

Universidad Tecnológica Nacional Facultad Regional San Nicolás

Sistema de energía alternativa con aerogenerador

Ingeniería Electrónica. Proyecto Final.

Autores:

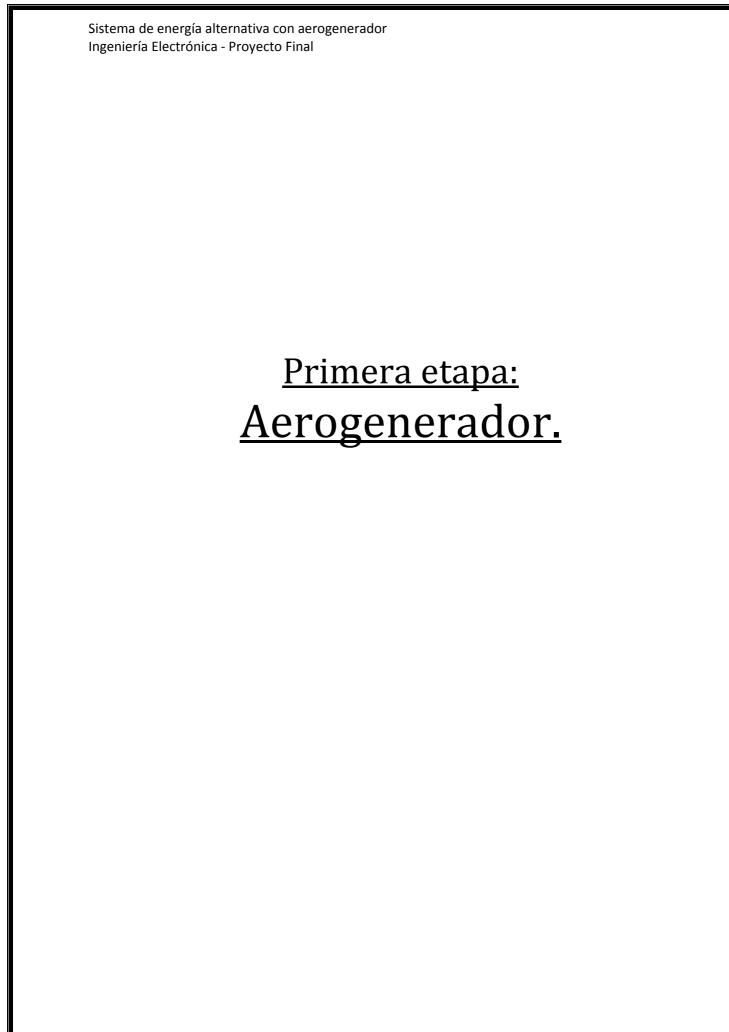
Benítez, Pablo Alejandro. Curaratti, Nazareno Jesús. Pasqualetti, Fermín.

Índice.

