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4 Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)
Universidad Nacional de San Luis - Ej. de los Andes 950 - San Luis, Argentina.

mmendez@mendoza-conicet.gob.ar,gbianchini@frm.utn.edu.ar,

pcaymesscutari@frm.utn.edu.ar,lauratardivo@dc.exa.unrc.edu.ar,gvcosta@

unsl.edu.ar

Abstract. Wildfires devastate thousands forests acres every year around
the world. Fire behavior prediction is a useful tool to cooperate in the
coordination, mitigation and management of available resources to fight
against this type of contingencies. However, the prediction of this phe-
nomenon is usually a difficult task due to the uncertainty in the predic-
tion process. Therefore, several methods of uncertainty reduction have
been developed, such as the Evolutionary Statistical System with Is-
land Models based on Evolutionary Algorithms (ESSIM-EA). ESSIM-
EA focuses its operation on an Evolutionary Parallel Algorithm based
on islands, in which the same configuration of evolutionary parameters
is used. In this work we present an extension of the ESSIM-EA that
allows each island to select an independent configuration of evolution-
ary parameters. The heterogeneous configuration proposed, at the island
level, with the original methodology in three cases of controlled fires has
been contrasted. The results show that the proposed ESSIM-EA exten-
sion allows to improve the quality of prediction and to reduce processing
times.

Keywords: wildfire prediction, HPC, uncertainty reduction,metaheuris-
tics.

1 Introduction

Wildfires are considered the natural phenomenon that causes most damages and
losses worldwide. As a recent fact we can cite the great fire that occurred in the
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provinces of La Pampa, Ŕıo Negro and Buenos Aires between December 2016
and January 2017, where fire consumed more than 2.5 million acres [1]. This
kind of situations often brought about when there are long periods of drought,
low humidity, high temperatures and considerable winds. In this context it can
be very useful to have tools or methods that minimize the negative effects caused
by wildfires. Such is the case of the widlfire behavior prediction, where we intend
to determine with some time in advance the future behavior of the fire. It allows
to identify the areas that are most at risk of being caught by fire, and therefore,
to plan the efficient use of available resources. The behavior of a wildfire depends
on several variables or factors, which are not usually known at the time of the
fire.

Fig. 1: ESSIM-EA: FS: Fire Simulator; PEA: Parallel Evolutionary Algorithm;
PEAF : PEA (Fitness Evaluation); OS: Optimization Stage; SS: Statistical
Stage; SKign: search Kign; Kign: Key Ignition Value; FF: Fitness Function;
CS: Calibration Stage; FP: Fire Prediction; PFL: Predicted Fire Line; RFLx:
Real Fire Line on time x ; PV: input Parameters Vector; SSM : Statistical Stage
in monitor process; pm: probability map.

Due to this, the use of classical prediction tools does not usually allow to
obtain good quality results, being necessary to resort to uncertainty reduction
methods that allow to minimize the lack of precision in the system’s input. By
classical prediction wemean the use of a single instance of themodel or simulator
which feed each parameter with direct values, whether measured or estimated,
but not including pre-processing or calibration data. The Evolutionary Statistical
System with Island Model based on Evolutionary Algorithms (ESSIM-EA) [2],
is a general uncertainty reduction method that has been successfully applied in
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wildfire behavior prediction. ESSIM-EA uses Parallel Evolutionary Algorithms
(PEAs) under a multi-population parallelization scheme based on islands [3]. In
[2] ESSIM-EA obtained improvements in the quality of prediction in contrast to
previously developed methodologies. Subsequently, in [4], ESSIM-EA underwent
two complementary studies of static tuning [5] of the evolutionary parameters
involved. In the tuning work [4], it was possible to increase the quality of pre-
diction for some instants of the evaluated fires, without being able to determine
a single optimum parameters configuration for all the fires. It is important to
mention that the quality of prediction, for a particular fire, is calculated in dis-
crete instants of time called prediction steps. Based on these results, this work
presents an extension of the ESSIM-EAmethod where the islands use a heteroge-
neous configuration of the evolutionary parameters, allowing to obtain, for each
prediction step, the result generated by the best parameter configuration. In this
work this version is called ESSIM-EAh to differentiate it from the homogenous
configuration version.

