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†Research Centre in Informatics for Engineering (CIII)

National Technological University, Crdoba Regional Faculty (UTN-FRC)

gperez@scdt.frc.utn.edu.ar

Abstract— The present work describes the imple-

mentation of a monocular visual SLAM applied to a

wheeled mobile robot moving in an indoor environ-

ment. It will be described the whole system and de-

tails of each part of the current implementation. Parts

comprising the system include the estimation filter to-

gether with both motion and measurement models, as

well as a set of computer vision algorithms for image

processing and data association. The implemented vi-

sual SLAM make use of the latest techniques for unde-

layed landmark initialization which are required given

the partially observability of bearing only SLAM. Pre-

sented results show the performance of the implemen-

tation mainly for robot pose estimation, from which it

can be observed a highly accurate result in robot orien-

tation estimation.

Keywords— Visual SLAM, Mobile robot, Monoc-

ular vision, Wheeled robot

1 INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been

an active research topic for the past decades, given that it

solves two of the fundamental problems in order to build

truly autonomous mobile robots. Recently, there is an in-

creasing interest in using cameras as exteroceptive sensor

for SLAM algorithms. On the other hand, in the com-

puter vision community there exist an equivalent problem

known as Structure from Motion (SfM). However, a signif-

icant difference between SLAM and SfM exist, the latter is

used for off-line applications in batch processing whereas

the former is used in on-line cases.

The early work by Smith et.al. [1] established the statis-

tical basis in the treatment of uncertainties using Kalman

filtering which set the foundation for SLAM solutions. The

biggest contribution of this work was to demonstrate the

high correlation between the uncertainties of the sensor

pose and feature locations, and that these correlations grow

with time as new observations are made. Solutions of the

SLAM problems where proposed later applying different

versions of Bayesian filtering techniques [2], being either

Gaussian approaches like EKF (Extended Kalman Filter)

[3], UKF (Unscented Kalman Filter) [4], EIF (Extended

Information filter (EIF) [5]; or non Gaussian approach like

the PF (Particle filter).

Earlier works of SLAM in robotics were based on using

sensors like sonars, and laser range finders. Nowadays, the

available computational power allows to use digital cam-

eras as the main or even the only environmental sensor. The

main advantage of using cameras for SLAM is that they

provide a large amount of 3D information for potentially

very large distances (ideally until infinity), beside of being

lightweight and cheap sensors. Moreover, visual SLAM

(vSLAM) can use the accumulated theoretical knowledge

and algorithmic solutions of the computer vision research

community, which can be used to address two important

issues in SLAM, namely feature extraction and data asso-

ciation.

There exist two different approaches related to the en-

vironment perception using computer vision depending

whether the robot is carrying a monocular or stereo vision

system. The latter has significant implications on the ob-

servation function: stereo vision allows to obtain all 3D

coordinates of scene landmarks, whereas in monocular vi-

sion only bearing measurements are observable. Given the

partially observability nature of monocular vSLAM (also

knows as bearing-only SLAM), it is required to use a fea-

ture initialization process in order to determine the com-

plete landmark state, mandatory for the estimation filter.

The present work describes the implementation of a

monocular visual SLAM system applied to a mobile robot

moving on a plane surface for indoor applications. The

main goal is to adapt the general implementation of

vSLAM similar to the described in [6] for the special case

of a mobile platforms. The paper is organized as follows:

section 2 summarizes relevant works. Section 3 briefly de-

scribes the formulation of SLAM in general and the details

for the particular case of vSLAM; whereas section 4 out-

lines the implemented whole system, and also shows used

models for monocular visual EKF-SLAM case. Results are

presented in section 5 and finally section 6 remarks the con-

clusions and ideas for future works.

2 RELATED WORKS

An important issue in monocular or bearing-only SLAM

is the landmark initialization process, due to the fact that

depth is not measured using a single camera. Moreover, in

the context of classical EKF-SLAM solution, a recently ob-

served landmark need to be fully described by a Gaussian
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density in order to be added to the map. There exist two

different approaches, namely Delayed Landmark Initializa-

tion (DLI) and Undelayed Landmark Initialization (ULI)

[7]. DLI has the major disadvantage due to new features

are not immediately used when they are seen for the first

time in the correction of the camera pose. Moreover, it pre-

vents the use of distant features (points at infinity) which

are useful for orientation estimation [8].

