planta Puerto Gral. San Martin

Sitio Web: http://www.arquimiasa.com.ar

Transclor:

Comercialización y distribución de derivados del cloro-soda.

Ubicación: Parque Industrial Pilar Sitio Web: http://www.transclor.com.ar

• Induquimica S.A.:

Dedicada a la producción, comercialización y distribución de variados productos químicos como sulfato de aluminio sólido y líquido, policloruro de aluminio, gas cloro, hipoclorito de sodio, hipoclorito de calcio, ácido clorhídrico y ácido sulfúrico Ubicación: Campana, Provincia de Buenos Aires.

Sitio Web: http://www.induquimica.com.ar

Makinthal S.A.:

Se dedica a tratamientos de agua para consumo humano e industrial, a la recuperación de agua de procesos cloacales e industriales y a la conservación de agua destinada a la recreación.

Ubicación: Buenos Aires

Sitio Web: http://www.makinthal.com.ar

De las cuatro empresas anteriormente mencionadas, solamente Makinthal S.A. produce directamente PAC como producto principal, las demás lo realizan como subproducto de sus productos principales. Un motivo por el cual se quiere llevar a cabo este proyecto es la ubicación de las plantas, las cuales están a más de 1000 kilómetros de distancia de la principal demanda, lo cual nos favorece mucho.

Análisis FODA:

Descripción del proceso

Análisis de Procesos:

Se recopiló información, (KIRK-OTHMER), donde se encontraron diferentes patentes que ayudaron a encontrar tres diferentes procesos, los cuales se describen a continuación:

Proceso Nº1: este proceso utiliza chatarra de aluminio, una reacción con ácido clorhídrico en la cual se forma el tricloruro de aluminio y se desprende hidrogeno. Luego se hace reaccionar el tricloruro de aluminio con hidróxido de calcio donde se forma el policloruro de aluminio y cloruro de calcio en suspensión. El cual tiene que pasar por una etapa de filtración y una posterior dilución del policloruro de aluminio.

Las reacciones pertinentes a este proceso son las siguientes:

$$2Al(s) + 6HCl \rightarrow 2AlCl_3 + 3H_2(g)$$

 $2AlCl_3 + 2Ca(OH)_2 \rightarrow PAC + 2CaCl_2$

Proceso Nº2: en este proceso la materia prima no cambia y se la hace reaccionar con ácido clorhídrico formando tricloruro de aluminio e hidrogeno gaseoso. Luego se hace reaccionar el tricloruro de aluminio con ácido clorhídrico, nuevamente, y con agua, dando como producto único el PAC, si agregamos aqua en exceso, el producto saldrá con la dilución correcta.

Las reacciones que describen este proceso son las siguientes:

$$2Al(s) + 6HCl \rightarrow 2AlCl_3 + 3H_2(g)$$

 $AlCl_3 + HCl + H_2O \rightarrow PAC$

Proceso Nº3: en este procedimiento la formación de tricloruro de aluminio es la misma en los tres procesos descriptos, solo cambia la forma de la neutralización del tricloruro de aluminio. En este caso se realiza con carbonato de sodio, ácido clorhídrico y agua, dando como producto PAC, dióxido de carbono y cloruro de sodio.

Las reacciones que describen este proceso son las siguientes:

$$2Al(s) + 6HCl \rightarrow 2AlCl_3 + 3H_2(g)$$
$$AlCl_3 + Na_2CO_3 + HCl + H_2O \rightarrow PAC + CO_2 + NaCl$$

De acuerdo a estos tres procesos descriptos, donde se llega al mismo producto pero la diferencia está en los insumos necesarios para llegar al mismo. Por consecuencia, se elige el proceso Nº 2, ya que solo utiliza como reactivos ácido clorhídrico y agua, y según la bibliografía tiene menor tiempo de reacción, menor complejidad de la misma y menor costo. Por lo tanto, se elige el mismo para poder seguir con el proyecto.

Nombre del proceso:

"PRODUCCIÓN DE POLICLORURO DE ALUMINIO POR NEUTRALIZACIÓN CON ÁCIDO CLORHÍDRICO Y AGUA"

Reacciones del proceso:

Las reacciones del proceso son las siguientes:

$$2Al(s) + 6HCl \rightarrow 2AlCl_3 + 3H_2(g)$$
 1°
 $AlCl_3 + HCl + H_2O \rightarrow PAC$ 2°

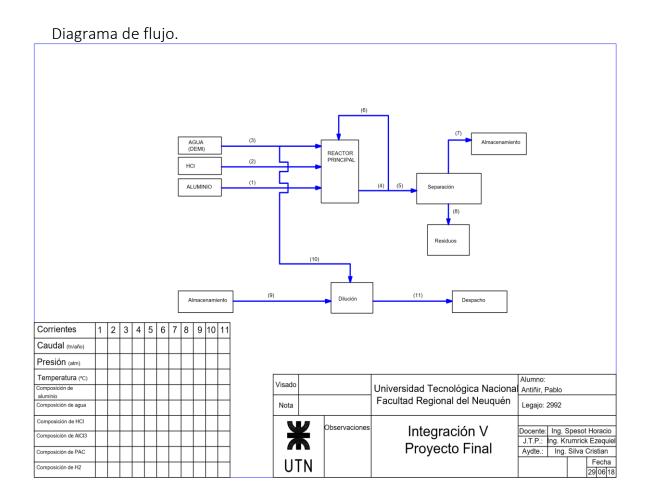
Donde las dos reacciones son a presión atmosférica y la temperatura ronda los 80°C.

Con respecto a los insumos de agua desmineralizada como reactivo se implantará una planta de osmosis inversa capaz de satisfacer la necesidad de la planta.

Diagrama de Flujo:

Se empleó un diagrama de bloques, representado el proceso descripto en el anterior ítem.

Además, se empleará un sistema de disminución del volumen del aluminio, para evitar grandes volúmenes de acopio. Junto con las necesidades, se empleará un tren de desmineralización del agua potable, dependiendo de la cantidad de agua a utilizar se comprará el tren adecuado.


Describiendo, el proceso cuenta con un reactor principal donde se llevan a cabo las dos reacciones del proceso. También se tiene un almacenamiento de aluminio sólido, ácido clorhídrico y agua desmineralizada. El proceso es intermitente, por cargas de 5 horas aproximadamente, donde se produce la primera reacción, y otras 5 horas donde se produce la segunda reacción. Después del reactor, hay una etapa de separación, en la cual se tratará de no utilizar ya que se ajustará el volumen de ácido a introducir al reactor para evitar

esa separación del proceso, pero en condiciones no deseadas se la utilizará. Luego, el almacenamiento del producto. Este se almacenará puro, ya que aumenta su tiempo de vida. Por lo tanto, para ser despachado deberá ser diluido con agua desmineralizada.

Para ver el diagrama se deberá recurrir al anexo 1.

Balance de masa y energía del proceso:

Se realizó la simulación del proceso en programa Aspen Plus 7.3, debido a que en el mismo se utilizan materias primas sólidas y el producto principal es un

polímero. En principio, el programa establece régimen estacionario para todos los equipos y todas las corrientes. Es por ello que se debió utilizar dos simulaciones, para las dos reacciones del proceso. A continuación se explica el detallado de cada simulación y sus correspondientes corrientes.

Primera simulación:

Se realizó la simulación de la primera reacción, que es la siguiente:

$$Al(s) + 3HCl(l) \rightarrow AlCl_3(l) + 1.5H_2(g)$$

Luego se seleccionó un reactor de tipo mezcla completa (CSTR) ya que se conocían los parámetros cinéticos de la reacción. Una vez ocurrida la reacción se liberan gases de tricloruro de aluminio e hidrogeno. Estos se comprimen y se enfrían en un cooler por el cual circula agua de enfriamiento. Sigue esta corriente a un separador para recuperar el tricloruro de aluminio que se perdía en la corriente de vapor, y se ventea sin quemar el hidrogeno producido en la reacción. La corriente de producto contiene 0,999 de AlCl₃ y es la corriente que se lleva a la siguiente simulación.

El proceso simulado tiene el siguiente diagrama de flujo:

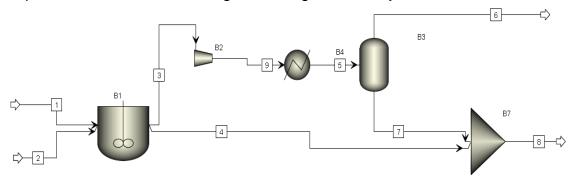


Ilustración 2- Diagrama de flujo Reacción 1.

Y las corrientes del proceso tienen las siguientes condiciones:

Integración V INGENIERIA QUIMICA

Antiñir
Pablo
(pabloantinir@gm
ail.com)

Proyecto Final Año: 2022

Fecha Ayudante: 21/10/2022 C.Silva

Ayudante:
C.Silva
J. Garrido

JTP: E.Krumrick Profesor titular:

H.Spesot Página 10 de 36

Integración V INGENIERIA QUIMICA

Antiñir Pablo
(pabloantinir@gm
ail.com)

Proyecto Final

Año: 2022

Fecha

Ayudante: 21/10/2022 C.Silva J. Garrido

JTP: E.Krumrick Profesor titular: H.Spesot

Página 11 de 36

		1	2	3	4	5	6	7	8	9
From				B1	B1	B4	B3	B3	В7	B2
То		B1	B1	B2	B7	B3		B7		B4
Substream: MIXED										
Phase:		Solid	Mixed	Vapor	Liquid	Mixed	Vapor	Liquid	Mixed	Vapor
Component Mole F	low									
AL	KMOL/HR	0,423087	0	0	0	0	0	0	0	C
HCL	KMOL/HR	0	0,1703219	0	0	0	0	0	0	C
H2	KMOL/HR	0	0	194,6719	7,70E-03	194,6719	194,6675	4,42E-03	0,0121211	194,6719
ALCL3	KMOL/HR	0	0	12,99607	116,7904	12,99607	0,1620616	12,834	129,6244	12,99607
H2O	KMOL/HR	0	0,6691428	0,3034544	0,3656884	0,3034544	0,0265761	0,2768782	0,6425666	0,3034544
PAC	KMOL/HR	0	0	0	0	0	0	0	0	C
Component Mass F	low									
AL	KG/HR	11,41553	0	0	0	0	0	0	0	C
HCL	KG/HR	0	6,210046	0	0	0	0	0	0	C
H2	KG/HR	0	0	392,4353	0,0155292	392,4353	392,4264	8,91E-03	0,0244347	392,4353
ALCL3	KG/HR	0	0	1732,891	15572,79	1732,891	21,60924	1711,281	17284,07	1732,891
H2O	KG/HR	0	12,05479	5,466815	6,587979	5,466815	0,4787764	4,988039	11,57602	5,466815
PAC	KG/HR	0	0	0	0	0	0	0	0	(
Component Mass F	raction									
AL		1	0	0	0	0	0	0	0	C
HCL		0	0,34	0	0	0	0	0	0	C
H2		0	0	0,1841734	9,97E-07	0,1841734	0,9467135	5,19E-06	1,41E-06	0,1841734
ALCL3		0	0	0,813261	0,9995761	0,813261	0,0521314	0,9970885	0,9993293	0,813261
H2O		0	0,66	2,57E-03	4,23E-04	2,57E-03	1,16E-03	2,91E-03	6,69E-04	2,57E-03
PAC		0	0	0	0	0	0	0	0	(
Mole Flow	KMOL/HR	0,423087	0,8394647	207,9715	117,1638	207,9715	194,8562	13,1153	130,2791	207,9715
Mass Flow	KG/HR	11,41553	18,26484	2130,793	15579,39	2130,793	414,5144	1716,278	17295,67	2130,793
Volume Flow	L/MIN	0,070324	63,48474	1,00E+05	162,9581	16223,25	16544,31	16,90349	181,4695	34426,44
Temperature	K	293,15	293,15	353,15	353,15	298	298	298	347,687	605,2001
Pressure	ATM	1	1	1	1	4,9	4,8	4,8	1	5
Vapor Fraction		0	0,1880133	1	0	0,9369182	1	0	2,78E-05	1
Liquid Fraction		0	0,8119867	0	1	0,0630817	0	1	0,9999722	(
Solid Fraction		1	0	0	0	0	0	0	0	(
Molar Enthalpy	CAL/MOL	-29,1693	-58934,47	-8393,028	-1,52E+05	-9809,518	-125,037	-1,54E+05	-1,52E+05	-6448,67
Mass Enthalpy	CAL/GM	-1,081083	-2708,669	-819,1835	-1144,463	-957,437	-58,77778	-1174,447	-1147,438	-629,4086
Enthalpy Flow	CAL/SEC	-3,428093	-13742,61	-4,85E+05	-4,95E+06	-5,67E+05	-6767,843	-5,60E+05	-5,51E+06	-3,73E+05
Molar Entropy	CAL/MOL-K	-0,098664	-30,67841	1,029762	-42,0885	-6,339266	-3,113503	-53,64173	-43,09869	1,985945
Mass Entropy	CAL/GM-K	-3,66E-03		0,1005077	-0,3165238					
Molar Density	MOL/CC	0,100271	2,20E-04		***0,0 11983					
Mass Density	GM/CC	2,705461	4,80E-03							
Average Molecular		26,98154		10,2456						

UNIVERSID TECNOLOG NACIONA	ICA	FACULTAI REGIONAI NEUQUEN	INGENIE	Integración V INGENIERIA QUIMICA		S P P P P P P P P P P P P P P P P P P P
Proyecto Fi	inal				Año: 2022	
Fecha 21/10/2022	C.Si	dante: Iva arrido	JTP: E.Krumrick			∋ 36

Cabe destacar que la corriente producto (8), que proviene de un mezclador, en el cual se mezclan las corrientes de salida del reactor y el recuperado del separador, se utilizará como entrada en la siguiente simulación.

Segunda simulación.

