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Abstract— Automatic visual detection of smoke in confined 

or open spaces is overriding to issue early warnings that can 

save lives or prevent irreparable damage. While fire presents a 

range of characteristic colour, smoke does not present a readily 

apparent pattern. Changes its shape, does not contain clear 

edges, presents a chaotic behaviour and colour manifests from 

white to black, including all nuances. This paper presents an 

algorithm that efficiently pre-process a frame that extracts the 

main component of information, decreasing orders of 

magnitude the source size. From this new structure, algorithms 

based on the temporal and spatial change of subsets of the new 

structure are applied. Decision is based on fusion of weak 

classifiers. The algorithms are described and validated with 

experimental results of real-time detection for open and 

confined spaces, considering simplicity and efficiency of the 

proposed method suitable for embedded systems. 

 

Keywords—smoke detection; real time; embedded systems; 

video processing; image representation.   

I. INTRODUCTION 

Video processing is increasingly present in automatic 

detection and firefighting systems. The availability of low-

cost digital cameras coupled with the processing power of 

today's digital systems, creates the right conditions for 

developing embedded detection systems. In most real cases 

the smoke is the precursor of fire, therefore, detection of it is 

vital to infer the beginning of a fire. 

 

 Traditionally, smoke detection systems have been based 

on ionizing chambers that react with smoke particles or on 

infrared sensors, emitter and receiver, which detect the 

presence of particles in suspension. The weak point of these 

sensors is that detection is not achieved during early stages 

and they are not suitable for open spaces.  
 
Fire-fighting systems are based on three fundamental 

aspects: 

 

• Prevention 

• Detection 

• Extinction 

 

The present work focuses on early detection of smoke in 

real time. It could be classified between prevention and 

detection. The main objective is to minimize the 

computational and economic cost to achieve massive 

applications. Image-based smoke sensors will replace 

conventional smoke sensors in short term. As algorithms, 

these can be executed on existing hardware, such as video 

surveillance systems, adding only the computational cost of 

software services associated with smoke detection.  

In the literature, there are different approaches to smoke 

detection, but two lines of research stand out. The first one 

analyzes the chaotic behavior of smoke, its displacement and 

growth. In this approach, an estimation of the background is 

made, the most used method is GMM (Gaussian Mixture 

Model). This estimation is subtracted from the image and the 

chaotic behavior of the smoke is analyzed. Some techniques 

are contour tracking, chaos theory concepts texture analysis 

[1], and fluids mechanics [2], [3], mainly turbulent flow 

behavior. These processes are centered on the detection of 

smoke presence, considering its temporal and spatial 

characteristics. 

 The second approach is to observe the distortion of 

background image caused by presence of smoke, i.e. to track 

changes of the image produced by the smoke in an indirect 

way. In [4], [5], wavelets are used to quantify the loss of high 

frequency content due to the presence of smoke, added to 

temporal occurrence of background loss. To minimize false 

detections, sensory fusion is used. The work [6] combines the 

information of visible and infrared spectrum. In [7], the 

concept of integral image is used to achieve an accumulative 

model to estimate the motion orientation of smoke.   

The presence of smoke, in its initial state degrades, edges 

of the background image and high frequency information. 

This temporal attenuation feature is widely used as a smoke 

indicator in its initial state since edge detection is a very 

mature technique. Another characteristic that identifies 

smoke is its movement, processed by means of optical flow. 

In [8] detection is employed using Lucas Kanade algorithm, 

combined with a backpropagation neural network to 

discriminate between different sources of optical flow. In [9] 

a very complete description of detection methods of fire and 

smoke more used are presented, highlighting their strengths 

and weaknesses.  



Detection in open spaces is a challenge because of the 

scene variability and presence of disturbing factors such as 

wind, dust, movement, non-controllable and completely 

variable lighting conditions. Fire detection is relatively 

simpler than smoke since the range of colors it presents is 

confined to a subspace that together with spatial, temporal 

and texture characteristics, achieves a precise detection. Fire 

has shades between red, orange and yellow. For color 

detection, models that differentiate chrominance from 

luminance are used. These models achieve linear classifiers 

between pixels associated with fire and non-fire [10]. In joint 

detection of fire and smoke, fusion of descriptors is essential 

to reduce false positives.  