The early work on monocular SLAM of Davison [9],

which used an DLI process, shows that the standard EKF

formulation for SLAM can work properly with a single

camera as the only source of information. Davison’s ap-

proach uses a kind of a particle filter to approximate the

depth coordinates until the distribution collapsed suffi-

ciently in order to be represented by a Gaussian distri-

bution. However, this approach has the main limitation

that can only use nearby features which exhibit significant

parallax during camera motion, limiting the application to

room-scale scenes. Thought, Davison’s implementation

of monocular SLAM has been designed for a 3D motion

(6DOF, Degrees of Freedom), it cannot deal with sudden

change in motion direction given it uses a constant velocity

motion model.

A widely used method for ULI in monocular SLAM

is the Inverse Depth Parametrization (IDP) [10]. This

parametrization allows efficient and accurate representa-

tion of uncertainties during feature initialization being able

to work within the standard EKF. Explicit parametrization

of the inverse depth can cope with depth uncertainties by

means of a Gaussian distribution, spanning depth range

from nearby to infinity. This parametrization is an uni-

fied representation requiring no special feature initializa-

tion process, allowing an immediately contribution to im-

prove the camera pose estimation.

3 MONOCULAR VISUAL SLAM

3.1 EKF SLAM

Kalman filtering involves the estimation of the state of a

discrete-time dynamic system defined by

xk = f(xk−1,uk−1) +wk, (1)

zk = h(xk) + vk, (2)

where k denotes the discrete time step, xk represents the

unobserved state of the system, uk is a known control ac-

tion, and zk is the observed measurement. The process

noise wk ∼ N (0,Qk) drives the dynamic system, and

the observation noise is given by vk ∼ N (0,Rk). The

dynamic model f(·) and measurement model h(·) are as-

sumed to be known.

The state vector x =
[

xT
R xT

M

]T
is composed of

the robot state xR =
[

xr yr θr
]T

, and the map state

xM =
[

xT
1 . . . xT

N

]T
, where xi, i = 1, . . . , N , are

landmarks representing the environment map. As usu-

ally done in SLAM, the map is considered to be static

xM,k = xM,k−1 = xM .

The goal of the Kalman filter is to optimally estimate the

state xk given the observations zk up to time k. The EKF

works in two stages which are: prediction and update. In

the prediction stage the prior estimate is computed

x̂−

k = f(x̂k−1,uk−1)

P−

k = FkPk−1F
T
k +Qk,

(3)

and the update stage corrects the actual estimation using

new information from measurements

Kk = P−

k H
T
k

(

HkP
−

k H
T
k +Rk

)

−1

x̂k = x̂−

k +Kk

(

zk − h(x̂−

k )
)

Pk = (I−KkHk)P
−

k ,

(4)

where Fk, and Hk are the Jacobian matrices of the SLAM

process eq. (1), and the SLAM measurement eq. (2), re-

spectively.

3.2 Landmark parametrizations

A 3D scene point in Euclidean representation is described

by means of its three Cartesian coordinates as

xEU =
[

X Y Z
]T

∈ R
3, (5)

which is projected to an image point on the image plane

using the pin-hole model

m = KRC
W (xEU − tWC ) ∈ P

2, (6)

where • stands for homogeneous coordinate in the projec-

tive space P
n, K is the camera intrinsic parameter matrix

K =





f/hu 0 u0

0 f/hv v0
0 0 1



 (7)

and {tWC ,RW
C } represents the rigid transformation be-

tween the world (WCS) and camera (CCS) coordinate sys-

tems; f is the focal length, and hu and hv are pixels width

and height, respectively. Euclidean points present signifi-

cant non linearities in the observation function for monocu-

lar visual SLAM, being inappropriate for ULI process. The

most adequate and widely used parametrization for ULI

is the Anchored Modified Polar Point (AMPP) [11] also

known as Inverse Depth Parametrization (IDP) [6]. The

AMPP is represented by the camera position t0 (anchored

point) when the feature is observed for the first time, the

azimuth and elevation angles (γ, φ) of the optical ray (ex-

pressed in WCS) joining t0 =
[

x0 y0 z0
]T

and the 3D

point, and the inverse depth to the point 1/ρ measured from

t0. The resulting map feature is

xID =
[

x0 y0 z0 γ φ ρ
]T

∈ R
6. (8)