Se introduce como materia prima, la corriente de salida de la primera simulación. En esta simulación se realiza la siguiente reacción:

$$3AlCl_3 + 2HCl + 2H_2O \rightarrow PAC(l)$$

Si bien el diagrama es parecido, en la realidad el proceso ocurriría todo en un mismo reactor ya que es un proceso de tipo Batch. Por lo anteriormente explicado, se procede a la simulación en estado estacionario.

En esta simulación lo que se produce es vapor de agua, por lo que se debe comprimir el vapor y separar, no se debe enfriar ya que es a temperatura ambiente. De igual manera que en el proceso anterior. El reactor elegido es un reactor de conversión, ya que no se pudieron obtener los parámetros cinéticos pero si se podían medir la cantidad de ácido que ha reaccionado, y en base a experimentos de la bibliografía se llega a una conversión del 90% en un lapso de 5 horas de residencia. En base a esto se procede a la simulación. El productor puro obtenido es PAC, el cual se diluye para su venta al 18%.

El proceso se explica en el siguiente diagrama de flujo:

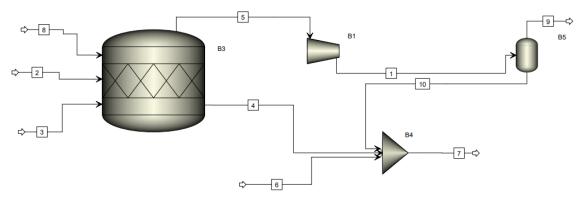


Ilustración 3- Diagrama de flujo Reacción 2.

Siendo la corriente 8, la que tomamos como dato de entrada. Y la corriente 7 la del producto final. El vapor de agua recuperado se envía para diluir el producto y la corriente 9 tiene un caudal nulo debido a la buena recuperación del vapor de agua. Obteniendo como producto final 1074 toneladas/año de producto final. Utilizando 100 toneladas/año de materia prima de aluminio.

Integración V INGENIERIA QUIMICA

Antiñir
Pablo
(pabloantinir@gm
ail.com)

Proyecto Final

Año: 2022

Fecha 21/10/2022 Ayudante: JTP: Profesor 21/10/2022 C.Silva E.Krumrick titular: H.Spesot

H.Spesot Página 13 de 36

 		1	ı	I		I	ı	ı		I	
		1	2	3	4	5	6	7	8	9	10
From		B1			В3	B3		B4		B5	B5
То		B5	В3	В3	B4	B1	B4		В3		B4
Substream: MIXED											
Phase:		Liquid	Mixed	Missing	Mixed	Liquid	Liquid	Mixed	Liquid	Missing	Liquid
Component Mole F	low										
ALCL3	KMOL/HR	0	0	0	6,469569	0	0	6,469569	129,3914	0	0
HCL	KMOL/HR	0	86,39453	0	4,44666	0	0	4,44666	0	0	0
H2O	KMOL/HR	242,068	324,7243	0	0,7084602	242,068	4718,217	4960,993	0	0	242,068
H2	KMOL/HR	0	0	0	81,94787	0	0	81,94787	0	0	0
PAC	KMOL/HR	0	0	0	44,08796	0	0	44,08796	0	0	0
Component Mass F	low										
ALCL3	KG/HR	0	0	0	862,65	0	0	862,65	17253	0	0
HCL	KG/HR	0	3150	0	162,1281	0	0	162,1281	0	0	0
H2O	KG/HR	4360,923	5850	0	12,76311	4360,923	85000	89373,69	0	0	4360,923
H2	KG/HR	0	0	0	165,1971	0	0	165,1971	0	0	0
PAC	KG/HR	0	0	0	20696,65	0	0	20696,65	0	0	0
Component Mass F	raction										
ALCL3		0	0	0	3,94E-02	0	0	7,75E-03	1		0
HCL		0	0,35	0	7,40E-03	0	0	1,46E-03	0		0
H2O		1	0,65	0	5,83E-04	1	1	8,03E-01	0		1
H2		0	0	0	7,54E-03	0	0	1,48E-03	0		0
PAC		0	0	0	0,9450791	0	0	0,1860201	0		0
Mole Flow	KMOL/HR	242,068	411,1189	0	137,6605	242,068	4718,217	5,10E+03	129,3914	0	242,068
Mass Flow	TONNE/YEAR	38201,69	78840	0	1,92E+05	38201,69	7,45E+05	1,07E+06	1,51E+05	0	38201,69
Volume Flow	CUM/HR	4,377601	2011,521	0	2202,452	4,373139	85,50432	2309,699	9,96057	0	4,386797
Temperature	К	295,832	298	298	298	298	298	299,5457	293,15		298
Pressure	ATM	1	1	1	1	1	1	1	1	1,5	1,5
Vapor Fraction		0	0,1994895		0,6486225	0	0	0,0175656	0		0
Liquid Fraction		1	0,8005105		0,3513775	1	1	0,9824344	1		1
Solid Fraction		0	0		0	0	0	0	0,00E+00		0
Molar Enthalpy	CAL/MOL	-68270,28	-58502,57	-1,00E+35	-8632,147	-68270,28	-68234,65	-66625,2	-1,56E+05		-68234,65
Mass Enthalpy	CAL/GM	-3,79E+03	-2,67E+03	-1,00E+35	-5,43E+01	-3,79E+03	-3,79E+03	-3,05E+03	-1,17E+03		-3,79E+03
Enthalpy Flow	CAL/SEC	-4,59E+06	-6,68E+06	-1,00E+35	-3,30E+05	-4,59E+06	-8,94E+07	-9,43E+07	-5,60E+06		-4,59E+06
Molar Entropy	CAL/MOL-K	-38,97696	-30,05528		-130,635	-38,97477	-38,85827	-41,33372	-55,42795		-38,85827
Mass Entropy	CAL/GM-K	-2,16355			-8,21E-01	-2,163429	-2,156961	-1,89E+00	-0,41569		-2,156961
Molar Density	MOL/CC	0,0552969	2,04E-04		6,25E-05	0,0553533	0,055181	2,21E-03	0,0129903		0,055181
Mass Density	GM/CC	0,9961902	4,47E-03		9,94E-03		0,9941017		1,73213		0,9941017
Average Molecul		1,80E+01			1,59E+02				1,33E+02		1,80E+01

*

Integración V INGENIERIA QUIMICA

Antiñir
Pablo
(pabloantinir@gm
ail.com)

Página 14 de 36

Proyecto Fi	inal			Año: 2022	
Fecha 21/10/2022	,	JTP: E.Krumrick	Profesor titular:		

H.Spesot

Servicios auxiliares:

J. Garrido

Como servicio auxiliar solo tenemos agua de enfriamiento para enfriar la corriente de vapor que sale de la primera reacción. Utilizando 1,3 cum/hora de agua de enfriamiento. Que se volverá al tanque de almacenamiento para posterior dilución de producto.

P&ID del proceso:

Se realizó el diagrama de instrumentos, cañerías y equipos, donde se mostrará a continuación el mismo finalizado.

Se puede acotar que la entrada de aluminio al reactor se hará por cargas, lo cual no representa una tubería sino una línea punteada donde circulará una carga sólida. Cabe destacar que además el proceso es de tipo discontinuo (batch) por lo que no se controlará presión y temperatura debido a que la temperatura máxima es la espontanea de la misma. Los tanques tienen su medidor de nivel visual y los caudales se miden en un medidor de placa-orificio, exceptuando la salida de producto en el despacho, la misma se hará con un medidor de nivel másico y posterior pesada para corroborar.

Se muestra a continuación el diagrama finalizado y por precaución se envía como ANEXO 2 el P&ID en otro archivo.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gm ail.com)

Proyecto Final Año: 2022

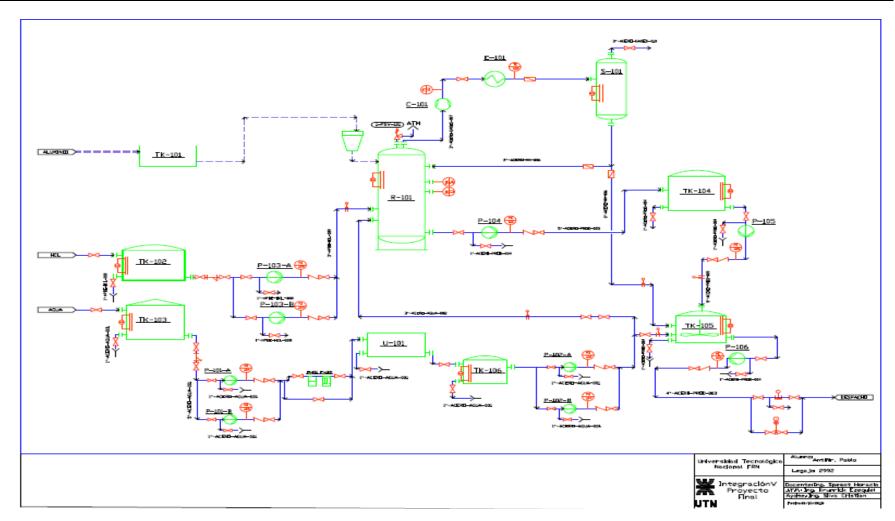
Fecha Ayudante: 21/10/2022 C.Silva

J. Garrido

JTP: E.Krumrick Profesor titular:

H.Spesot Página 15 de 36

Integración V INGENIERIA QUIMICA


Antiñir Pablo (pabloantinir@gmail.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018 Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot Versión: **7** Fecha: 23/11/2018

Página 16 de 36

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gmail. com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot Versión: **7** Fecha: 23/11/2018

Página 17 de 36

Lay Out

Se describe él LO de la planta de la siguiente manera:

La distribución de los equipos en planta se llevó a cabo en una tabla donde se muestran las interacciones sean las siguientes:

Muy Fuerte: MFFuerte: FModerada: MDébil: D

La tabla de interacciones entre todos los equipos es la siguiente:

Equipos	TK-101	TK-102	TK-103	TK-104	TK105	TK-106	U-101	E-101	S-101	R-101
TK-101		MF	D	D	D	D	D	D	D	D
TK-102			MF	Μ	D	MF	Μ	D	D	D
TK-103			-	D	D	D	D	D	D	D
TK-104					D	D	D	D	D	D
TK-105					-	D	D	D	D	D
TK-106						-	D	D	D	D
U-101								D	D	D
E-101									D	D
S-101									-	D
R-101										-

Tabla 1- Interacciones entre equipos

Antes de comenzar la distribución se realizó un dimensionamiento de los distintos equipos, listados en la siguiente tabla:

Equipos	Dimensiones	
TK-101	20*30 m ²	
TK-102	2500 m ³	Diámetro: 17 m
TK-103	2500 m ³	Diámetro: 17 m
TK-104	2500 m ³	Diámetro: 17 m
TK-105	150 m ³	Diámetro: 6 m
TK-106	250 m ³	Diámetro: 6 m

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gmail. com)

Proyecto Final	A	Año de cursada: 2018
		40 04.0444. =0.0

Fecha de inicio 09/03/2018

Ayudante: C.Silva

JTP: E.Krumrick Profesor titular: H.Spesot Versión: **7** Fecha: 23/11/2018

Página 18 de 36

U-101	20*30 m ²	
E-101	4 m ²	
V-101	1.5 m ³	Diámetro: 1.5 m
R-101	10 m ³	Diámetro: 3.85 m

Tabla 2- Tabla de dimensiones de tanques y recipientes.

Teniendo en cuenta la tabla de relaciones, y las dimensiones de los equipos, se comenzó la distribución de equipos en planta.

Se pusieron contiguos los muros de contención de los tanques, ya que esto permite ahorrar paredes. Se les dejó un margen de 10 metros con respecto a la línea lindante para servicios de emergencia tales como autobombas. Se dibujaron en líneas rojas discontinuas los ramales de cañería, tratando de optimizar el gasto de las mismas. Se realizó la zona de despacho, teniendo en cuenta el radio de giro de los camiones, a los cuales se les dejó un margen mucho más amplio que el radio de giro (25 m) y una sola entrada para no tener dos basculas. El estacionamiento se dejó fuera de la planta sobre la misma en el margen inferior derecho. Al lado del mismo se dejó la entrada de personal, y contiguamente el vestuario, oficinas y laboratorio de calidad. El reactor y separador se dejaron lo más libres posibles ya que en condiciones no ideales pueden tener fugas de hidrogeno, un gas muy combustible. Este gas es solamente liberado a la atmósfera, ya que no pone en peligro la calidad del aire.

El terreno fue ubicado en el parque industrial Plaza Huincul en una extensión de 200 metros de largo por 200 metros de ancho. Siendo el viento predominante en dirección Noreste.

Se adjunta así, como en los puntos anteriores, el ANEXO 3. A continuación se muestra el diagrama.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gmail. com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018 Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot Versión: **7** Fecha: 23/11/2018

Página 19 de 36

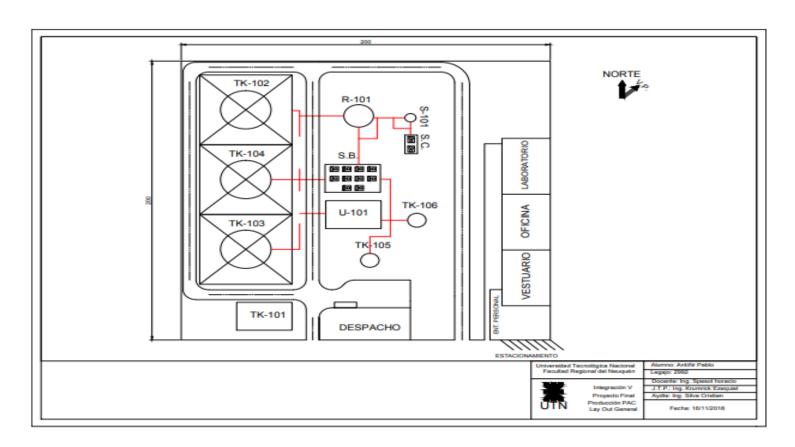
Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gmail.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva


JTP:

E.Krumrick

Profesor titular: H.Spesot

Versión: 7 Fecha: 23/11/2018

Página 20 de 36

Descripción de Seguridad de la planta:

Al no tener un riesgo inminente y continuo de incendio, solo le programaron matafuegos de clases A,B,C. Con el fin de extinguir todo tipo de incendio por electrificación u otros peligros domiciliarios. Los puntos de reunión se encuentran al lado de la zona de despacho donde se pueden ver varias opciones de salidas de emergencias.