The Section 2 describes the ESSIM-EA method operation, together with
the proposed heterogeneous configuration of evolutionary parameters. Then the
details of the experiments are given, the working environment is described, and
the results obtained are presented below in Section 3. Finally, in Section 4, the
conclusions and the future work are presented.

2 ESSIM-EA: method description

ESSIM-EA has been successfully applied as an uncertainty reduction method
in wildfire behavior prediction. As mentioned above, ESSIM-EA uses Parallel
Evolutionary Algorithms under an island-based parallelization scheme as the
optimization technique with dual master-worker hierarchy. Once the method is
running, three different types of processes are executed: a) monitor process, b)
master process and c) process worker. The arrangement and communication re-
lationship between these processes can be seen in Fig. 1. The method operation
begins in the monitor process, it is responsible for sending the initial informa-
tion to each island. This initial communication includes: a) the Real Fire Line
(RFLx), b) the Value Ranges (VR) for each input parameter, and c) the PEA
Parameter Setting values (PSPEA). It is important to mention that the moni-
tor process will have in memory an array with known parameter configurations,
which will be used by the different islands (PSPEA). Since each island can use
a different evolutionary parameter configuration, these values (PSPEA) are se-
lected by the monitor and sent to the masters of each island (this is explained
in more detail in section: 2.1).

Once each master has received the initial information, it can start the paral-
lel evolutionary algorithm (PEAM ). Each master initiates a different population
and applies the evolutionary operators using the parameters configuration previ-
ously received from the monitor process. The evaluation of individuals is carried
out by workers (OSWorker), which simulate their behavior in the Fire Simulation
stage (FS).
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Table 1: Parameter settings and ranking. (a) FT: fitness threshold, NIt: number of

iterations, NI: number of individuals, NMI: number ofmigrated individuals, MF:migra-

tion frequency, CP: crossing probability and PM: probability of mutation. (b) Ranking

of parameter configurations.

(a)

Configuration FT NIt NI NMI MF CP PM

No. 0 0,7 200 200 5 5 60 0,5

No. 1 0,78 373 68 3 2 44 0,7
No. 2 0,75 419 194 17 4 37 1,7

No. 3 0,74 198 175 3 7 19 1,1

No. 4 0,71 302 41 11 10 42 0,3

No. 5 0,81 172 25 9 3 22 2

No. 6 0,56 359 125 4 9 27 2,1
No. 7 0,68 129 145 20 7 24 2,2

No. 8 0,69 117 91 5 7 58 1,7
No. 9 0,59 429 187 7 5 30 0,4

No. 10 0,57 144 51 6 4 28 0,6
No. 11 0,65 249 97 19 8 10 0,9

No. 12 0,73 454 39 9 12 40 0,35

No. 13 0,84 465 110 12 3 13 1,5

No. 14 0,62 263 15 18 6 53 1,4

No. 15 0,64 328 62 16 3 17 1,3
No. 16 0,8 293 123 13 9 33 0,5

No. 17 0,67 486 162 15 6 56 1,1

No. 18 0,82 234 139 9 5 48 2,4

No. 19 0,77 398 37 8 9 39 1,8
No. 20 0,161 304 84 14 1 45 2,4

(b)

Rank Case A Case B Avg.

1◦ No. 0 No. 0 No. 0
2◦ No. 5 No. 9 No. 9
3◦ No. 18 No. 20 No. 18
4◦ No. 3 No. 18 No. 3
5◦ No. 14 No. 3 No. 14
6◦ No. 13 No. 11 No. 7
7◦ No. 7 No. 17 No. 4
8◦ No. 9 No. 7 No. 20
9◦ No. 4 No. 2 No. 12
10◦ No. 16 No. 14 No. 2
11◦ No. 12 No. 4 No. 5