The proposed method in the present work differs, from 

those in the state of the art, in the source information for   

algorithms execution. The input is based only on an essential 

information of a frame. This simplified version contains 

descriptors that minimize redundant data of a frame and 

provide information structure for inference of regions that 

belong to smoke. The frame descriptors generate an output 

that is orders of magnitude smaller with respect to the image 

size. Although the camera provides frames as input, it is 

possible to apply algorithms sequentially to rows on the fly, 

which is the way that a digital camera supplies pixels. 

Implemented in this mode, a complete frame is never stored 

in memory. The descriptors conform a compact structure that 

point out the type of occurrence and its position in the frame. 

Therefore, the proposed information structure is adaptable to 

run on embedded systems, in real time, with low-medium 

processing power, achieving a cost comparable with 

conventional detectors.  

 

In the following sections the proposed algorithms, fusion 

and decision mechanisms together with experimental results 

are described. Finally, the conclusions and future work.   

 

II. DESCRIPTION OF ALGORITHMS  

A. Descriptors generation 

 

Fig.1. Proposed block diagram for detection. It merges the information of N 

processes, taking as input information the output of the descriptors and the 

estimation of the background.  

Fig. 1 shows the proposed block diagram. On each frame 

the descriptors of the scene are obtained. The smoke presence 

inference processes are fed by the descriptors and 

background estimation, that is updated with each frame. The 

information present in an image is inferred by the value of 

the pixels and their spatial location. The uniform sampling on 

a rectangular grid does not provide an efficient structure for 

extracting information.  

 

The information present in an image is not only in the 

value of its pixels and its spatial location, but in the way in 

which pixels relate to their neighbors. For example, if the 

value of a pixel can be obtained unambiguously from a linear 

combination with its neighbors, this pixel carries zero 

information. Dragging this pixel across all inference 

processes generates computational cost, memory space, and 

confusion. Considering applications in embedded systems 

and the way in which a digital camera communicates with the 

system, the detection of essential pixels can be computed 

observing the rows of the image. A pixel is considered 

essential if its value cannot be inferred from its neighbors. 

The other important part of the information, as it relates that 

pixel to the rest, is inferred by observing the path to the next 

essential pixel by tracking the subspace traversed. The 

trajectories are simplified to eight subspaces. The algorithms 

are described in [11], [12] and executed in real time, in our 

case as the digital camera sends information. Figure 2 shows 

the simplified signal trajectories.  
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Fig. 2. Simplified trajectories in an image row between essentials pixels. 

 

These algorithms were designed for unidimensional 

signals. In this application, an image is considered as an array 

of K unidimensional signals or rows. Since algorithms are 

applied to rows with a limited size, only segments type “d”, 

“e”, “f”, “g” are generated.    

 From essential pixels, the processes of extracting 

information are improved. For example, the union of a 

simplified ascending path with a descending one, marks the 

occurrence of a local maximum, and this maximum is 

obtained as the camera sends row pixels. The number of 

essential pixels in as subset of a frame is related with the 

“activity” of this region. If in a frame subset there is no 

essential pixels, there is nothing to process in that region. 



This is detected during the frame acquisition and never stored 

in memory.  

 

A frame of the image is now represented by: 

 

• Value of the essential pixel. 

• Location row, column. 

• Path union with previous essential pixel. 

The determination of an essential pixel is achieved by 

linear interpolation and controlled by an error bound. The 

size in bits of a frame is a function of the image scene and the 

interpolation error. For example, for a VGA image, 640 x 480 

pixels, the descriptor are about 5 to 10 % of the frame size, 

depending on the scene and the interpolation error.  

 

In Fig. 3, the marking of essential pixels for the occurrence 

of segment type “g” are shown for an indoor scene. It is 

important to note that it is not just an image segmentation, 

but it is inferred how essential pixels relate to the rest. To 

automatically adjust the sensitivity, the number of descriptors 

found is counted, and the sensitivity is adjusted until an 

adequate amount is achieved to detect the occurrence of 

smoke at an early stage. This amount is a function of the 

visual field. During sensitivity update state, the decision 

processes are suspended and the background estimation is 

updated. This setting is performed only when a minimum of 

occurrences is detected. 

Fig.3.Indoor scene and essential pixels for interpolation error of 5%. Image 

of 640 x 480 pixels, gray levels. 