The projection to the image plane is

m = KRC
W

(

ρ(t0 − tWC ) + d(γ, φ)
)

∈ P
2, (9)

where d(γ, φ) is the unit vector given by the azimuth and

elevation angles given by

d(γ, φ) =





cosφ sin γ
− sinφ

cosφ cos γ



 .
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The back-projection which is used in features initialization

process is given by

xID =





t0
(γ, φ)
ρ



 =





tWC
g(RW

C K−1m)
ρC



 , (10)

where ρC is initial inverse depth (prior information), and

g(·) gives azimuth and elevation angles from unit vector

(pointing the optical ray) r =
[

rx ry rz
]T

as

g(r) =

[

arctan(rx/rz)

arctan
(

−ry/
√

r2x + r2z

)

]

=

[

γ
φ

]

.

IDP is described in details in [6] and [10].

4 IMPLEMENTATION OF VISUAL SLAM

4.1 General description

The presented implementation of monocular visual SLAM

is based on a wheeled mobile robot carrying a single cam-

era. All the parameters of the robot/camera system are

considered to be known, which are obtained by calibration

procedures previously to the SLAM running. The intrinsic

camera parameters are obtained by calibration using stan-

dard techniques [12], and the rigid transformation or ex-

trinsic parameters relating the CCS and robot coordinate

system (RCS) can also being obtained experimentally [13].

The implemented monocular SLAM used an ULI ap-

proach based on inverse depth parametrization. As was

previously mentioned, ULI has the main advantage of using

new observed features immediately improving the estima-

tion. Given that IDP is an overparametrization, map land-

marks in IDP are converted to Euclidean representation as

soon as they become adequately linear in the measurement

function, reducing the dimension of the SLAM state vector.

This conversion follows the approach presented in [14].

Figure 1 shows an schematic representation of the imple-

mented monocular visual SLAM (vSLAM) system. The

main parts of the implementation are the mobile robot

along its sensor (odometry and camera), the estimation fil-

ter, and computer vision algorithms for image processing

and data association. The implemented system uses a very

simple map management approach, which is responsible of

adding and deleting map landmarks. Map landmarks addi-

tion is base on a minimum image features in each time step;

and the deletion is determined by a rate between the amount

of time a map landmark is predicted (in image plane) and

use for filter correction.

Environment

Camera

Odometry

Map

Managment

Image

processing

Matching/

RANSAC

Prediction Correction

Figure 1: Monocular visual SLAM system

4.2 Motion model

The model used corresponds to the probabilistic odometric

motion model presented in [2]. This model uses relative

motion readings from the robot odometry as the control ac-

tion input, which is comprised of a first rotation, a trans-

lation and a last rotation, u =
[

δrot1 δtrans δrot2
]T

.

Given the odometric reading at time step k − 1, xodom
k−1

=
[

xodom
k−1

yodomk−1
θodomk−1

]T
and at time step k, xodom

k =
[

xodom
k yodomk θodomk

]T
, control action is compose of

δrot1 = atan2(yodomk − yodomk−1 , xodom
k − xodom

k−1 )− θodomk−1

δtrans =
√

(xodom
k−1

− xodom
k )2 + (yodomk−1

− yodomk )2

δrot2 = θodomk − θodomk−1 − δrot1.

Assuming these variables are affected by Gaussian zero

mean noise with

σrot1 = α1|δrot1|+ α2|δtrans|

σtrans = α3|δtrans|+ α4(|δrot1|+ |δrot2|)

σrot2 = α1|δrot2|+ α2|δtrans|,

where αi, i = 1, . . . , 4 are the motion parameters spe-

cific to the used robot. The covariance matrix represent-

ing the uncertainty in motion action is a diagonal matrix

Pu = diag(σ2
rot1, σ

2
trans, σ

2
rot2). The robot state evolves

accordingly to

xR,k = f(xR,k−1,uk−1,wk−1)




xk

yk
θk



 =





xk−1

yk−1

θk−1



+





δtrans cos(θk−1 + δrot1)
δtrans sin(θk−1 + δrot1)

δrot1 + δrot2



 .