In the simulation of each individual, the actual fire front of the fire at ti−1

(RFLi−1), together with the values of each individual (or vector parameters,
VP) in the simulator, is evaluated. At the end of the simulation, the difference
between the simulated map and the actual map for that subsequent time instant
ti (RFLi) is contrasted. The result of this comparison is the fitness value of
each individual, which is used by the PEA. Subsequently, the results of the
individuals evaluated are sent to their respective master, where the PEA stage
is in charge of storing the partial results, evolve the population and migrate the
individuals to the neighboring islands. This procedure is repeated until reaching
the threshold of fitness or the maximum number of iterations, both previously
established. At this time the calibration step begins to operate, i.e., the evolved
population is sent to the Statistical Stage (SS) of the master process Calibration
Stage (CSMaster). SS is responsible for generating a probability map, which is
created by considering the simulated maps of each individual. The probability
map generated by each island in ti is used to calculate a pattern of fire behavior,
called Key Ignition Value (Kign). This value is calculated in the sub-step search
for Kign (SKign). It is important to note that each island generates in ti a
key ignition value and a probability map, which are sent to the monitor process
(CSMonitor). The monitor statistical stage (SSMonitor) evaluates the pairs of
data received by all islands by selecting those that offer the best fitness value
for each prediction step. These data pairs are sent to the Fire Prediction stage
(FP) to generate the Predicted Fire Line (PFL).
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2.1 Heterogeneous Configuration of Evolutionary Parameters

From the point of view of configuration of evolutionary parameters, an island-
based PEA can be implemented using a homogeneous or heterogeneous configu-
ration. Homogeneous configuration is that all islands use the same configuration
of evolutionary parameters, i.e. the same values of number of individuals, proba-
bility of crossing and mutation, etc., executing exactly the same algorithm with
the exception of the populations initialized independently. In contrast, the het-
erogeneous configuration uses different parameter configurations on each island,
whether obtained by known or calibrated configurations, even using random
values within preset ranges. The work developed in [6], shows that combining
multiple search threads with heterogeneous parameter configurations increases
the robustness of the search engine, allowing to explore the space of solutions
more efficiently and facilitating the obtaining of better results.

The PEA’s capacity depends on certain parameters, such as population size,
selection criteria, total number of generations, frequency of migration, among
others. Determining the best values for each parameter is usually not an easy
task, since there is no universal configuration of parameters and these are usu-
ally related to the problem’s characteristics. Therefore, in order to obtain a
suitable parameter configuration, a calibration or tuning study of the parame-
ters [5] is necessary. Based on this, to determine the parameter configurations
to be used, the results obtained in [4] were taken as a starting point, where a
static calibration study was carried out on a group of evolutionary parameters of
ESSIM-EA. This calibration consisted of evaluating 20 parameter configurations
(from No. 1 to No. 20 in Table 1.a) generated through a Latin Hypercube Design
[7] (LHD), along with an additional experiment obtained on the basis of a classi-
cal parameter configuration (configuration No. 0 in Table 1.a). Each parameter
configuration was evaluated in two test cases corresponding to controlled fires.
The metric used to perform the ranking was the quality of prediction for each
simulation step, the average of each of them and the total execution time. The
results allowed to determine those configurations that offered good quality of
prediction values, without being able to determine a single configuration, since
the results varied by each step of prediction. In order to use the best config-
urations (in terms of quality of prediction), a ranking was used to reduce the
number of LHD configurations and to select those that offered better results.

The ranking was elaborated starting from the results obtained in [4] for each
configuration of parameters of the Table 1.a. The classification of the parameter
configurations was done for the two case studies (columns Case A and Case
B in Table 1.b) and for the average of both (column Avg. in Table 1.b). The
generated ranking can be seen in the Table 1.b. The values in the Case A, Case
B, and Avg. columns indicate the parameter setting number of the Table 1.a.
Therefore, of the 21 initial configurations, we were able to reduce, in a ranking of
11 positions, to a total of 15 final configurations, which have been highlighted in
bold in Table 1.a). It is important to note that the ranking configurations of the
Table 1.b are those that ESSIM-EAh maintains at the moment of starting the
execution of the method to be used by each of the islands. The selection of each
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Table 2: Description of the case studies: dimension (m), slope (degrees), initial time,
increment and final time (min).

Case Width Height Slope Initial Time Increment Final Time

I 89 109 21 2 2 14
II 89 91 21 2.5 2.5 12.5
III 60 90 6 2 2 10

configuration is done randomly in the master process of each island (previously
all of the configurations are sent from the monitor process), this selection is
carried out at runtime.