 

B. Processes for smoke inference 

 
The smoke inference process is performed based on a set 

of classifiers. Each classifier provides a clue, a necessary but 

not sufficient condition. A specific characteristic of smoke is 

detected with each classifier. The classifiers are not only 

sensitive to smoke but other patterns, and all of them become 

active in presence of smoke. The outcomes fusion of them 

generates a reliable detection. Some algorithms, as we will 

see later are exclusive, i.e. necessary for positive detection. 

Two processes are not related to the presence of smoke but 

with the validation of a frame. The first one is the total 

number of essential pixels of a frame. This value is input to 

the algorithm for obtaining essential pixels, controlling the 

error bound of the linear interpolator. In this way, the 

processes are adapted to the scene and considers variations of 

illumination and uncontrolled changes. The second process 

calculates the difference of essential pixels between two 

consecutive frames. If the change is greater than a threshold, 

all inference processes adopt a reset state. 

 

It is important to note that these two simple processes, 

which base their result on essential pixel count, generate an 

adaptive interpolation scheme depending on the scene and 

detect considerable changes in a scene to reset the inference 

processes and start over. These two processes would have 

required a large computing power from pixels on a 

rectangular grid. 

  

The algorithms will work on sub images; therefore, the 

first step is to divide a frame in M x N regions. The 

information in each subset are the essential pixels and the 

signal trajectory between them. The proposed algorithms that 

detect a specific feature of a smoke region are the following: 

 

 

 

 

1. Background mean estimation of regions. 

 

2. Relative change in the average value of the descriptors 

with respect to the estimated background. 

 

3. Decrease in the high frequency content of the region 

by observing the decrease of descriptors variance. 

  

4. Change in the number of descriptors in the region. 

 

5. Intra frame persistence. 

 

6. Agglutination of neighbor regions. 

 

7. Spatial distribution of essential pixels inside the 

region. 

 

 

 

 

Below, the processes are described highlighting the part of 

the smoke dynamic for which they have sensitivity. 

 



B1. Process 1. 

 

The background mean estimation is obtained by averaging 

up to k frames using recursion as shown in Eq. (1). 

 

𝑓𝑖,𝑗,𝑛 =
𝑓𝑖,𝑗,𝑛−1 ∗ 𝑛 + 𝐼𝑖,𝑗,𝑛

𝑛 + 1
                            (1) 

 

For n=1, 2, 3,…k ; i=1, 2, 3,…M  and j=1, 2 ,3;…N 

 

Where   𝒇𝒊,𝒋,𝒏  is the mean background estimation for 

region i, j at time n, and   𝑰𝒊,𝒋,𝒏 is the mean of descriptors at 

region i, j at time n. This estimation is achieved by storing 

only two frames of descriptors. When n reaches k, the 

estimation starts over from a new estimation. 

 

B2. Process 2. 

 

This process computes the change in the average value of 

the descriptors with respect to the estimated background, 

relative to the descriptors mean in a region, Eq. (2). 

 

 

𝑑𝑓𝑖,𝑗 = ∑|  (𝒇𝒊,𝒋 − 𝑰𝒊,𝒋)|/ 𝐼𝑖,𝑗                          (2) 

 

Where  𝑰𝒊,𝒋  is the mean of descriptors that belongs to 

región i, j, and   𝒇𝒊,𝒋  is the background mean estimation of 

region i, j. 

 

Fig. 4 shows the signal generated over 200 frames for this 

process in smoke and smokeless regions. 

 

 

Fig.4. Example of signal evolution generated by process 2 for a smoke and 

smokeless regions. 

 

B3. Process 3. 

 

The descriptors variance of each region is computed and 

used as an inference of the high frequency content in the 

region. The change is computed with respect to the 

background variance, Eq. (4). This process is only calculated 

in indoor scenes. It captures the accumulation of smoke that 

occurs in the areas near the ceiling. 

 

 𝑑𝑣𝑖,𝑗 = 𝑉𝐴𝑅(𝑓𝑖,𝑗) − 𝑉𝐴𝑅(𝐼𝑖,𝑗)                    (4) 

 

For i=1, 2, 3,…,M  and j=1, 2 ,3,…,N. 

 

Fig. 5 shows the time evolution over 45 seconds, 1350 

frames at 30 FPS, of the essential pixel variance of a region 

near the ceiling, which begins to flood with smoke. Note the 

slow decrease in the average variance value. 