En el diagrama siguiente se expresa lo anteriormente dicho y con puntos rojos los extintores y un punto verde con el punto de reunión en caso de emergencia.

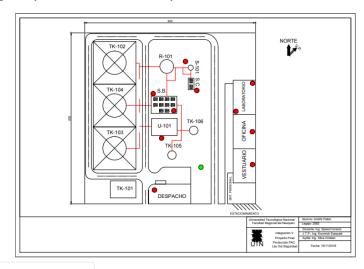


Ilustración 4- LO & Seguridad de Planta

DISEÑO EN DETALLE

Se procedió al diseño en detalle de dos equipos. El primero es el Separador de Gas (V-101) bajo código ASME VIII DIV. I y API 12J. El segundo equipo es el enfriador de salida del reactor principal bajo norma API 661 Ed.2013. (The American Society Of Mechanical Engineers, 2019) (American Petroleoum Institute, 1989)

Separador de Gotas V-101

Se dieron los datos de entrada de la corriente de ingreso y de salida, tanto de vapor como líquido, correspondientes a la siguiente tabla:

Connection Stream	Value	Units	Value	Units	Value	Units
Information	Alimen	tación	Vapor_	salida	Liquido	_salida
Vapor Fraction	0,937		1,000		0,000	

Integración V INGENIERIA QUIMICA

Página 22 de 36

Proyecto Final Año de cursada: 2018

Fecha de	Ayudante:	JTP:	Profesor titular:	Versión: 7
	,	E.Krumrick		Fecha:
09/03/2018	0.0		оросос	23/11/2018

Molecular Weight	10,24		23,71		130,86	
Temperature	77,00	F	176,00	F	77,00	F
Pressure	70,00	PSIG	17,00	PSIG	68,26	PSIG
Total Mass Flow	4697,5	LB/H	767,19	LB/H	3783,73	LB/H
Vapor Mass Density	0,05	PCF	0,05	PCF	0,00	PCF
Vapor Mass Flow	913,80	LB/H	767,19	LB/H	0,00	LB/H
Vapor Volumetric Flow	35040,19	CFH	15216,09	CFH	0,00	CFH
Liquid Mass Density	105,33	PCF	0,00	PCF	105,33	PCF
Liquid Mass Flow	3783,73	LB/H	0,00	LB/H	3783,73	LB/H
Liquid Volumetric Flow	35,79	CFM	0,00	CFM	0,04	CFM

Tabla 3- Corrientes de entrada y salidas V-101

El diagrama de corrientes con los datos mencionados en la Tabla 3 es el siguiente:

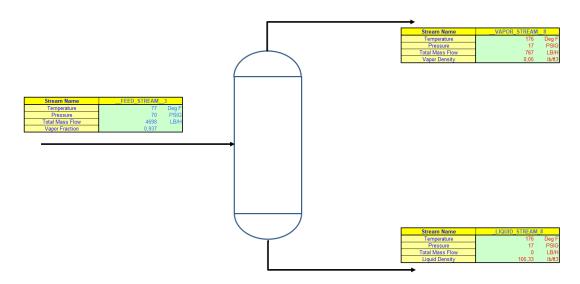


Ilustración 5- Diagrama de Corrientes V-101

El reporte final otorga el diámetro del recipiente a presión. Con este dato podemos calcular las dimensiones finales del recipiente como la altura y el volumen.

En la siguiente tabla se representan los datos finales del recipiente:

SEPARATOR		
Item Information	Value	Units
CpDesignTemperature	226	Deg F

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 23 de 36

CpDesignGaugePressure	90	PSIG
CpLiquidVolume	2538	GALLONS
CpVesselDiameter	6,0	FEET
CpTangentTangentHeight	12,0	FEET
CpNumberManholes	2	
CpManholeDiameter	24	INCHES
CpNozzleALocation	S	
CpNozzleAQuantity	1	
CpNozzleADiameter	6	INCHES
CpNozzleBLocation	S	
CpNozzleBQuantity	1	
CpNozzleBDiameter	2	INCHES
CpNozzleCLocation	S	
CpNozzleCQuantity	1	
CpNozzleCDiameter	4	INCHES
CpNozzleDLocation	S	
CpNozzleDQuantity	4	
CpNozzleDDiameter	2	INCHES
CpNozzleELocation	S	
CpNozzleEQuantity	3	
CpNozzleEDiameter	2	INCHES

Tabla 4: Reporte de V-101

Con los datos ya definidos se procede a realizar el detalle del separador, incluyendo placa de choques, deflector, entrada de hombre, cáncamos de Izaje, demister, orientaciones de cada una de las conexiones. La placa de identificación de mencionado recipiente está de acuerdo a ASME VIII Sec. 2 DIV I.

En el ANEXO 4 se muestra el plano de detalle del recipiente además de su hoja de datos para compra.

Se muestra a continuación, los diagramas de la ingeniería de detalle del separador V-101:

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final

Año de cursada: 2018

Fecha de inicio 09/03/2018 Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 24 de 36

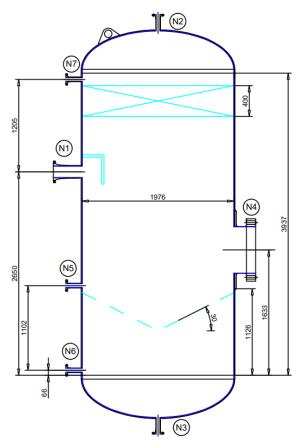


Ilustración 6: Plano de detalle.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final

Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva

JTP: E.Krumrick Profesor titular: H.Spesot

Versión: 7 Fecha: 23/11/2018

Página 25 de 36

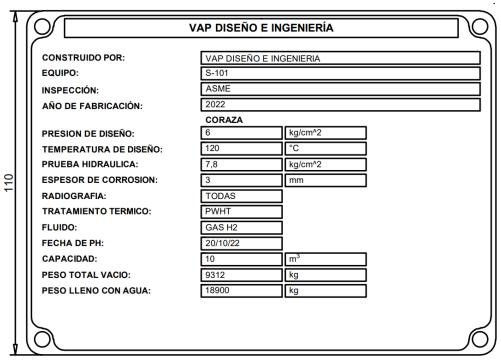


Ilustración 7: Placa de identificación V-101.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final

Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick

Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 26 de 36

ORIENTACION DE CONEXIONES

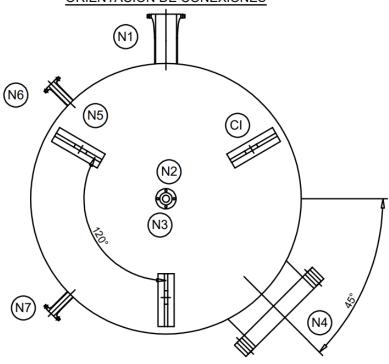


Ilustración 8: Orientación de conexiones de V-101.

DESCRIPCION DE CONEXIONES

	DESCRIPCION	DN	TIPO	RATING	CANTIDAD
N1	ALIMENTACION	6"	WN	150	1
N2	SALIDA VAPOR	2"	WN	150	1
N3	SALIDA LIQUIDO	2"	WN	150	1
N4	BOCA DE HOMBRE	24"	WN	150	1
	SENSOR DE NIVEL	2"	WN	150	1
	SENSOR DE NIVEL	2"	WN	150	1
N7	TRANSMISOR DE PRESION	2"	WN	150	1

Ilustración 9: Descripción de conexiones de V-101.

Aeroenfriador E-101

El diseño en detalle del aeroenfriador está bajo norma API Estándar 661 Edition July 2013. La simulación fue realizada en el Programa ASPEN HYSYS V10 con

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

	Proyecto Final	Año de cursada: 2018
- 1		

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 27 de 36

el complemento Exchanger Design and Rating V10. (American Petroleum Institute, 2013)

Los aeroenfriadores se diseñan para las condiciones de funcionamiento indicadas en la Hoja de Datos, verificando su correcto funcionamiento para la temperatura mínima del aire.

Las hojas de datos (HD) indican los requerimientos específicos de proceso por cada servicio, e incluyen características tales como: descripción de flujos, temperaturas, propiedades físicas, presión de operación, caída de presión máxima permitida, etc. Además, MTD (media logarítmica de temperatura) coeficiente de transferencia de calor, cantidades de aire, superficie, etc.

Los aeroenfriadores son de tiro forzado.

El material de los tubos será de Acero al Carbono 12 BWG de espesor. Las aletas serán continuas, segmentadas, serradas y circunferenciales, ya que dan un mayor coeficiente de transmisión de calor, por el lado aire.

El haz tubular será desmontable sin desarmar ni las campanas de distribución de aire ni las plataformas de acceso. El ancho del haz tubular será de 3 metros.

El aeroenfriador tendrá orejas de Izaje en cada haz tubular.

Se proporcionan las condiciones de entrada de la corriente de procesos y la condición más restrictiva para el aire circundante, en este caso Temporada Verano. Estos datos se pueden visualizar en el siguiente documento. Ver ANEXO 5.

Los puntos a resaltar del diseño del aeroenfriador son los siguientes:

• Face velocity: 10,7 m/s Valor de referencia: 10-12 m/s

• Temperatura de diseño: 204,4 °C

Pasos: 4


Aletas por metro: 433 #/m

• Cantidad ventiladores: 2

Potencia ventiladores: 5,7 hp
Longitud de tubos: 3 m
Número de tubos: 132

Costo del equipo: 46128 USD

Un diagrama de ingeniería en detalle se muestra en las siguientes figuras:

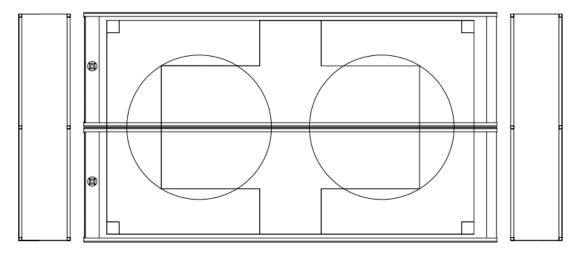


Ilustración 10: Diagrama de construcción.

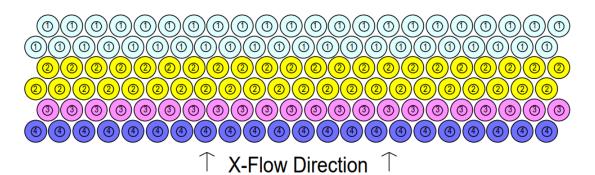


Ilustración 11: LayOut de tubos.

ESTUDIO ECONOMICO

El estudio económico-financiero se relevaron las materias primas y los productos obtenidos del proceso. (Chain, 2011)

Materias Primas:

En el primer caso, tenemos la materia prima principal, el Aluminio. Este viene de rezago de carpinterías de aluminio, de ferreterías, chatarrería, etc. El cual tiene un bajo costo de mercado, respecto del aluminio puro en forma de pellets.

UNIVERSID TECNOLOG NACIONA	ICA	FACULTAD REGIONAL NEUQUEN		Integración V INGENIERIA QUIMICA		blo gma	> No.
Proyecto Final			Año de cu	rsada:	2018		
Fecha de inicio 09/03/2018	Ayud C.Sil	ante: va	JTP: E.Krumrick	Profesor titular: H.Spesot	Versión: 7 Fecha: 23/11/2018	Págin	a 29 de 36

Si en un año se necesitan un poco más de 100 Tn de aluminio para cubrir la producción estipulada y el precio de mercado del aluminio reciclado es de 1,54 USD/kg. Por lo tanto:

Materia Prima	Necesidad (kg/año)	Costo anual (USD/año)
Aluminio	100.740	155.583

Tabla 5: Costo anual de Aluminio.

El ácido Clorhídrico también es materia prima, tal lo explicado en "Nombre del Proceso" descrito anteriormente. En este caso, se cuenta con un presupuesto de la empresa Transclor en el cual especifican la pureza (33%) y el costo es de 220 USD/Tn.

Materia Prima	Necesidad (Tn/año)	Costo anual (USD/año)
Ácido Clorhídrico	24.800	5.456.000

Tabla 6: Costo de Ácido Clorhídrico

El agua, se la debe comprar al EPAS y su costo es de 37,27 \$/m³. Se calcula la necesidad anual y su consecuente costo anual.

Materia Prima	Necesidad	Costo anual
	(m³/año)	(USD/año)
Agua	748.980	227.123

Tabla 7: Costo anual de agua.

Productos

Los productos a analizar son principalmente Policloruro de aluminio e Hidrogeno (subproducto).

La producción de PAC estimada a 1000 Tn/año con una pureza de 18% lo que nos proporciona una producción de PAC al 98% de 181.332 Tn/año. El beneficio obtenido por este producto es el siguiente:

Producto	Producción (Tn/año)	Beneficio anual (USD/año)
PAC	181.332	36.266.400

Tabla 8: Producción de PAC.

UNIVERSID TECNOLOG NACIONA	ICA	FACULTAD REGIONAL NEUQUEN		gración V RIA QUIMICA	Antiñir Pal (pabloantinir@ il.com)		VAP
Proyecto Fir	nal				Año de cu	rsac	da: 2018
Fecha de inicio 09/03/2018	icio C.Silva		JTP: E.Krumrick	Profesor titular: H.Spesot	Versión: 7 Fecha: 23/11/2018	Pá	gina 30 de 36

El subproducto de hidrogeno al 98% se puede ingresar a la venta teniendo el beneficio del reemplazo por gas natural. El costo de Gas Natural a Refinería Plaza Huincul es de 8,55 \$/m³. Con un estimado del dólar a 129,5 \$/USD se obtiene el beneficio de venta o remplazo de Gas Natural por hidrogeno.