PRIMERA ETAPA: AEROGENERADOR.	
1-INTRODUCCIÓN.	náa 8
1.1-OBJETIVOS.	pág.8 pág.8
1.2-ETAPAS DEL PROYECTO.	pag.6 pág.8
2-GENERALIDADES DE LA ENERGÍA EÓLICA.	pag.0 pág.9
2.1-ENERGÍA EÓLICA.	pag.9 pág.9
2.1.2-ENERGÍA CAPTURADA.	pag.9 pág.9
2.1.3-DISTRIBUCIÓN DE LAS VELOCIDADES DEL VIENTO.	pag.9 pág.10
2.1.4-DISTRIBUCIÓN DE POTENCIA.	pág.10 pág.11
2.2-DESCRIPCIÓN GENERAL DE TURBINAS DE BAJA POTENCIA.	pág.11
2.2.1-CLASIFICACIÓN.	pág.11
2.2.2-COMPONENTES Y DESCRIPCIÓN.	pág.11 pág.12
2.2.3-CURVA DE POTENCIA.	pág.12 pág.14
2.3-ENERGÍA ANUAL OBTENIDA.	pág.15
3-DISEÑO DEL AEROGENERADOR.	pág.16
3.1-TURBINA EÓLICA.	pág.16
3.2-PALAS DE LA TURBINA.	pág.17
3.3-GENERADOR ELÉCTRICO.	pág.17 pág.17
3.3.1-CUERPO DEL GENERADOR.	pág.18
3.3.2-NÚMERO DE POLOS.	pág.18
3.3.3-BOBINAS DEL ESTATOR.	pág.19
3.4-AEROGENERADOR COMPLETO.	pág.25
4-ENSAYOS.	pág.26
4.1-CARACTERÍSTICA EN VACIO.	pág.26
4.2-CARACTERÍSTICA EN CARGA.	pág.27
4.3-SEÑALES REALES OBTENIDAS.	pág.28
SEGUNDA ETAPA: SISTEMA DE GARGA DE BATERÍAS.	
5-PLANTEO.	pág.30
5.1-CIRCUITO DE CARGA.	pág.30
5.2-MEJORANDO LA TRANSFERENCIA DE ENERGÍA.	pág.31
6-CARGADOR DE BATERÍAS.	pág.33
6.1-RECTIFICADOR TRIFASICO NO CONTROLADO DE ONDA COMPLETA.	pág.34
6.1.1-ANÁLISIS TEÓRICO.	pág.34
6.1.1.1-TENSIÓN DE SALIDA.	pág.35
6.1.1.2-CORRIENTE EN LOS DIODOS.	pág.37
6.1.1.3-TENSIÓN DE PICO INVERSO EN LOS DIODOS.	pág.37
6.1.2-SIMULACIONES.	pág.38
6.1.4-ETAPA DE FILTRADO.	pág.39
6.1.4.1-ANÁLISIS TEÓRICO.	pág.39
6.1.4.2-CÁLCULO PRÁCTICO.	pág.40
6.1.5-RESULTADOS.	pág.40

Sistema de energía alternativa con aerogenerador
Ingeniería Electrónica - Proyecto Final

6.2-CONVERTIDOR CC-CC REDUCTOR.	pág.41
6.2.1-ANÁLISIS DE LA TOPOLOGÍA.	pág.42
6.2.2-ANÁLISIS TEÓRICO.	pág.43
6.2.3-CÁLCULO TEÓRICO DE LOS COMPONENTES DE FILTRADO.	pág.44
6.2.3.1-INDUCTANCIA.	pág.44
6.2.3.2-CAPACITANCIA.	pág.45
6.2.3.3-RESUMEN.	pág.46
6.2.4. CÁLCULO PRÁCTICO DE LOS COMPONENTES DE FILTRADO.	pág.47
6.2.4.1-CICLO DE TRABAJO MÍNIMO.	pág.47
6.2.4.2-INDUCTANCIA.	pág.47
6.2.4.3-CAPACITANCIA.	pág.48
6.2.5-ANÁLISIS DE ELEMENTO CONMUTADOR.	pág.49
6.2.5.1-TRANSISTOR DE CONMUTACIÓN.	pág.49
6.2.5.2-CARACTERÍSTICAS REALES.	pág.49
6.2.5.3-CAPACITANCIAS INTERNAS.	pág.50
6.2.5.3-CÁLCULOS DE LAS PÉRDIDAS.	pág.51
6.2.5.4-ELECCIÓN DEL TRANSISTOR.	pág.51
6.2.6-ELECCIÓN DEL DIODO DE POTENCIA.	pág.52
6.2.7-CIRCUITO DE CONTROL DE PUERTA.	pág.52
6.2.7.1-ANÁLISIS DE LA TÉCNICA BOOTSTRAP.	pág.53
6.2.8-DRIVER IR2110.	pág.54
6.2.8.1-CIRCUITO DE IMPLEMENTACIÓN PARA EL IR2110.	pág.55
6.2.8.2-CÁLCULO DEL CAPACITOR DE BOOTSTRAP.	pág.56
6.2.9-IMPLEMENTACIÓN.	pág.57
6.2.10-SIMULACIONES.	pág.58
6.2.11-CIRCUITO COMPLETO.	pág.60
7-SISTEMA DE CONTROL.	pág.61
7.1-MÉTODO DE CONTROL MPPT.	pág.61
7.1.1-ALGORITMO MPPT.	pág.63
7.2-IMPLEMENTACIÓN.	pág.63
7.2.1-FUENTE DE ALIMENTACIÓN.	pág.63
7.2.2-HARDWARE –MICROCONTROLADOR.	pág.64
7.2.3-MEDICIÓN Y CONTROL.	pág.64
7.2.3.1-MEDICIÓN CORRIENTE Y TENSIÓN A LA SALIDA DEL RECTIFICADOR.	pág.64
7.2.3.2-MEDICIÓN DE CORRIENTE Y TENSIÓN EN LAS BATERÍAS.	pág.65
7.2.3.3-MEDICIÓN DE LAS REVOLUCIONES DE LA TURBINA.	pág.65
7.2.3.4-CONEXIÓNES AL MICROCONTROLADOR.	pág.67
7.2.3.5-MEDICIÓN EN EL MICROCONTROLADOR.	pág.67
7.3-SEGURIDADES DEL SISTEMA.	pág.67
7.4-RESULTADOS DE LA IMPLEMENTACIÓN.	pág.68
7.5-IMÁGENES DE PLAQUETAS DESARROLLADAS.	pág.70
TERCERA ETAPA: INVERSOR.	
8-REGULADOR DE TENSIÓN. CONVERTIDOR CC-CC.	pág.74
8.1-REQUERIMIENTOS.	pág.74
8.2-CÁLCULO DEL FILTRO.	pág.74
8.2.2-INDUCTANCIA.	pág.74