3 Experimentation and Results

The performance of the methodology has been evaluated by two metrics that
allow us to evaluate important aspects of the behavior of the method: (a) the
quality of prediction and (b) the total time consumed. The quality of prediction
is a value calculated using a fitness function. This function compares the real
fire map with the predicted map (simulated behavior), determining a numerical
value that indicates the accuracy of the prediction. This value, called fitness
value indicates the degree of accuracy of this prediction. These values are within
the range {0,1} where 1 represents a matching prediction with reality and 0
represents a totally wrong prediction. The second metric is to evaluate the total
time elapsed for each experimen, this time will depend on the island with the
most expensive parameter configuration. At the moment it has not been evalu-
ated how to reduce the idle time in which each island waits for the completion
of the rest of the islands, this is part of the future work.

3.1 Experiments

For the experiments, three cases of controlled burns were used in Serra de Louçã,
(Gestosa, Portugal).

For each experiment, discrete time intervals have been defined which repre-
sent the progress of the fire front where the quality assessment is carried out.
Since the terrains have different dimensions, the number of time steps is not the
same in all experiments. The characteristics of each of them (i.e., dimension,
slope, initial time and duration) are described in Table 2. Due to the nonde-
terministic behavior of the method, 20 executions of each experiment were per-
formed using the same set of seeds. For each metric the average of them was
considered. It is important to note that both ESSIM-EA and ESSIM-EAh can-
not perform predictions for the first instant of time (e.g. Experiment I, minute
4), since the calibration step is performed at that time.
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Fig. 2: Experiments I, II and III: Comparison between ESSIM-EA and ESSIM-
EAh. Above: Comparison of quality of prediction. Below: Boxplots.
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3.2 Results

The results obtained, both in terms of prediction quality and in processing time,
have been compared with those obtained by ESSIM-EA using a homogeneous
parameter configuration. The first one refers to the original implementation of
ESSIM-EA based on a homogeneous configuration of evolutionary parameters,
and ESSIM-EAh to the heterogeneous configuration version. It is important to
note that the parameter configuration used by ESSIM-EA in these experiments
corresponds to the configuration No. 0 of the Table 1.a, while in ESSIM-EAh each
island operates using some of the 15 configurations generated by the ranking. In
Fig. 2 the quality of prediction has been plotted for the N prediction steps of
each experiment. This quality of prediction has been generated from the average
of 20 executions. Also, in the lower part of the same figure (Fig. 2), we can
see the distribution of these results, using boxplots diagrams. The experiments
were carried out in a Linux cluster with 32 processing units (Intel-Q9550 Quad
Core 2.83 GHz processors), 4GB RAM, Gigabit Ethernet network under an MPI
environment.

Experiment I: this experiment (see Fig. 2), shows that the heterogeneous
implementation exceeds the quality of prediction obtained by ESSIM-EA through-
out the experiment. The greatest difference is observed in the first and last in-
stants of time, with an average fitness value greater than 0.85. If we analyze the
results considering the box diagrams (see Fig. 2), we can observe that in the
time instants for which ESSIM-EAh exceeds ESSIM-EA (minutes 6 and 14), the
distribution of results obtained by ESSIM-EAh has a smaller deviation. It can
also be seen that in the 1 step (minute 6), about 99% of the results is above 0.85.
And in the last step (minute 14) just over 75% is on the same value. In the step
2 (minute 8) a similar behavior can be observed, since although the difference
in average is smaller, ESSIM-EAh has a minimum deviation concentrating near
the 99% of the results in the range: 0.75 and 0.78. Finally, in Table 3 we can
observe the amount of time consumed by each method for each experiment. In
this table, the executions that offer the best performance have been highlighted
in bold, where ESSIM-EA obtains a final difference of 24 less minutes compared
to ESSIM-EAh. In this experiment, this difference is mainly related to the value
assigned to the parameter that determines the maximum number of iterations
(NIt, in Table 1.a).