Producto	Producción (m³/año)	Beneficio anual (USD/año)
Hidrogeno	8.701.308	574.985

Tabla 9: Producción de Hidrogeno.

Costos

Se tienen en cuenta todos los costos asociados a implantación, compra de equipos, costos del terreno, instalaciones, obra civil, montaje, comisionado y puesta en marcha. En este apartado se describirán todos los costos que se mencionaron anteriormente.

Costos de equipos:

Equipo	Costo (USD)	Observaciones
Bombas	30.000	
Separador V-101	147.404	Incluido revestimiento de vidrio.
Reactor R-101	170.000	Incluido revestimiento, internos y agitador.
TK-101	32.193	
TK-102	131.948	
TK-103	217.055	
TK-104	131.948	
TK-105	35.274	
TK-106	32.193	

Tabla 10: Costo de Equipos.

En cuanto a la implantación civil, costo de terreno, electricidad inscripciones y sellos para la ubicación en Parque Industrial Plaza Huincul es de:

Item	Costo	Observaciones
Obra Civil	4.000.000	Distribuido en 2 años de construcción.
Montaje	260.617	
Electricidad	1.236.000	Incluye bajada de línea de EPEN, compra de transformador y obra civil para la instalación del mismo.

Tabla 11: Costo obra civil.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 31 de 36

Flujo de caja

Se realizo la siguiente tabla para resumir todos los costos, inversiones y poder calcular los parámetros TIR y VAN del proyecto.

									<u> </u>														
										<u> [A</u>	BLA RES	SU	<u>MEN</u>										
PE	RIODO		0		1		2		3		4		5		6		7		8		9		10
	Activo fijo	USD	5.000.000,00	USD	2.000.000,00	USD	219.799,23	USD	-	USD	500.000,00	USD	-										
Inversión	Capital de trabajo	USD	3.260.617,76	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-
	Total	USD	8.260.617,76	USD	2.000.000,00	USD	219.799,23	USD	-	USD	500.000,00	USD	-										
	PAC	USD	-	USD	-	USD	18.133.200,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00	USD	36.266.400,00
Ingresos	H2	USD	-	USD	-	USD	-	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12
	Total	USD	-	USD	-	USD	18.133.200,00	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12	USD	36.841.385,12
	Costos fijos	USD	10.493.460,85	USD	8.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86
Egresos	Costos variables	USD	-	USD	4.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43
	Total	USD	10.493.460,85	USD	12.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29
	Ganancia (35%)	USD	-	USD	-	USD	6.346.620,00	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79	USD	12.894.484,79
Impuestos	Ingresos Brutos (1,5%)	USD	-	USD	-	USD	271.998,00	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78
impuestos	Sellos (2%)	USD	165.212,36	USD	40.000,00	USD	362.664,00	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70
	Total	USD	165.212,36	USD	40.000,00	USD	6.981.282,00	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27	USD	14.183.933,27
AMORT	TIZACIONES	USD	649.205,40	USD	649.205,40	USD	715.145,16	USD	715.145,16	USD	865.145,16	USD	865.145,16	USD	865.145,16	USD	865.145,16	USD	865.145,16	USD	865.145,16	USD	865.145,16
FLUJO NET	O DE FONDOS	-USD	19.568.496,36	-USD	15.183.369,69	USD	722.809,31	USD	12.448.142,39	USD	11.798.142,39	USD	12.298.142,39										
FLUJO NETO	O ACUMULADO	-USD	19.568.496,36	-USD	34.751.866,05	-USD	34.029.056,74	-USD	21.580.914,35	-USD	9.782.771,96	USD	2.515.370,43	USD	14.813.512,82	USD	27.111.655,21	USD	39.409.797,60	USD	51.707.939,99	USD	64.006.082,38
TASA DE DESCUENTO	10%	_							-														

Ilustración 12: Flujo de caja, TIR y VAN. (Chain, 2011)

Se visualiza un TIR (Tasa interna de retorno) mayor a la tasa de descuento, 21%. Además, se obtiene un VAN (Valor actual Neto) de 19.290 KUSD. Estos datos se pueden visualizar en el Anexo 6 Estudio Económico.

Análisis de sensibilidad

En este caso se procedió a realizar el análisis de sensibilidad para las materias primas Ácido Clorhídrico, Agua y Aluminio. (Chain, 2011)

Para el caso de la materia prima Ácido Clorhídrico, el caso más relevante, aunque se debe contemplar un aumento mayor al 40%, respecto a la moneda estadounidense (USD). Observando, además, que una reducción en el costo de esta materia prima aumenta considerablemente el TIR y VAN del proyecto.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final

Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 32 de 36

	Ingresos		Egreso	os -20%	Egreso	s -10%	Egreso	s 10%	Egresos	20%	Egresos	30%	Egresos	35%	Egresos	40%
0	USD	-	USD	9.401.906,33	USD	9.947.683,59	USD	11.039.238,11	USD	11.585.015,37	USD	12.130.792,63	USD	12.403.681,25	USD	12.676.569,88
1	USD	-	USD	10.856.832,52	USD	11.675.498,41	USD	13.312.830,18	USD	14.131.496,07	USD	14.950.161,96	USD	15.359.494,90	USD	15.768.827,84
2	USD	18.133.200,00	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
3	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
4	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
5	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
6	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
7	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
8	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
9	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
10	USD	36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
	TII	R		27%		24%		19%		16%		13%		12%		10%
	VAN		USD	30.843.276	USD	25.774.071	USD	15.635.663	USD	10.566.458	USD	5.497.254	USD	2.962.652	USD	428.050

Ilustración 13: Análisis de Sensibilidad Ácido Clorhídrico

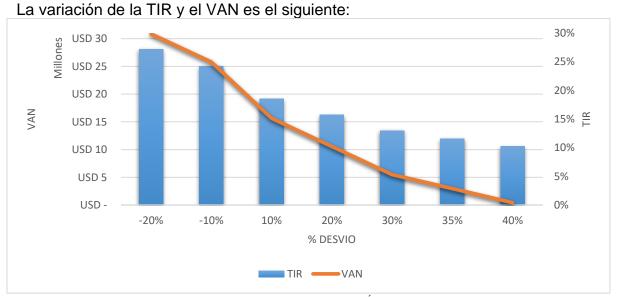


Ilustración 14: Variación TIR y VAN con Ácido clorhídrico

El análisis de sensibilidad para la materia prima Agua nos da como resultado que un aumento considerable (hasta el 40%) no perjudica el trayecto económico del proyecto.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018 Ayudante: C.Silva

JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 33 de 36

	Ingresos Egresos -20%			Egresos	s -10%	Egreso	os 10%	Egreso	s 20 %	Egreso	s 30%	Egreso	s 35%	Egreso	s 40%	
0	USD	-	USD	10.448.036,23	USD	10.470.748,54	USD	10.516.173,16	USD	10.538.885,48	USD	10.561.597,79	USD	10.572.953,94	USD	10.584.310,10
1	USD	-	USD	12.426.027,36	USD	12.460.095,83	USD	12.528.232,76	USD	12.562.301,23	USD	12.596.369,70	USD	12.613.403,93	USD	12.630.438,17
2	USD	18.133.200,00	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
3	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
4	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
5	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
6	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
7	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
8	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
9	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
10	USD	36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
	TII	R		22%		21%		21%		21%		21%		21%		21%
	VA	AN	USD	21.126.773	USD	20.915.820	USD	20.493.914	USD	20.282.961	USD	20.072.008	USD	19.966.532	USD	19.861.055

Ilustración 15: Análisis de sensibilidad Agua

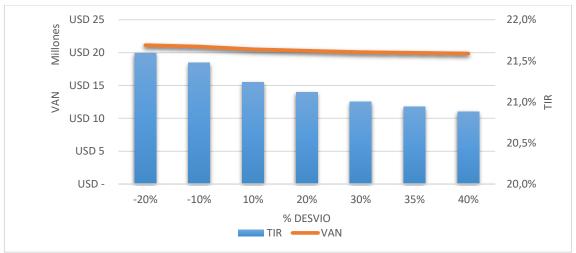


Ilustración 16: Variación TIR y VAN con Agua.

Al igual que con el Agua, la materia prima Aluminio se comporta de la misma manera. No influye en el trayecto económico financiero del proyecto.

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final Año de cursada: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva

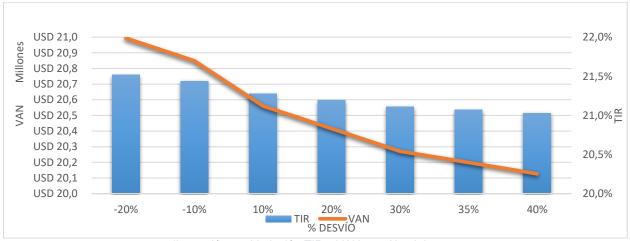
JTP: E.Krumrick Profesor titular: H.Spesot

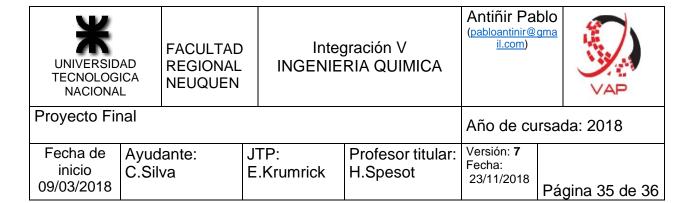
Versión: **7** Fecha: 23/11/2018

Página 34 de 36

	Ingresos E		Egreso	s - 20 %	Egreso	s -10%	Egreso	os 10%	Egreso	s 20 %	Egreso	os 30%	Egreso	s 35%	Egreso	s 40%
0	USD	-	USD	10.462.344,25	USD	10.477.902,55	USD	10.509.019,15	USD	10.524.577,45	USD	10.540.135,75	USD	10.547.914,90	USD	10.555.694,05
1	USD	-	USD	12.447.489,39	USD	12.470.826,84	USD	12.517.501,75	USD	12.540.839,20	USD	12.564.176,65	USD	12.575.845,38	USD	12.587.514,10
2	USD	18.133.200,00	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
3	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
4	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
5	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
6	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
7	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
8	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
9	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
10	USD	36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
	TIR		22%		21%		21%		21%		21%		21%		21%	
	VAN		USD	20.993.879	USD	20.849.373	USD	20.560.361	USD	20.415.855	USD	20.271.348	USD	20.199.095	USD	20.126.842

Ilustración 17: Análisis de sensibilidad Aluminio




Ilustración 18: Variación TIR y VAN con Aluminio.0

Tanto como el agua y el aluminio no son variables sensibles al cambio en el costo de la materia prima. En el ácido clorhídrico, se debe prestar atención a los cambios en las ofertas y demandas de la materia prima. En este caso, se tienen opciones para el caso de suministrar la materia prima en caso de baja oferta.

Punto de Equilibrio

El punto de equilibrio es aquel en donde la actividad, en nuestro caso Toneladas de PAC producidas, en donde los ingresos totales son iguales a los costos totales (costos fijos más costos variables), es decir, el punto de actividad donde no existe utilidad ni pérdida. (Chain, 2011)

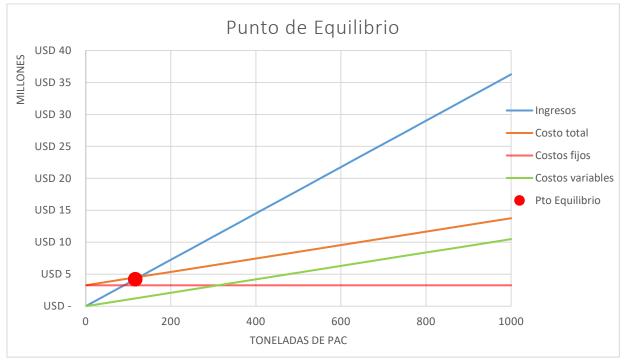


Ilustración 19: Punto de equilibrio Económico

El punto de equilibrio económico, donde los ingresos se igualan a los costos totales, es el punto 117 Tn de PAC y USD 4.221.394.

Conclusiones

Luego de realizar el estudio económico, estudiando TIR, VAN, sensibilidad se concluye que:

- El proyecto es viable, respetando que la Tasa Interna de Retorno sea mayor a la tasa de descuento (22%>10%, respectivamente) y el Valor Actual Neto es mayor a cero (USD 19.290.792).
- El proyecto es sensible a aumentos significativos en el costo de la materia prima Ácido Clorhídrico. Cabe destacar que la referencia de aumento tiene que ser en moneda estadounidense (USD).
- La materia prima aluminio y agua, no representan un desvío significativo en el análisis de sensibilidad del proyecto.
- En cuanto a un aumento del precio del producto, los valores de TIR y VAN aumentarían considerablemente.

FACULTAD REGIONAL NEUQUEN

Integración V INGENIERIA QUIMICA

Antiñir Pablo (pabloantinir@gma il.com)

Proyecto Final		Año de cursa	da: 2018

Fecha de inicio 09/03/2018

Ayudante: C.Silva

JTP: E.Krumrick Profesor titular: H.Spesot

Versión: **7** Fecha: 23/11/2018

Página 36 de 36

Bibliografía

Afines, C. A. (2015). www.aluminiocaiama.org.

American Petroleoum Institute. (1989). *Specification for Oil and Gas Separators*. Washington DC: API.

American Petroleum Institute. (2013). *Petroleum, Petrochemical, and Natural Gas Insdustries- Air-Cooled Heat Exchangers.*

Chain, N. S. (2011). Proyectos de inversión Formulación y Evaluación. Santiago, Chile: PEARSON.

KIRK-OTHMER. (s.f.). Encyclopedia of chemical technology. Watcher.

Públicas, M. d. (8 de Agosto de 2017). www.estadisticaneuquen.gob.ar.

The American Society Of Mechanical Engineers. (2019). *Rules for Construction of Pressure Vessels.* New York: ASME.