Sistema de energía alternativa con aerogenerador Ingeniería Electrónica - Proyecto Final

8.2.3-NÚCLEO TOROIDAL.	pág.74
8.2.4-CONDENSADOR.	pág.75
8.3-ETAPA DE POTENCIA.	pág.75
8.3.1-CARACTERÍSTICAS DEL TRANSISTOR DE CONMUTACIÓN.	pág.76
8.3.2-DISIPACIÓN DE POTENCIA.	pág.76
8.3.3-SIMULACIÓN.	pág.77
8.4-CIRCUITO DE CONTORL DE PUERTA.	pág.77
8.5-REGULACIÓN DE LA TENSIÓN DE SALIDA.	pág.78
8.5.1-MODULACIÓN DE ANCHO DE PULSO MEDIANTE TL494.	pág.78
8.5.1.1-FRECUENCIA DE TRABAJO.	pág.79
8.5.1.2-MUESTRA DE TENSIÓN.	pág.79
8.5.1.3-MUESTRA DE CORRIENTE.	pág.80
8.5.1.4-RED DE COMPENSACIÓN.	pág.80
8.5.1.5-CONEXIÓN DE SALIDA.	pág.81
8.5.2-MUESTRA DE CORRIENTE POR TRANSFORMADOR.	pág.81
8.5.2.1-IMPLEMENTACIÓN.	pág.82
8.6-TENSIONES AUXILIARES.	pág.83
8.7-CIRCUITO COMPLETO DEL CONVERTIDOR CC-CC.	pág.84
8.8-RESULTADOS PRÁCTICOS.	pág.85
8.9-CONCLUSIÓN.	pág.86
9-CONVERTIDOR CC-CA.	pág.87
9.1-INTRODUCCÍÓN.	pág.87
9.1.1-ELECCIÓN DE LA TOPOLOGÍA.	pág.87
9.2-CONVERTIDOR PUSH PULL.	pág.87
9.2.1-ETAPA DE POTENCIA.	pág.88
9.2.1.1-IMPLEMENTACIÓN.	pág.88
9.2.1.2-PERDIDA DE POTENCIA EN LOS TRANSISTORES.	pág.89
9.2.1.3-CIRCUITOS DE PROTECCIÓN.	pág.89
9.2.1.4-CIRCUITO DE EXITACIÓN.	pág.90
9.2.2-TRANSFORMADOR DE POTENCIA.	pág.91
9.2.2.1-CÁLCULO SIMPLIFICADO.	pág.92
9.3-ETAPA DE CONTROL.	pág.95
9.3.1-INTRODUCCIÓN.	pág.95
9.3.2-VARIACION DE LA TENSIÓN DE ENTRADA.	pág.96
9.3.3-REGULACIÓN DE LA TENSIÓN DE SALIDA.	pág.96
9.3.3.1-REALIMENTACIÓN POR MUESTRA DE TENSIÓN.	pág.96
9.4-INVERSORES IMPLEMENTADOS.	pág.97
9.4.1-INVERSOR DE ONDA CUADRADA A FRECUENCIA FIJA.	pág.98
9.4.1.1-CONTROL DE PUERTA CON CD4047.	pág.98
9.4.1.2-SEÑALES OBTENIDAS EN LA IMPLEMENTACIÓN.	pág.99
9.4.1.3-IMAGEN DEL CIRCUITO COMPLETO.	pág.100
9.4.1.4-ANÁLISIS DE ARMÓNICOS.	pág.100
9.4.1.5-DISTORSIÓN ARMÓNICA TOTAL.	pág.101
9.4.1.6-CONCLUSIONES.	pág.102
9.5-INVERSOR DE ONDA CUADRADA CON DESPLAZAMIENTO DE FASE.	pág.102
9.5.1-INTRODUCCIÓN.	pág.102
9.5.2-CONTROL DE PUERTA.	pág.103
9.5.3-SEÑALES DE IMPLEMENTACIÓN.	pág.103
- :::::::::::::::::::::::::::::::::::::	r