Experiment II: in this experiment the largest difference is obtained in favor
of ESSIM-EAh in the first prediction step (7.5 minute) with an average value
equal to 0.8700898 (Fig. 2). However in the subsequent steps, minute 10 and
12.5, the differences are negligible of the order of 10−3 being best ESSIM-EAh.
Observing the boxplot, we can see that the performance of ESSIM-EAh exceeds
ESSIM-EA. This is so because, at minute 7.5, the 99% of the results are above
0.87, except for an outlier with a value equal to 0.808473. In the rest of the pre-
diction steps (minutes 7.5 and 10), although the quality of prediction average is
similar in both implementations, it is observed that the homogeneous configura-
tion offers a more limited distribution of results, indicating a better performance
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Table 3: Average execution time.
Experiment ESSIM-EA ESSIM-EAh

I 00:57:20 00:81:30

II 01:37:54 00:38:17

III 01:04:13 00:31:40

of ESSIM-EA. The best results obtained correspond to those generated by the
parameter configurations number 13, 4, 3 and 7 of Table 1.a.

If we evaluate the amount of total time consumed (Table 3) we can observe
that in this experiment, ESSIM-EAh obtains a very significant gain regarding
ESSIM-EA, with a difference of 59 minutes. The reduction of time obtained
can be related to a greater speed of convergence of the evolutionary algorithm.
This could be facilitated by the use of parameter configurations that allow the
method to find good solutions with less effort. If this is the case, the maxi-
mum amount of iterations would not matter since the fitness threshold would
be reached in a smaller number of iterations. To be able to determine this be-
havior with certainty, we should make a detailed analysis of the evolution of the
different populations in each one of the islands.

Experiment III: this has a total area of 5400m2. Although it has an equiva-
lent amount of prediction steps to the previous experiment, it has a propagation
velocity of the upper fire front, so the total simulation time is 8 minutes. When
evaluating the results in terms of the quality of prediction average (Fig. 2) we
can observe a similar behavior to the previous experiment, i.e., a significant
difference in the first prediction step, in favor of ESSIM-EA, and minimal dif-
ferences in the following steps. Looking at the box diagram we can see that the
performance of ESSIM-EA is more stable than ESSIM-EAh as it concentrates
about 99% of results in ranges of the order of 10−1. Finally, the amount of time
consumed (Table 3), shows a quite similar behavior to that of the Experiment
II. Although here the gain is considerably lower, ESSIM-EAh reduces resource
utilization by more than 50%. While the parameter configurations that offer the
best results are 13, 9, 0 and 3 from the Table 1.a.

4 Conclusions

In this paper, a new implementation of the Evolutionary Statistical System with
Islands Model based on Evolutionary Algorithms (ESSIM-EA) uncertainty re-
duction method has been presented. The original methodology of the method
consists in using an evolutionary algorithm parallelized following an island-based
scheme, operating with a unique configuration of evolutionary parameters. This
work present the design and evaluation of a new implementation of this method,
which consists in equipping ESSIM-EA with the ability to operate each island
with different parameter configurations, i.e. with a heterogeneous configuration
of evolutionary parameters. The implementation was based on results obtained
in previous works, which consisted of studies of static tuning of the evolutionary
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parameters. In these works it was possible to determine a series of configura-
tions that allowed to improve the capacity of the method at certain instants of
each fire. In this way, the new heterogeneous implementation uses these known
configurations, and allows each island to select one of them in order to improve
the performance of the method both in quality of prediction and in terms of
resource utilization. The experimentation was carried out in three cases of con-
trolled fires, evaluating the quality of prediction and the time consumed in each
execution. The comparison of results was performed between the heterogeneous
implementation (ESSIM-EAh) and the original methodology (ESSIM-EA). The
results show that the heterogeneous configuration achieves improvements in both
prediction quality and processing time. Although the increase in prediction qual-
ity is observed to a greater extent in one of the three experiments, and in the
rest this increase is minimal, the new implementation manages to improve the
prediction quality in 81% of the predicted steps. In addition to significantly
reducing processing time in two of the three cases. As future work will evalu-
ate alternatives to improve the use of resources (avoiding idle resources), will
also implement this concept of “heterogeneous configuration of parameters” in
a method that uses multiple metaheuristics.
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