Integración V

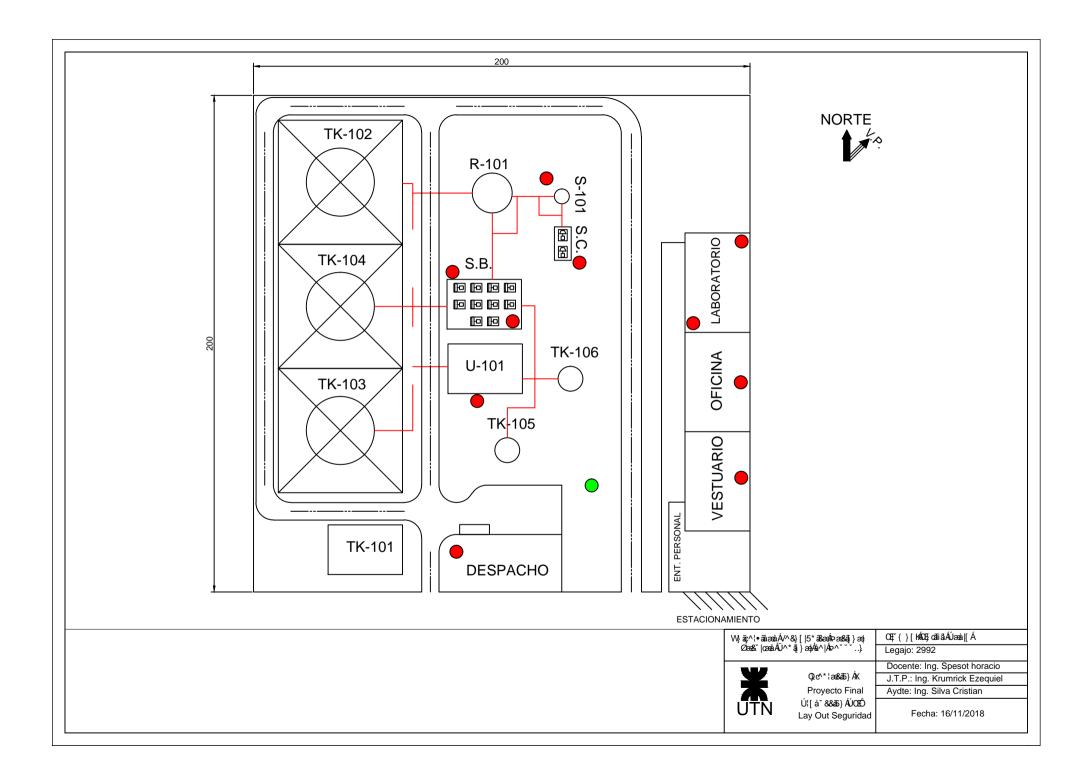
Diagrama de Flujo

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

Garrido Juan

Alumno: Antiñir Pablo

Diagrama de flujo. (3) AGUA (DEMI) REACTOR PRINCIPAL (2) HCI (1) (4) (5) ALUMINIO Separación (8) Residuos (10)Dilución Almacenamiento Despacho Corrientes 1 2 3 4 5 6 7 8 9 10 11 Caudal (tn/año) Presión (atm) Temperatura (°C) Alumno: Visado Universidad Tecnológica Nacional Antiñir, Pablo Composición de aluminio Facultad Regional del Neuquén Legajo: 2992 Composición de agua Nota Composición de HCI Observaciones Integración V Docente: Ing. Spesot Horacio Composición de AICI3 Ing. Krumrick Ezequie Proyecto Final Aydte.: Ing. Silva Cristian Composición de PAC UTN Fecha Composición de H2 29 06 18


Integración V

Lay Out

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

Garrido Juan

Alumno: Antiñir Pablo

Integración V

Estudio de Impacto Ambiental

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

Garrido Juan

Alumno: Antiñir Pablo

CÁTEDRA

EVALUACIÓN DE IMPACTO AMBIENTAL

TRABAJO PRÁCTICO
Producción de PAC a partir de chatarra de aluminio

Profesor: Ing. Arturo Horacio López Raggi

ESTUDIO DE IMPACTO AMBIENTAL SIMPLIFICADO DEL PROYECTO FINAL

PRODUCCION DE PAC A PARTIR DE CHATARRA DE ALUMINIO

ALUMNO: Antiñir Pablo

1. CARACTERIZAR DE ACUERDO A EL DECRETO 2656/99 DE LA PROVINCIA DEL NEUQUÉN EL TIPO DE ESTUDIO QUE CORRESPONDERÍA EJECUTAR

De acuerdo al decreto N° 2656/99 de la provincia del Neuquén, el tipo de estudio que corresponde es un informe de impacto ambiental de industria química.

Nombre del proyecto:

Producción de Policloruro de aluminio a partir de chatarra de aluminio.

2 - PROYECTO

2.1 Ubicación del proyecto:

La ubicación de la planta será en el parque industrial de la ciudad de Plaza Huincul. En un terreno delimitado de 200 metros por 200 metros. De coordenadas LS:-38º55′51.4″;LO:69º09′12″

2.2. - Recursos demandados. Tipos y cuantificación.

Considerando las tres etapas: Construcción, operación y abandono

Se presenta una caracterización de las materias primas, insumos y suministros, bajo condiciones normales de operación

MATERIAS PRIMAS	ETAPA DEL PROYECTO	CANTIDAD ESTIMADA	UNIDAD DE MEDIDA	TRANSPORTE	FORMA DE ALMACENAMIENTO
Materiales de construcción	Construcción	-	-	-	-
Aluminio	Operación	110	tn/año	Tolvas	Almacén
Agua	Operación	90	m³/hr	Cañerías	Tanques
Ácido Clorhídrico	Operación	95	tn/año	Camiones	Tanques

INSUMOS	ETAPA DEL PROYECTO	CONSUMO ESTIMADO	UNIDAD DE MEDIDA	COMENTARIOS
Electricidad	Construcción, operación y abandono	12	kWh	
Agua para consumo humano	Construcción, operación y abandono	2000	Litros/día	Proporcionado por la red.

2.3 Efluentes del proyecto

2.3.1 Emisiones

COMPUESTO	ETAPA DEL PROYECTO	EMISIÓN ESTIMADA	UNIDAD DE MEDIDA	OBSERVACIONES
Hidrógeno	Operación	390	Kmol/hr	

2.3.2 Vertidos

IDENTIFICACIÓN DE LA FUENTE DE DESCARGA	ETAPA DEL PROYECTO	VOLUMEN ESTIMADO DE DESCARGA	UNIDAD DE MEDIDA	DESTINO DEL EFLUENTE	TIPO DE MANEJO DEL EFLUENTE
Efluentes cloacales	Const., operación y abandono	200	litros/dí a	Planta de tratamiento	Tratamiento químico de reacondicionamiento

2.3.3 Residuos

IDENTIFICACIÓN DE RESIDUOS	ETAPA DEL PROYECTO	CANTIDAD ESTIMADA	UNIDAD DE MEDIDA	DESTINO DE LOS RESIDUOS GENERADOS
Residuos sólidos urbanos	Construcción, operación y abandono	30	Kg/día	Deposición
Residuos de construcción	Construcción		Diaría	Según disposición municipal

3 - IDENTIFICACIÓN Y VALORACIÓN DE LOS IMPACTOS

3.1 Identificación de impactos

A continuación, se identifican los impactos a partir del análisis de la interacción entre las acciones del proyecto y los factores y subfactores del entorno en las tres fases.

3.1.1 Árbol de acciones

En el árbol de acciones se describen todas las acciones causadas por la ejecución del proyecto en sus tres fases.

	ÁRBOL DE ACCIONES						
22,742,241412214	Fase	Elemento	Acciones:				
			Desmonte y nivelación				
			Relleno y compactación				
		Movimiento de	Acopio de material				
		suelos	Tránsito de vehículos pesados				
			Emisión de ruidos y vibraciones				
	Construcción		Emisión de polvo				
		Obrador	Demanda de mano de obra				
	0	Obrador	Generación de residuos				
0			Excavaciones				
PROYECTO		Obra civil y	Emisión de ruidos y vibraciones				
}		montaje	Tránsito de vehículos				
PR			Obra civil				
			Movimiento de personal				
			Circulación y carga de camiones				
	Omorosión	Planta	Vertido de efluentes				
	Operación	Platita	Emisión de ruidos por equipos				
			Emisión de gases combustibles por vehículos				
			Emisión de gases de hidrógeno				
			Desmontaje total de la planta				
			Movimiento de maquinaria pesada				
	Abandono	Planta	Reacondicionamiento del terreno				
			Despidos				
13 23			Recolección y transporte de residuos				

3.1.2 Factores afectados

En la tabla siguiente se marcan los factores que se consideran serán afectados en todas las fases y una breve descripción del tipo de afectación.

Factores a	Fa	ses		Descripción somera de la afectación
considerar	C O A		Α	
Aire	Х	Х	Х	Calidad del aire Confort sonoro
Suelo	Х			Desmonte para instalación de la planta
Suelo		Х		Derrame
Hidrología Subterránea		Х		Riesgo de filtración
Flora	Х	Х		Desmalezamiento del terreno
Paisaje	Х	Х	Х	Alteración del paisaje intrínseco
Población	Х	Х	Х	Interrelación social Aceptabilidad social del proyecto
Recursos humanos	Х	Х	Х	Mano de obra
Economía	Х	Х	X	Actividad económica
Infraestructura	Х	Х	Х	Demanda de servicios
Equipamientos	Х	Х	Х	Transporte, comunicaciones.

3.1.3 Identificación de impactos

Las acciones que el proyecto puede generar sobre el medio son las causas que provocan los impactos, estas pueden ser agrupadas de dos formas:

- Acciones operativas: son aquellas que la actividad produce por el solo hecho de su concepción, construcción, operación y abandono.
- Acciones accidentales o de contingencias: son todo hecho o acción, de origen natural o humano, cuya ocurrencia involucra un riesgo potencial. Son aquellas que se producen como consecuencia de una emergencia, es decir lo que acontece cuando, de una circunstancia o combinación de circunstancias, surge un fenómeno inesperado de índole accidental, que debe ser controlado a fin de evitar daños, lo que se denomina Contingencia.

En la tabla siguiente se describen los impactos Operativos y por Contingencias en las tres fases que actúan sobre cada factor.

		Fase: Construcción in the management de la construcción in the construcción de la constru
		Impactos Negativos
Factores Afectados	N₽	Operativos
	1	Afectación de la calidad del aire por emisión polvo
Aire	2	Afectación de la calidad del aire por gases de combustión
	3	Afectación confort sonoro por transito
Paisaje	4	Afectación del paisaje intrínseco
Factores Afectados	Nº	Por Contingencias
Suelo	5	Riesgo de vertido de aceites lubricantes
Recursos humanos	6	Riesgo de accidentes por operación y tránsito de maquinarias
		Impactos Positivos
Factores Afectados	Nº	Operativos
Economía	7	Creación de puestos de trabajo -
Economia	8	Demanda de bienes y servicios

		Fase: operación
		Impactos Negativos
Factores Afectados	Nº	Operativos
	1	Emisión de gases de combustión
Aire	2	Emisión de gases de hidrógeno
	3	Afectación confort sonoro
Suelo	4	Vertido de efluentes y residuos
Paisaje	5	Afección del paisaje intrínseco
Factores Afectados	Nº	Por Contingencias
Aire	6	Escape de gases
Recursos humanos	7	Riesgo de accidentes
Suelo	8	Vertido de aguas ácidas
Infraestructura	9	Riesgo de incendio
		Impactos Positivos
Factores Afectados	Νo	Operativos
Economía	10	Creación de puestos de trabajo
Economia	11	Compra de aluminio chatarra
Recursos humanos	12	Demanda de mano de obra calificada

		ili II. II. ali ettes iks Fase: abandono iz sarana sauren kientraŭ antiĝas distribilistas di la la la la la la
		Impactos Negativos
Factores Afectados	Nº	Operativos
Suelo	1	Residuos por abandono
Economía	2	Pérdida de puestos de trabajo
ECOHOHIIA	3	Finalización de la demanda de bienes y servicios
Factores Afectados	Nº	Por Contingencias
Suelo	4	Riesgo de contaminación por derrames
		Impactos Positivos
Factores Afectados	Nº	Operativos .
Paisaje	5	Recomposición de la calidad del paisaje

3.2 Valoración de los impactos Operativos

La valoración se realiza considerando la *Importancia* del Impacto, es decir la categoría del efecto de una acción sobre un determinado factor afectado de acuerdo a lo estipulado por la Resolución 25/04 de la Secretaría de Energía de la Nación.

3.2.1 Cálculo de la Importancia

Para el cálculo de la Importancia se han tomado solamente los *impactos negativos por ser ellos los que gravitaran sobre la viabilidad ambiental del proyecto*. La expresión adoptada es la correspondiente a la metodología propuesta por Vicente Conesa Fernández – Vítora y adoptada por la Resolución 25/04.

Importancia = $\pm [3 + 2 EX + MO + PE + RV + SI + AC + EF + PR + MC] (1)$

Dónde:

I = Intensidad

RV = Reversibilidad

PR = Periodicidad

EX = Extensión

SI = Sinergia

MC = Recuperabilidad

MO = Momento

AC = Acumulación

PE = Persistencia

EF = Efecto

Criterios de valoración:

	Intensidad				
	perturbación que imponen las acci l asignado al factor.	ón del proyecto al valor			
amblenta	Extensión				
	Cuando la acción impactante pro	duce una alteración muy			
Puntual	localizada en el entorno consider				
Parcial	Cuando la acción impactante pro				
	apreciable en el entorno conside				
Extenso	Cuando la acción impactante pro				
	gran parte del entorno considera				
Total	Cuando la acción impactante pro				
	generalizada en el entorno consi	aerado.			
	Momento Momento				
Largo Plaz	Largo Plazo > 5 años				
Medio Pla	ZO	1 – 5 años			
Inmediato)	< 1 año			
Crítico		Circunstancia crítica			
	Persistencia	i dan Kelabuhatan kendalah dan dan perapakan dalam dan mer			
Tiempo de	e permanencia del efecto desde su	aparición hasta su posible			
desaparic	ión.				
Fugaz < 1 año					
Temporal 1 –10 años					
Permanente > 10 años					
	Reversibilidad	Aprilia del Regilla del Region del Propio de			
	La capacidad que tiene el factor afectado de revertir el efecto por medios naturales.				