 

Fig.5. Time evolution for the essential pixel variance in an indoor scene 
region which evidences the correlation of the decrease of variance with the 

accumulation of smoke for a region near the ceiling. Elapsed time: 45 

seconds at 30 FPS. 

 

B4. Process 4. 

 

The number of descriptors in all regions are calculated. 

This quantity provides an indicator of the region activity and 

the difference with respect to the background provides 

inference of temporal changes, Eq. (5). This process has two 

important objectives. First, if the number of descriptors in the 

region is less than a threshold, this region is not considered 

in the fusion processes. Second, the sum of all frame 

descriptors provides information to trigger adaptive 

processes for obtaining essential pixels.    

 
𝑑𝑐𝑖,𝑗 = (𝑝𝑐𝐹𝑖,𝑗 − 𝑝𝑐𝐼𝑖,𝑗)                       (5) 

 

Where 𝑝𝑐𝐹𝑖,𝑗 is the pixel count for background estimation 

of region i,j and 𝑝𝑐𝐼𝑖,𝑗  is the pixel count for current frame. 

This feedback is important especially in open spaces, since 

adjusting the interpolation error to obtain essential pixels 

achieves a number of descriptors bounded at an interval 

independent of the scene. 



 B5. Process 5. 

 

The overall smoke inference process is based on the 

convergence of observations in individual regions. Processes 

5 and 6 measure how this information is aggregated to 

determine the presence of smoke. The regions take three 

states based on processes outcomes: "Neutral", "Alert" and 

"Smoke". Regions that exceed a fused threshold established 

for processes 2,3,4 and 7 take the "Alert" state. Process 5 

quantifies the persistence of "Alert" regions as a quotient 

between the number of frames that the region was on alert 

and the number of observed frames, Eq. (6). 

 

 

𝑝𝑡𝑖,𝑗 =
𝐴𝑖,𝑗

𝐻
                                             (6) 

 

For i=1, 2, 3,…,M  and j=1, 2 ,3,…,N. 

 

Where 𝐴𝑖,𝑗 is the number of times that region i,j was on 

alert in the last  H frames.  

 

B6. Process 6. 

 

To quantify spatial agglutination, the number of 

neighboring regions labeled as "Alert" relative to all 

neighbors is computed. It is considered eight possible 

neighboring regions including those located in diagonal, Eq. 

(7). Fig 6 shows the neighbors for a region i, j. 

 

 

 𝑝𝑒𝑖,𝑗 =
𝐴𝐿𝑖,𝑗

8
                                       (7) 

 

For i=1, 2, 3,…,M  and j=1, 2 ,3,…,N. 

 

 Where 𝑨𝑳𝑖,𝑗 is the number of regions labeled with "Alert" 

that are neighbors to the region i, j. 

Fig.6. Neighbors considered for process 6. If a neighbor is in “Alert” state 

takes value one else takes zero.  

 

B7. Process 7. 

 

This process captures the smoke randomness during its 

time evolution. This is not computed for every region but on 

“Alert” ones. The region is subdivided into 16 blocks and the 

number of essential pixels for each one is calculated. Then, 

each number of pixels is multiplied by a coefficient which is 

the prime number represented by the sub-block position. The 

sum identifies that region at that moment. Fig. 7 shows the 

weighting coefficients, which are the first 16 prime numbers. 

Fig.7. Weighting coefficients a(k), prime numbers, for the number of 

essential pixels in each sub-block. 

The process outcome is computed as: 

 

  𝐺𝑖,𝑗 = ∑ 𝑎(𝑘)16
𝑘=1 𝑝𝑐(𝑘)                           (8) 

 

For all regions i=1, 2, 3,…,M  and j=1, 2 ,3,…,N in “Alert” 

state. 

Where a(k) are the prime coefficients and pc(k) is the pixel 

count for each sub-block.  

The value   𝑮𝒊,𝒋 captures the motion dynamics of region i, 

j evaluating the intra-frame progression. This process is 

sensitive during the beginning of the smoke, and merged with 

the other processes, can locate the beginning of the incident. 

C. Fusion of processes for smoke inference 

The inference of smoke presence is obtained by analyzing 

together the processes results. The regions first adopt a state 

of “Alert”, and then observe their behavior of spatial and 

intra-frame distribution to adopt the state of “Smoke”. 

The acquired frame is validated for subsequent processes. 