Sistema de energía alternativa con aerogenerador Ingeniería Electrónica - Proyecto Final

pág.123
pag. 122
pág.122
pág.122
pág.121
pág.121
pág.121
pág.118
pág.117
pág.117
pág.115
pág.114
pág.112
pág.112
pág.112
pág.110
Pág.108
pág.107
pág.106
pág.106
pág.105
pág.103

Sistema de energía alternativa con aerogenerador Ingeniería Electrónica - Proyecto Final	
	6

Aerogenerador.

1. INTRODUCCIÓN

Convencidos que nos dirigimos hacia un mundo en el que los recursos físicos serán definitivamente asumidos como una restricción, apoyamos el desarrollo de nuevas y viejas tecnologías que se encuentren en armonía con el concepto de sustentabilidad, respetuosas del medio ambiente y útiles para que cada comunidad puede mantener o expandir su calidad de vida.

1.1. OBJETIVOS.

La meta principal de nuestro trabajo es diseñar y construir un sistema autónomo de energía eléctrica alternativa, para proveer iluminación a una o varias viviendas aisladas; implementando el uso de "energías renovables" y evitar la utilización de recursos limitados y contaminantes como los combustibles fósiles.

El sistema estará compuesto principalmente por:

- Un aerogenerador de baja potencia
- Un equipo de carga de baterías que optimice la transferencia de energía desde el generador a las baterías
- Un inversor, que convierta la tensión continua de las baterías en una tensión alterna monofásica (ver fig. 1.1).

1.2. ETAPAS DEL PROYECTO.

Con el fin de ordenar las tareas a realizar dividiremos el trabajo en tres etapas:

- *Etapa nº1*: investigación, diseño, construcción y ensayo de la turbina eólica.
- *Etapa nº2:* diseño, construcción, prueba y mejora del sistema de carga de baterías.
- Etapa nº3: diseño, construcción, prueba y mejora del circuito inversor.

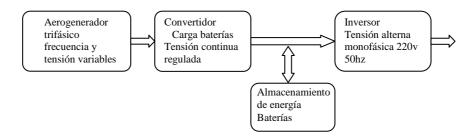


Fig. 1.1 Diagrama en bloques del sistema.