Corto Plazo	< 1 año
Medio Plazo	1 –10 años
Irreversible	> 10 años
Recu	iperabilidad
La posibilidad de revertir el efecto	o por medio de la intervención humana.
La posibilidad de revertir el efecto Corto Plazo	o por medio de la intervención humana.
•	

			Fas	e: constru	ccion			
		Cá	cul	o de la Imp	ortancia			
					lmpa	ctos		
					Opera	tivos		
ATRIBUTO	CARÁCTER	VALOR	PESO	Afectación del aire por emisión de polvo	Afectación del aire por gases de combustión	Afectación confort sonoro por tránsito	Afectación de paisaje intrínseco	
SIGNO	Beneficioso	(+)	1211111111111	(-)	(-)	(-)	(~)	
I I I I OIGNO	Perjudicial	(-)		(-)	(-)	(-)	(")	
	Baja	1						
	Media	2						
INTENSIDAD	Alta	4	3	1	1	1	1	
	Muy alta	8						
	Total	12						
	Puntual	1						
	Parcial	2			1		1	
EXTENSIÓN	Extenso	4	2	2		1		
	Total	8						
	Critica	(+4)		1				
	Largo plazo	1		2	2	2	2	
	Medio plazo	2	1					
MOMENTO	Inmediato	4	1					
	Crítico	(+4)						
	Fugaz	1			1	1	2	
PERSISTENCIA	Temporal	2	1	2				
	Permanente	4						
	Corto plazo	1		1		1	1	
REVERSIBILIDAD	Medio plazo	2	1		1			
	Irreversible	4	1					
	Sin sinergismo	1						
SINERGIA	Sinérgico	2	1	1	1	1	1	
	Muy sínérgico	4	•		,	-		
	Simple	1						
ACUMULACIÓN	Acumulativo	4	1	1	1	1	1	
	Indirecto	1						
EFECTO	Directo	4	1	4	4	4	4	
	Irregular o periódico	1						
PERIODICIDAD	Periódico	2		1	1	1	4	
	Continuo	4	'		,	,	1	
	Recuperación inmediata	1	1					
	Recuperable medio plazo	2	1				00.00	
RECUPERABILIDAD	Mitigable	4	1	1	1	1	1	
	Irrecuperable	8	1					
	IMPORTAN			20	17	17	18	

Fase: operación Cálculo de la Importancia Impactos Operativos VALOR Emisión de Emisión de Afectación Vertido de Afección del ATRIBUTO CARÁCTER gases de gases de confort efluentes y paisaje combustión hidrogeno sonoro residuos intrínseco Beneficioso (+) SIGNO (-) (-) (-) (~) (-) Perjudicial (-) Baja Media 2 INTENSIDAD 4 3 1 2 2 1 1 Alta Muy alta Total 8 12 Puntual 1 Parcial 2 EXTENSIÓN Extenso 4 2 1 2 2 1 2 8 Total Critica (+4)Largo plazo 1 Medio plazo 2 1 2 2 2 2 MOMENTO 4 Inmediato 4 (+4) 1 Fugaz PERSISTENCIA 1 1 1 1 2 4 2 Temporal Permanente 4 Corto plazo 1 1 1 1 1 2 REVERSIBILIDAD Medio plazo 2 1 4 Irreversible Sin sinergismo 1 SINERGIA 1 1 1 1 1 1 2 Sinérgico Muy sinérgico 4 Simple ACUMULACIÓN 1 1 1 1 1 1 Acumulativo 4 Indirecto 1 EFECTO 1 4 4 4 4 Directo 4 rregular o 1 periódico 2 2 PERIODICIDAD 1 4 4 4 2 Periódico 4 Continuo nmediata 1 2 A medio plazo 1 1 1 1 2 RECUPERABILIDAD 1 Mitigable 4 irrecuperable

23

25

21

31

IMPORTANCIA

15

			Fas	se: abandono		
		C	álculo	de la Importa	ncia	
					lmpa	:tos
					Opera	tivos
ATRIBUTO	CARÁCTER	VALOR	PESO	Residuos por abandono	Pérdida de puestos de trabajo	Finalización de la demanda de bienes y servicios
SIGNO	Beneficioso Perjudicial	(+)		(-)	(-)	(-)
INTENSIDAD	Baja Media Alta Muy alta Total	1 2 4 8 12	3	1	2	1
EXTENSIÓN	Puntual Parcial Extenso Total Critica	1 2 4 8 (+4)	2	1	1	1
MOMENTO	Largo plazo Medio plazo Inmediato Crítico	1 2 4 (+4)	1	2	4	4
PERSISTENCIA	Fugaz Temporal Permanente	2 4	1	2	4	4
REVERSIBILIDAD	Corto plazo Medio plazo Irreversible	1 2 4	1	2	4	4
SINERGIA	Sin sinergismo Sinérgico Muy sinérgico	1 2 4	1	1	1	1
ACUMULACIÓN	Simple Acumulativo	1 4	1	1	1	1
EFECTO	Indirecto Directo	1 4	1	4	4	4
PERIODICIDAD	Irregular o periódico Periódico Continuo	1 2 4	1	1	4	4
ECUPERABILIDAD	Inmediata	1 2 4 8	1	1	4	4
	IMPOR			19	34	31

3.3 Impactos por Contingencias

Al considerar las acciones por contingencias estas se evaluaran a través de la Estimación del Riesgo.

3.3.1 Estimación de los riesgos

La *Estimación del Riesgo*, por causa de los impactos por contingencias se evalúa de la siguiente manera:

Estimación de Riesgo (ER) = Amenaza (A) x Vulnerabilidad (V)

a) Amenaza (A)

Amenaza (A) = Control (C) + Ocurrencia (O)

a.1 Control: Se obtiene a partir de las consideraciones expresadas en la tabla

Control:	Valor
No controlado	5
Parcialmente controlado	3
Controlado	1

No controlado: Cuando no existen:

- Legislación nacional y/o provincial y/o municipal
- Reglamentación nacional y/o provincial y/o municipal
- Procedimientos
- Instrucciones técnicas
- Planes de contingencia
- Protección o barreras físicas
- Monitoreos
- Programas de mantenimiento

Que permitan prevenir o evitar la ocurrencia de un determinado evento.

Parcialmente controlado: Cuando existen:

- Legislación nacional y/o provincial y/o municipal
- Reglamentación nacional y/o provincial y/o municipal
- Procedimientos
- Instrucciones técnicas
- Planes de contingencia
- Protección o barreras físicas
- Monitoreos
- Programas de mantenimiento

Que permitan prevenir o evitar la ocurrencia de un determinado evento pero no son suficientes para evitar que se produzca el impacto ambiental.

Aspecto controlado: Cuando existen:

- Legislación nacional y/o provincial y/o municipal
- Reglamentación nacional y/o provincial y/o municipal
- Procedimientos
- Instrucciones técnicas
- Planes de contingencia
- Protección o barreras físicas
- Monitoreos
- Programas de mantenimiento

Que permitan prevenir o evitar la ocurrencia de un determinado evento y las mismas son efectivas para un control total del impacto medioambiental.

a.2 Ocurrencia: Se estima, considerando el periodo de tiempo de duración de la operación. De acuerdo a la ocurrencia se le asigna los valores descriptos en la Tabla.

Ocurrencia	Valor
Muy Frecuente	4
Frecuente	3
Poco Frecuente	2
Ocasional	1

b) Vulnerabilidad (V)

Vulnerabilidad (V) = Factor afectado (Fr)+ Magnitud (M)

b.1 Factor afectado: El valor se obtiene de acuerdo a las características:

	Factor afectado	Valor
•	Aire:	
	- Calidad del aire	
•	Agua:	
	- Superficial	
	 Recarga de acuíferos 	
	 Cauces aluvionales 	
	 Napa de agua dulce 	
•	Procesos	
•	Suelo:	
	 Con actividades agrícolas/ganaderas de magnitud 	
•	Vegetación:	10
	 Especies vegetales protegidas y/o singulares 	
•	Fauna:	
	- Especies protegidas	
	 Puntos de paso o rutas migratorias 	
•	Ecosistemas especiales	
•	Socioeconómico:	
	- Población:	
	- Recursos Humanos	
•	Infraestructura y núcleos:	
	- Asentamientos urbanos	
•	Paisaje	2007
•	Áreas protegidas	8
•	Patrimonio cultural	
•	Suelo:	
	 Con actividades ganaderas y/o agrícolas de 	7
	escasa magnitud	· ·
	- Recreativo	
•	Suelo:	
	 No comprendidos en los puntos anteriores 	
•	Vegetación:	6
	 No comprendidos en los puntos anteriores 	
•	Fauna:	
L,	 No comprendidos en los puntos anteriores 	

•	Infraestructura	
•	Agua: - Napa con alto contenido salino. Suelo: - Sin actividades agrícolas / ganaderas - Extractivo	3
•	Suelo: - Ocupado con instalaciones.	1

b.2 Magnitud: En referencia a la extensión del daño sobre el factor afectado.

Magnitud	Valor
Muy Alta	10
Alta	7
Media	5
Baja	3
Despreciable	1

En las Tabla se desarrolla el cálculo de la estimación de los riesgos.

	Estimación de los Riesgos								
			Ame	naza		Vulnera	ibilidad		a yrianda a seintili kaleit Selekala silsela ostilak unell
Fases	Fases Impactos por Afectado S	Control	Ocurrencia	Suma	Factor afectado	Magnitud	Suma	Estimación del Riesgo	
ión	Riesgo de vertido de aceites lubricantes	Suelo	1	1	2	1	1	2	4
Construcción	Riesgo de accidentes por operación y tránsito de maquinaria pesada	Recursos Humanos	1	1	2	10	5	15	30
	Escape de gases	Aire	3	2	5	10	3	13	65
Operación	Riesgo de accidentes	Recurso humano	1	2	3	10	5	15	45
Opera	Vertido de aguas ácidas	Suelo	1	1	2	1	3	4	8
	Riesgo de incendio	Aire	1	1	2	10.	5	15	30
Abandono	Riesgo de contaminación por derrames	Suelo	1	1	2	3	1	4	8

4 - DECLARACIÓN DE IMPACTO AMBIENTAL

4.1 Impactos Operativos

Para efectuar el enjuiciamiento de los impactos de acuerdo a su valoración, se toman la escala dada por la Resolución 25/04

JERARQUIA	VALOR
Bajo	0 - 25
Moderado	25 - 50
Critico	> 50

La clasificación se define de la siguiente manera:

Bajo: de rápida recuperación sin medidas correctoras.

Moderado: la recuperación puede tardar de cierto a bastante tiempo, no necesitando medidas correctoras, o en el peor de los casos ser mitigable necesitando medidas correctoras simples.

Crítico: la recuperación requiere bastante tiempo y como mínimo requiere medidas correctoras más complejas, puede superar el umbral tolerable y en este caso no es recuperable independientemente de las medidas correctoras.

De los impactos tratados y luego valorados resulta el enjuiciamiento detallado en la tabla

	Impactos Operativos								
Fase	Factores Afectados	Negativos	Signo	Importancia	Categoría del Impacto				
Ę	Afectación de aire por polvo		_	20	Bajo				
Construcción	Afectación de aire por gases de combustión		-	17	Bajo				
onstr	Afectación de confort sonoro por tránsito			17	Bajo				
Ö	Afectación del paisaje		-	18	Bajo				
	Emisión de gases por combustión		-	15	Bajo				
ión	Emisión de gases de hidrogeno		-	23	Bajo				
Operación	Afectación de confort sonoro		-	25	Bajo				
Ö	Vertido de efluentes y residuos		-	21	Bajo				
	Afectación del paisaje		-	31	Moderado				
٥	Residuos por abandono		-	19	Bajo				
Abandono	Pérdida de puestos de trabajo		1	34	Moderado				
Abaı	Finalización de demanda de bienes y servicios		-	31	Moderado				

4.2 Impactos por Contingencias

Estimación del Riesgo

De acuerdo a la categorización:

Riesgo Irrelevante: no requiere acción específica.

Riesgo Tolerable: no requiere medidas adicionales de control.

Riesgo Moderado: requiere medidas para reducir el riego.

Riesgo Importante: no se puede dar comienzo a la operación hasta reducir el riego.

Riesgo Intolerable: se debe interrumpir la ejecución del proyecto hasta que no se revean las causas que originan el Riesgo.

En la Tabla se detallan los intervalos de encuadre de los valores estimados de los riesgos calculados.

Nive Categoría	l de Riesgo Intervalo (Estimación de Riesgo)
Irrelevante	0 - 30
Tolerable	31 - 70
Moderado	71 - 110
Importante	111 - 160
Intolerable	> 160

De los impactos tratados y luego valorados resulta el enjuiciamiento detallado en la tabla

Fases	Impactos por Contingencias	Factores Afectados	Estimación del Riesgo	Nivel de Riesgo
ucc.	Riesgo de vertido de aceites lubricantes	Suelo	4	Irrelevante
Construcc ión	Riesgo de accidentes por tránsito y operación de maquinaria pesada	Recursos Humanos	30	Irrelevante
	Escape de gases	Aire	65	Tolerable
Operación	Riesgo de accidentes	Recurso humano	45	Tolerable
Opera	Riesgo de incendio	Proceso	8	Irrelevante
Ü	Vertido de aguas acidas	Suelo	30	Irrelevante
Aban dono	Riesgo por contaminación por derrames	Suelo	8	Irrelevante

5 - PLAN DE GESTIÓN AMBIENTAL

En la tabla siguiente se presenta una síntesis del tipo y descripción de la/s medidas a introducir a los efectos de minimizar el impacto que ha resultado en el caso de los Operativos o por Contingencias igual o superior a Moderado.