If the total number of essential pixels that change from one 

frame to the next exceeds a threshold, all processes are reset 

by losing their state memory. 

 

Process 1 is the background estimation. For process 2, Eq. 

(9) must be satisfied. This implies that there is a small change 

in the mean value of the region.  

 

 𝛿1 < 𝑑𝑓𝑖,𝑗 < 𝛿2                                (9) 

 

Process 3 is executed only in confined spaces in the upper 

part of the scene. If the slope is negative and it is bounded 

and maintained for a period, the region adopts the “Alert” 

state. 

For process 4 the same reasoning as for process 2 is used. 

The difference between the number of pixels between two 

consecutive frames should be moderate, Eq. (10). 

 
𝛿3 < |𝑑𝑐𝑖.𝑗.𝑛−1 − 𝑑𝑐𝑖,𝑗,𝑛| < 𝛿4                    (10) 

 

A region becomes “Alert” if: 

 

𝛿1 < 𝑑𝑓𝑖,𝑗 < 𝛿2  AND 𝛿3 < |𝑑𝑐𝑖.𝑗.𝑛−1 − 𝑑𝑐𝑖,𝑗,𝑛| < 𝛿4

  AND      𝑑𝑐𝑖,𝑗,𝑛 > 𝛿5  AND  |𝐺𝑖,𝑗,𝑛−1 − 𝐺𝑖,𝑗,𝑛| > 𝛿6              

 

A region takes the “Smoke” state if it is in “Alert” state 

and satisfies the temporal and spatial requirements that 

depend on indoor or outdoor scenes and the depth of the view.  

 



III. EXPERIMENTAL RESULTS 

 
Experiments were carried out on own and database videos, 

[13]. We worked on a Netbeans platform with C 

programming language. OpenCV library was used for video 

acquisition. All processes are own algorithms and work on 

the structure of essential pixels instead of matrices. The 

results are obtained in real time. We carried out experiment 

with video in VGA resolution (640 x 480) at 30 frames per 

second and ¼ VGA (320x240). The image was divided into 

20x15 regions to implement the processes. The developed 

algorithms can be easily ported to low cost embedded 

systems, which is one of the main objectives of this work. A 

microcontroller considered suitable for this application is the 

NXP LPC4337 of the ARM Cortex M family with double 

asymmetric cores. The core M0 will deal with the digital 

camera interface, delivering in memory essential pixels 

structure for each region. The process of obtaining the 

essential pixels is simple and is performed as the row pixels 

are acquired. The M4 core will handle the processes of 

inference and fusion in a bare-metal application. Video in 

VGA, gray levels, is possible to implement in this platform. 

Nowhere in the process a complete frame is stored, which 

lowers memory RAM requirements. A software design 

philosophy suitable for the inference processes is a 

cooperative state machine since the natural sequence of 

events propitiates the development of software through this 

technique. In the platform developed in personal computers, 

the algorithms were implemented in this way.  

Fig. 8 shows the labeling of "Smoke" regions for a video 

with the presence of smoke. On the left, a video frame 

captured and on the right the essential pixels and marked the 

regions of "smoke". Detection is successful using fusion 

mechanisms among simple inference processes. 

Fig. 8. Marking on a video of "Smoke" regions in real time. Resolution 
320x240 pixels. Capture of the program developed in C, platform Netbeans. 

IV. CONCLUSIONS 

 
A smoke detection process has been presented that bases 

its decisions on a representation of a simplified video 

information structure. The essential pixels represent, better 

than on a rectangular grid, the information in an image. As 

the occurrence of these pixels depends on an interpolation 

error that relates them to their neighbors, this interpolation 

error controls the amount of information they capture, 

presenting a simple way to minimize redundancy of the 

signal directly from acquisition. 

 

It is almost impossible for a single algorithm to capture the 

essence of smoke pattern behavior. In the present work, 

simple Boolean logic fused the processes outcomes, with 

minimum and maximum threshold constraints. As future 

work is proposed to use Fuzzy Logic for the decision engine. 

The detection in open spaces is a challenge because of the 

variability of illumination, movement and the smoke 

dynamic changes depending on the distance of occurrence. 

This fact modifies the decision threshold values, but with an 

adequate fusion, the occurrence of false positives is 

minimized. 

 

The structure of the proposed information and algorithms 

are simple to implement in low cost embedded systems for 

real time detection, which is the main objective of this work.  
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