

18th International Conference on Plasma Surface Engineering

Wear resistance of an Hyperlox Gold[®] coating over nitrided martensitic AISI 420 stainless steel

Eugenia L. Dalibón¹, Walter R. Tuckart^{2,3}, Sonia P. Brühl^{1,3}

Universidad Tecnológica Nacional – UTN, Concepción del Uruguay, Argentina Universidad Nacional del Sur, Bahía Blanca, Argentina National Council for Research and Technology, CONICET; Argentina

Background

Duplex coatings

Designed to increase adhesion providing a hardness gradient, and to improve performance via good mechanical properties combine with a very hard surface.

- Nitrocarburizing + oxidation
- Nitriding + DLC
- Nitriding + Hard coatings

APPLICATIONS: Severe wear and harsh environments

Mechanics, aerospace, plastics, energy, Oil&Gas, construction.

Previous Results

Surface Eng. Group UTN Argentina + AU and BR partners

Plasma nitriding of stainless steels (austenitic, martensitic, PH) obtaining good wear and corrosion properties.

> AISI 316L nitrided + TiN AISI 4140 nitrided + DLC AISI 420 nitrided + DLC

Erfurt, GER, September 13 2022

Motivation

Martensitic stainless steels

Wear Coating behavior in harsh wear and Hard and good mechanical properties corrosion Corrosion Hyperlox Hyperlox Gold environments. Resistent In different environments Nitrided + Coatings **AISI 420** stainless steel Not nitrided + Coatings

Erfurt, GER, September 13 2022

- 1. To analyze the sliding wear and abrasive wear behaviour of nitrided and non nitrided AISI 420 Stainless Steel coated with Hyperlox and Hyperlox Gold (Cemecon®).
- 2. To asses coatings adhesion to the nitrided steel compared to the non nitrided material.
- 3. To evaluate corrosion behaviour of the coating compared to the nitrided steel in saline environments.

Experimental

1. Samples: AISI 420 Stainless Steel discs

Fe (%)	C (%)	Si (%)	Mn (%)	P (%)	S (%)	Cr (%)
86	0,346	0,400	0,331	0,0306	<0,0030	12,4

Heat Treatment: Air quenching form 1050 °C, tempering at 260 °C, 2 x 2 h

- 2. Nitriding: IONAR SA (Arg), DC pulsed plasma nitriding $20\% N_2 H_2$, 390 °C, 10 h
- 3. Coating: PVD PEMS, at Coating.Tech by Tantal-Flubetech (Arg)
- 4. Characterization

Optical Microscopy, Vickers Hardness, SEM, XRD, Nanoindentation

Experimental

Wear

Adhesive Pin-on-Disk ASTM G99

Abrasive ASTM G65 Dry sand/ Rubber Wheel

Corrosion Potentiodynamic polarization

In NaCl 3,5%

Adhesion ASTM C1624

Scratch Test, constant load

Adhesion VDI 3198 *Rockwell C Indentation*

Results Microstructure

Previously nitrided

TiN Top Coating \approx 0,5 μ m

→ Hyperlox Coating \approx 2,8 to 3,5 μ m

Coating SEM images on different samples

Non nitrided

Erfurt, GER, September 13 2022

Microstructure

XRD in Bragg Brentano Configuration

Optical micrographs

Hardness and mechanical properties

Vickers microindenter Nitrided layer hardness (on top): (1180 ± 40) HV_{0,05} AISI 420 stainless Steel (Q&T): (500 ± 20) HV_{0.05}.

Nitrided layer	
Nanohardness (GPa)	17 ± 1
Young Modulus (GPa)	182 ± 5
Penetration Depth (nm)	124 ± 3

HyP + TiN: $E=(375 \pm 20)H=(26,2 \pm 0,4)$ GPa Hyperlox: $E=(377 \pm 20)$ H= $(32,1 \pm 0,5)$ GPa

Nanoindentation

Wear – Pin on Disk

Duplex

Erfurt, GER, September 13 2022

Sonia Brühl

μm

- 30

- 20

10

1.0 mm

mm

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.5

TP 39 POD radio con escala

Coated

Wear and Friction

Duplex coated

H + TiN Coated

Erfurt, GER, September 13 2022

Counterpart analysis

> Confocal Microscope images

Duplex

Coated

Erfurt, GER, September 13 2022

Adhesion

Rockwell C – Indentation - 150 kg

Erfurt, GER, September 13 2022

Adhesion

PSE 2022

Erfurt, GER, September 13 2022

Adhesion

Erfurt, GER, September 13 2022

Adhesion

Maximum depth of the scars generated in the Scratch Test at different loads

Erfurt, GER, September 13 2022

Erfurt, GER, September 13 2022

- 1. The Hyperlox and Hyperlox Gold (+TiN) coatings presented a high Young Modulus. However, the hardness of the TiN coating was lower (32 to 26 Gpa).
- 2. The Hyperlox (without TiN) failed at the abrasive test when it was deposited without the nitriding pre treatment. The same occurred in the POD tests at high loads.
- 3. The nitrided layer improved the wear resistance in adhesive pin on disk test at high loads for both coatings.
- 4. The adhesion was better in the duplex samples (nitriding+coating) in both cases.
- 5. The duplex sample N + H + TiN resulted to be the best protective system in saline environments, proved in the corrosion tests.

Thank you!

http://www.frcu.utn.edu.ar/gis

Grupo de Ingeniería de Superficies

¡Muchas Gracias!

Erfurt, GER, September 13 2022