	SINTESIS	E MEC	IDAS I	DE MINIMIZ.	ACIÓN DE IMPA	TOS.
	IMPACTOS		DDE DIDA	FASE	DESCRIPCIÓN	OBJETO
		Prev.	Cor			
ivos	Afectación del paisaje	×		Operación	Parquización de los alrededores de la planta en terreno lindantes	Disminuir la afectación del paisaje
Operativos	Pérdida de puestos de trabajo	х		Abandono	Indemnizaciones y previos avisos	Disminuir el impacto económico en los trabajadores
ias	Escape de gases	x		Operación	Control diario en equipos críticos con detector de gases	Disminución de equipos críticos
Contingencias	Riesgo de accidentes	х		Operación	Capacitaciones semestrales	Disminuir el riego de accidentes laborales
J	Riesgo de accidentes		×	Operación	Atención inmediata del personal afectado	Rápida atención del personal

Autitur Parbho 20/11/18. Nota examen 70 (setente)

Integración V

Ingeniería de Detalle E-101

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

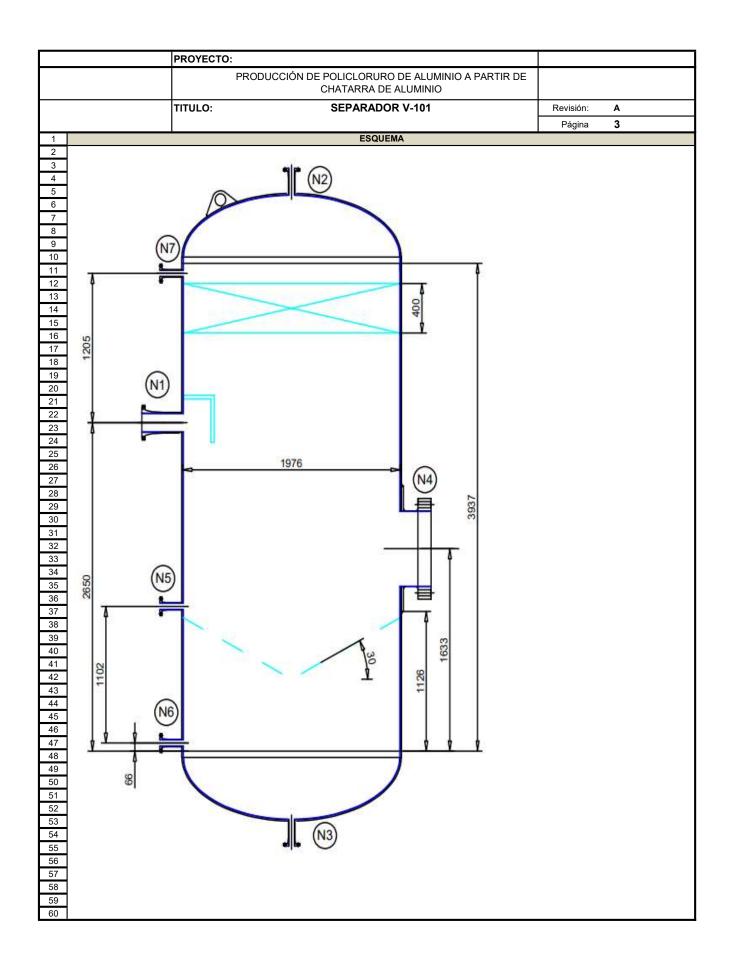
Garrido Juan

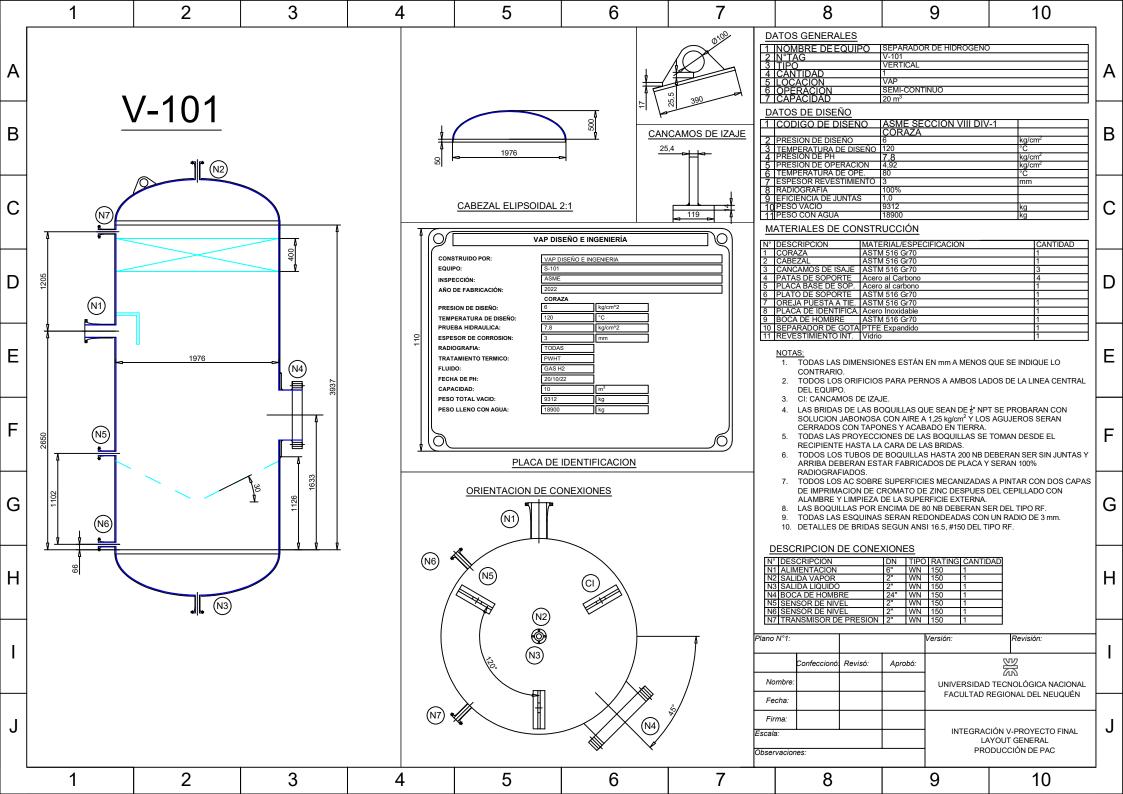
Alumno: Antiñir Pablo

1	REV	ITEM Nº: E-101					Red	quisi	ción / Ped	lido Nº:⊃	(XXX	
2		Servicio de la Unidad: Enfriador d	e Hidrogeno)								
3	+											
5	+		CONDIC	CION	ES DE (OPER.	ACIÓN. LA	DO 1	UBOS			
6		Denominación del Fluido								Hidrogen	10	
7		Flujo Total de Fluido			kg/h					2130		
8		Vapor			kg/h			77				
9		Líquido		_	kg/h			135				
10	+	Vapor de Agua Agua		-	kg/h kg/h			0				
11 12	+	Incondensables		\dashv	kg/h			0				
13		Temperatura		\dashv	°C			96,8			30	
14		Densidad (L/V)			kg/m	3	138	30,16	/ 0,79		1211,85 / 0,49	
15		Viscosidad (L/V)			ср		0,27		0,0093		0,7305 / 0,008	88
16		Peso Molecular del Vapor		_			0.10	4,1			4,116	
17		Calor Específico (L/V)		_	kcal/kg				1,7251		0,6414 / 3,190	
18 19		Conductividad Térmica (L/V) Calor latente		-	kcal/h.m kcal/k		0,4	4/4/	0,142	_	0,496 / 0,151	
20		Temperatura de solidificación		+	°C	·9				-160,71		
21	+	Presión		\top	kg/cm ²	(e)				6,033		
22		Velocidad			m/s							
23		Pérdida de Carga (Adm./Cal.)			kg/cm					0,4 / 0,09	93	
		Resistencia ensuciamiento (min)	COND		h.m ² .°C/		DAGION I	400	AIDE	0,0002		
25		Caudal da aira (tatal/aar vantiladar					RACION. L	ADO		0000 / 55	.000	
26 27		Caudal de aire (total/por ventilador Temperatura (Entrada/Salida))	+	kg/h) (n °C	ıı /S)			11	0000 / 55 25 / 47	0000	
28		Perdida de carga estatica		+	kg/cm	2				0,002		
29		Altitud / Temperatura minima		_	(m) (°					0/0		
30		Potencia (total/por ventilador)			. , .					11,4 / 5,		
31		Calor Intercambiado:			32160 (MTD (c		27,17 (°C	;)
32		Coef. de transm. de calor 14,8	Aletead		347,9		Liso:		409,9	(kca	l/h.m ² .°C)	
33		Dunaita da Dinaga	DATO	SPA		~ .	TRUCCION	I DE	L HAZ	10.5		
34 35		Presión de Diseño Temperatura de Diseño		+	kg/cm °C	1-				10,5 205		
36		Sobreespesor de Corrosión		+	mm					3		
37												
38		Códigos aplicables: A S M E	SEC VIII	DIV	I		Peso del	l haz	tubular va	acio (kg.)	1 7 0 8	
39		Tubos		Alet	tas					Cabeza	l	
40		Nº/haz: 1 3 2	Nº/m: 4			_	Tipo: Box				erial: Acero al ca	rbono
38 39 40 41 42	-	Material: Acero al Carbono	Material: OD 5	Alun 7,15	ninio 106		Mat. tapone		Acero al c		10 + -1 4.4	
43	-	OD 25,4 BWG # Longitud: 3 m	Espesor:		1	-	Nº filas: 6	6 I	V⁰ pasos:	4 1	Nº tubos/paso 44	
44	_	Paso: 6		-finne								
45	_	EQUIPO ME							SERPE	NTIN DE	VAPOR	
46		Ventiladores			nsmisio	ones	Serpentin d	le va	oor	NO		
47		Nº/Sección	Nº/Secció				Nº tubos/ha	az:			oor (kg/h)	
48	-	Tiro: FORZADO	Tipo Moto				Material:	514			sión op.(kg/cm²)	
49 50	_	Diámetro: 1	Potencia Frecuenc				OD Longitud:	BW	/G		np. Operación (°C)	_
51	_	Tipo: Manual	Tensión (<u>-</u> J.	-	Longitud: Paso:				<u>sión diseño (kg/cm</u> np. Diseño (ºC)	1)
52	_	Potencia/vent. (hp) 5,7	Tipo Tran		ión		Aletas tipo:			101		
53	_	Variador de frecuencia no	Reducció				Conexiones		ma <u>ño</u> y ra	iting (ent.	/sal.)	
54	_	Persianas: Manual	Interr. de	vibra	ción		Recirculacio				no	
55	_	NOTAS:								· <u></u>		
56	1											
57 58	+	•										
30	+				T T	Г	T				FICHERO PLANO	
	t						- REALIZAL	DO				
							APROBAL	no			CONTRATISTA	
0							APROBAL	00				
REV.		DESCRIPCIÓN	FE	CHA	REAL.	APRO	B. V° B° CLIEI	NTE			PROYECTO	
			'-			l					<u> </u>	
NOM	BRE AN	NEXO / TITULO DEL PLANO									CLIENTE	
							ANEXO	ESP.	N° DE PL	ANO	HOJA	RE
							AIVEXU	ESP.	IN DEPL	7110	HUJA	I KE
								E				

Integración V

Ingeniería de Detalle V-101


Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

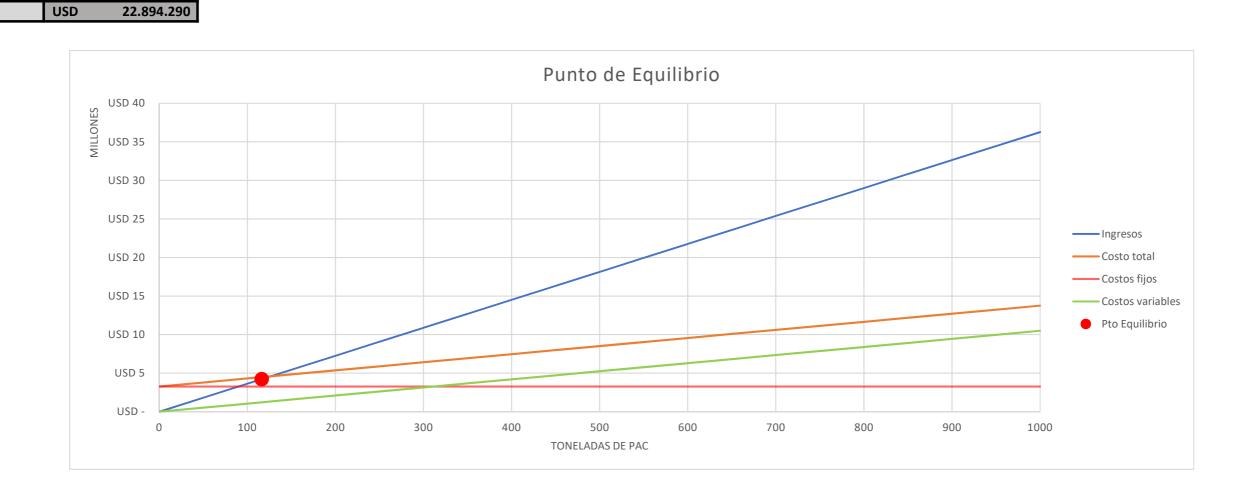

Garrido Juan

Alumno: Antiñir Pablo

		P	ROYECTO	D:										
				PRODUC			JRO DE ALU DE ALUMIN		ARTIR DE					
		Т	TTULO:			SEPARA	DOR V-101			Revisión:	. A			
										Página				
1	Item N° / TA	G: V	/-101				Req.Nº:		0001	1	•			
2	Servicio de la		EPARADOR	2			Cantidad de	Unidades:	1					
3	Tamaño:						Ubicación;							
4	Tipo:	V	ERTICAL				Fabricante:							
5						INFORMAC	IÓN GENERAI	L						
6	Tipo de cabe	ezales		ELIPSOIDAL			Peso Vacío			kg	931			
7	Volumen			m ³	10		Peso en ope Peso en PH	eración		kg	1451			
8						kg	1890 120							
10							Peso de Inte	ernos		kg	120	U		
11					CO	NDICIONES	DE OPERAC	IÓN						
12														
	Entrada	Drooión de C	oronió-	kg/cm ² g	4,92		Temperatura	a de	90	2	25			
14	Salida	Presión de Ope	°C		25	İ								
15														
	Conexiónes				Alimer	ntación	Salida	Vapor	Salida	Líquido				
17	Caso de ope													
18	Temperatura		,	°C	25		80		25					
19		Caudal (másico		kg/h	2131,0		414,5		1716,3					
20 21	Líquido	Caudal (volume Densidad @P,		m ³ /h kg/m ³	973 2,19		993,3 0,418		1,014 1693					
22		Viscocidad	1	cP	0,0121		0,00151		0,0100					
23		Viscocidad		OI .	0,0121		0,00101		0,0100	ļ				
24					(CONDICION	ES DE DISEÑ	0						
25	Operación N	Normal												
26	Presión de D)iseño		kg/cm ² g	6			ASME SECCIÓ	N VIII DIV.1 U	LT. REV.				
27	Temperatura	de Diseño		°C	120		Tratamiento	térmico (PW	HT)	Solo si es re		ódigo		
	MAWP			kg/cm ² g	9,8			nto de examir	acion	Radiografiado/U-Sonido				
	MDMT			°C	152		Servicio Esp			Altamente corrosivo				
30							Requerimier	nto de estamp	oa	NO				
31 32	Presión de P	<u> </u>		kg/cm ² g	7,8		1			1				
33		or de Corrosión	1	mm	3									
34		ecubrimiento m		mm	3		Revestimien	to vidriado						
35	,		-				1							
36						DIME	NSIONES							
37	Diámetro inte	erior		mm	1976		Largo TL			mm		937		
38							Pollera (Altur	ra)		mm	1	200		
39							DIAL CO							
40	Cohoralas /	nyolyont-			STM 546 C-		RIALES			Λ.	2TM A402 C	r D7		
	Cabezales/E Cuellos de co				STM 516 Gr7 STM 516 Gr7		Espárragos Tuercas				STM A193 G STM A194Gi			
	Bridas / Forja				STM 516 Gr7		Juntas				EFE EXPAN			
	Accesorios	40			STM 516 Gr7			aje / Retenida			STM A516 C			
	Pollera y anil	lo base			STM 516 Gr7		Soportería	,			RO AL CAR			
46	Internos				FE EXPANDI		Placa Identif	icación		SI				
47	Internos Ren	novibles		PT	FE EXPANDI	DO	Puesta A Tie	erra			SI			
48														
49					DE	ETALLES C	ONSTRUCTIV			I-:				
	Aislación	(esp. / material		mm			Plataformas			SI				
51		ınífuga (esp. / m	naterial)	mm	ANTICOD	DOON'S	Montaje			SI				
52	Pintura (exte	rior)		PROTECCIO	ON ANTICOR	KUSIVA								
53														

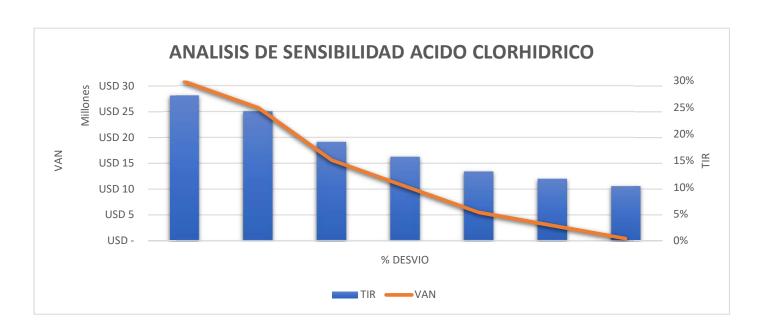
			PROYEC1	TO:						
					CCIÓN DE I	POLICI ORLII	RO DE ALI	JMINIO A PARTIR DE		
				1 11000		CHATARRA D				
-			TITLU O			SEPARAD			Revisión:	
			TITULO:			SEPARAD	OK V-101			Α
L						LIOTADO DE	ONEVIOU		Página	2
2	TAG	CANT.	NPS	TIPO	RATING	SCH.(ESP.)		SERVICIO		NOTA
3	N1	1	6"	WN	150	30H.(E3F.)	PROT	Alimentación		NOTA
4	N2	1	2"	WN	150			Salida Vapor		
5	N3	1	2"	WN	150			Salida Liquido		
6	N4	1	24"	WN	150			Boca de Hombre		
7	N5	1	2"	WN	150			Sensor de Nivel		
8	N6	1	2"	WN	150			Sensor de Nivel		
9	N7	1	2"	WN	150	1		Transmisor de Presión		
10										
11 12						+				
13										
14						INTER	RNOS			
15	Elir	minador de G	Sotas	400 x 2625	mm de PTFE	EXPANDIDO				
16	Dist	tribuidor de lí	quido	30° de PTF	E EXPANDID	0				
17										
18										
19										
20										
21										
23										
24					DC	CUMENTOS	DE REFERE	NCIA		
25										
26										
27										
28										
29										
30										
31										
33										
34										
35										
36										
37										
38										
39										
40										
41										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52 53										
53										
55										
56										
57										
58										
59										
60										

Integración V


Análisis Económico Financiero

Titular: Spesot Horacio JTP: Krumrick Ezequiel Ayudante: Silva Cristian

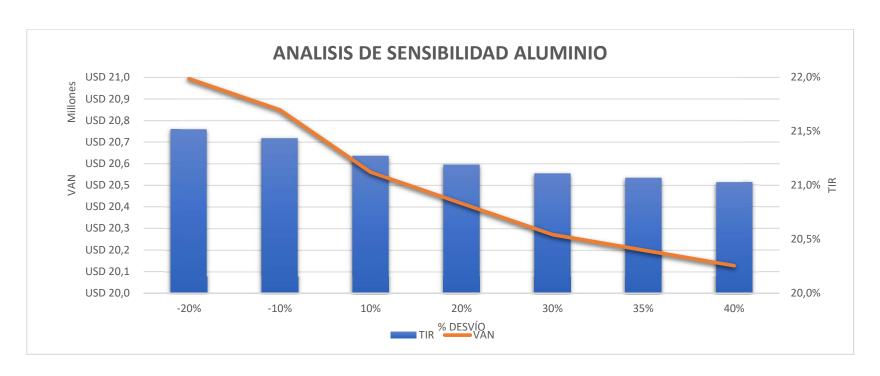
Garrido Juan


Alumno: Antiñir Pablo

									TAI	BL	A RES	UI	MEN										
	PERIODO		0		1		2		3		4		5		6		7		8		9		10
	Activo fijo	USD	5.000.000,00	USD 2	.000.000,00	USD	219.799,23	USD	-	USD	500.000,00	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-
Inversión	Capital de trabajo	USD	3.260.617,76	USD	=	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-
	Total	USD	8.260.617,76	USD 2	.000.000,00	USD	219.799,23	USD	-	USD	500.000,00	USD	-	USD	-	USD	-	USD	-	USD	-	USD	-
	PAC	USD	-	USD	-	USD 1	8.133.200,00	USD 3	36.266.400,00	USD 3	6.266.400,00	USD 3	6.266.400,00	USD 3	36.266.400,00	USD 3	6.266.400,00	USD 3	36.266.400,00	USD 3	6.266.400,00	USD 3	36.266.400,00
Ingresos	H2	USD	-	USD	-	USD	-	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12	USD	574.985,12
	Total	USD	-	USD	-	USD 1	8.133.200,00	USD 3	36.841.385,12	USD 3	6.841.385,12	USD 3	6.841.385,12	USD 3	36.841.385,12	USD 3	6.841.385,12	USD 3	36.841.385,12	USD 3	6.841.385,12	USD 3	36.841.385,12
	Costos fijos	USD 1	0.493.460,85	USD 8	.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86	USD	6.329.442,86
Egresos	Costos variables	USD	-	USD 4	.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD :	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD	3.164.721,43	USD :	3.164.721,43	USD	3.164.721,43
	Total	USD 1	0.493.460,85	USD 12	.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD !	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD	9.494.164,29	USD !	9.494.164,29	USD	9.494.164,29
	Ganancia (35%)	USD	-	USD	-	USD	6.346.620,00	USD 1	12.894.484,79	USD 1	2.894.484,79	USD 1	2.894.484,79	USD 1	12.894.484,79	USD 1	2.894.484,79	USD 1	12.894.484,79	USD 1	2.894.484,79	USD 1	2.894.484,79
Impuestos	Ingresos Brutos (1,5%)	USD	-	USD	-	USD	271.998,00	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78	USD	552.620,78
inipuestos	Sellos (2%)	USD	165.212,36	USD	40.000,00	USD	362.664,00	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70	USD	736.827,70
	Total	USD	165.212,36	USD	40.000,00	USD	6.981.282,00	USD 1	14.183.933,27	USD 1	4.183.933,27	USD 1	4.183.933,27	USD 1	14.183.933,27	USD 1	4.183.933,27	USD 1	14.183.933,27	USD 1	4.183.933,27	USD 1	4.183.933,27
AMO	ORTIZACIONES	USD	-	USD	-	USD	194.761,62	USD	194.761,62	USD	344.761,62	USD	344.761,62	USD	344.761,62	USD	344.761,62	USD	344.761,62	USD	344.761,62	USD	344.761,62
FLUJO N	NETO DE FONDOS	-USD 1	8.919.290,97	-USD 14	.534.164,29	USD	1.243.192,86	USD 1	12.968.525,93	USD 1	2.318.525,93	USD 1	2.818.525,93	USD 1	12.818.525,93	USD 1	2.818.525,93	USD 1	12.818.525,93	USD 1	2.818.525,93	USD 1	2.818.525,93
FLUJO N	IETO ACUMULADO	-USD 1	8.919.290,97	-USD 33	.453.455,26	-USD 3	2.210.262,40	-USD 1	19.241.736,47	-USD	6.923.210,53	USD !	5.895.315,40	USD 1	18.713.841,34	USD 3	1.532.367,27	USD 4	14.350.893,21	USD 5	7.169.419,14	USD 6	9.987.945,08
TASA DE DESCUENTO	10%																						



23%


TIR VAN

	Ingresos	Egres	os -20%	Egres	os -10%	Egres	os 10%	Egres	os 20%	Egres	os 30%	Egres	os 35%	Egres	os 40%
0	USD -	USD	9.401.906,33	USD	9.947.683,59	USD	11.039.238,11	USD	11.585.015,37	USD	12.130.792,63	USD	12.403.681,25	USD	12.676.569,88
1	USD -	USD	10.856.832,52	USD	11.675.498,41	USD	13.312.830,18	USD	14.131.496,07	USD	14.950.161,96	USD	15.359.494,90	USD	15.768.827,84
2	USD 18.133.200,00	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
3	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
4	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
5	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
6	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
7	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
8	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
9	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
10	USD 36.841.385,12	USD	7.559.728,27	USD	8.378.394,16	USD	10.015.725,93	USD	10.834.391,82	USD	11.653.057,71	USD	12.062.390,65	USD	12.471.723,60
	TIR		27%		24%		19%		16%		13%		12%		10%
	VAN	USD	30.843.276	USD	25.774.071	USD	15.635.663	USD	10.566.458	USD	5.497.254	USD	2.962.652	USD	428.050

	Ingresos	Egres	os -20%	Egres	os -10%	Egres	os 10%	Egres	os 20 %	Egres	os 30%	Egres	os 35%	Egres	os 40%
0	USD -	USD	10.448.036,23	USD	10.470.748,54	USD	10.516.173,16	USD	10.538.885,48	USD	10.561.597,79	USD	10.572.953,94	USD	10.584.310,10
1	USD -	USD	12.426.027,36	USD	12.460.095,83	USD	12.528.232,76	USD	12.562.301,23	USD	12.596.369,70	USD	12.613.403,93	USD	12.630.438,17
2	USD 18.133.200,00	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
3	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
4	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
5	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
6	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
7	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
8	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
9	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
10	USD 36.841.385,12	USD	9.128.923,11	USD	9.162.991,58	USD	9.231.128,52	USD	9.265.196,98	USD	9.299.265,45	USD	9.316.299,69	USD	9.333.333,92
	TIR		22%		21%		21%		21%		21%		21%		21%
	VAN	USD	21.126.773	USD	20.915.820	USD	20.493.914	USD	20.282.961	USD	20.072.008	USD	19.966.532	USD	19.861.055

	Ingresos	Egres	os -20%	Egres	os -10%	Egres	os 10%	Egres	os 20%	Egres	os 30%	Egres	os 35%	Egres	os 40%
0	USD -	USD	10.462.344,25	USD	10.477.902,55	USD	10.509.019,15	USD	10.524.577,45	USD	10.540.135,75	USD	10.547.914,90	USD	10.555.694,05
1	USD -	USD	12.447.489,39	USD	12.470.826,84	USD	12.517.501,75	USD	12.540.839,20	USD	12.564.176,65	USD	12.575.845,38	USD	12.587.514,10
2	USD 18.133.200,00	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
3	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
4	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
5	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
6	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
7	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
8	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
9	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
10	USD 36.841.385,12	USD	9.150.385,14	USD	9.173.722,60	USD	9.220.397,50	USD	9.243.734,95	USD	9.267.072,40	USD	9.278.741,13	USD	9.290.409,85
	TIR		22%		21%		21%		21%		21%		21%		21%
	VAN	USD	20.993.879	USD	20.849.373	USD	20.560.361	USD	20.415.855	USD	20.271.348	USD	20.199.095	USD	20.126.842