Putting together the robot motion model and the static

map assumption results

xk =

[

xR,k

xM,k

]

=

[

f(xR,k−1,uk−1,wk−1)
xM,k−1

]

, (11)

which is the process equation for SLAM. A detailed de-

scription of this model can be found in [4].

4.3 Measurement model

Given the SLAM state vector xk composed of the

robot state vector xR and the map state vector xM =
[

xT
�,1

. . . xT
�,i

· · · xT
�,N

]T
, where the i-th map

feature x�,i can be represented either in euclidean xEU,i

or inverse depth xID,i parametrization. The measurement

function (eq. (2)) is composed of two steps: first each map

feature is projected to the image plane (in the actual camera

pose) using eq. (6) or (9) depending on the parametrization;

and second, a model for lens radial distortion is applied.

Distorted image points are

zi =

[

ui

vi

]

=

[

u0 +
u−u0

1+κ1r
2

d
+κ2r

4

d

v0 +
v−v0

1+κ1r
2

d
+κ2r

4

d

]

r = rd(1 + κ1r
2
d + κ2r

4
d)

r =

√

(hx(u− u0))
2
+ (hy(v − v0))

2
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Figure 2: Measurement prediction and feature matching.

where m =
[

u v
]T

, κ1 and κ2 are the radial distortion

parameters. The additive measurement noise considered to

be Gaussian has a standard deviation of 1 pixel. Figure

2 shows predicted measurement in image plane where the

uncertainties are represented by ellipses (in yellow color).

All the shown uncertainty ellipses follow a specific direc-

tion given by the epipolar point, which is due to the usage

of the odometric motion model. The main difference in us-

ing an adequate motion model, like the odometric motion

model presented here instead of constant velocity model,

allows a better measurement prediction which also improve

the data association process.

4.4 Data association

When using a camera as exteroceptive sensor for SLAM,

feature extraction and data association problems can be

addressed by existing algorithms in the computer vision

community. Features extraction is based on a image inter-

est point detector, being commonly used Harris, SIFT and

SURF detectors. Data association process seek for corre-

spondences between predicted measurements and feature

descriptors. Moreover, it is needed an extra stage in order

to reject wrong matches in data association, also known as

outliers. The latter is typically done using RANSAC [15].

The proposed approach for feature extraction and data

association is as follows: image features are extracted using

the FAST interest point detector [16], and image patches

are saved as descriptors. The matching process seek for

correspondences between these patches and interest re-

gions on the image defined by measurement predictions us-

ing prior information estimated by the filter. Finally, the 1-

Point RANSAC algorithm [17] is used for outlier rejection.

Interest regions for features matching are obtained simi-

larly to [18], where the authors propose to define search or

interest regions in image plane, aligned with image axes,

by projecting four tangent planes to the 3D ellipsoids rep-

resenting uncertainties of map landmarks. Instead, here

is proposed to used directly the uncertainties of predicted

measurements (in image plane) which are also used by the

filter. Interest regions are defined by bounding boxes which

are determined by tangent lines to the ellipses represent-

ing a constant Mahalanobis distance of predicted measure-

ments. Given a set of predicted measurements {ẑ−i ,R
−

i },

a constant Mahalanobis distance is expressed by

(z− ẑ−i )
T
(

R−

i

)

−1
(z− ẑ−i ) = k, (12)

which can be represented in homogeneous coordinate [19]

for the image projective plane as

mTCm = 0 (13)

where m =
[

u v w
]T

is an homogeneous image point,

and (the conic) C is an homogeneous matrix representing

the uncertainty ellipse. Tangent lines to the conic are de-

fined as

l = Cm (14)

where l =
[

a b c
]T

with a = 0 for horizontal lines

and b = 0 for vertical lines. Points on both ellipse C

and tangent lines are obtained solving the system of equa-

tion given by (13) and (14) where m =
[

u −c b
]T

and m =
[

−c v b
]T

for horizontal and vertical tangent

lines, respectively.

Figure 3 shows an indoor image with one predicted mea-

surement represented by the uncertainty ellipse and the

bounding box defined by tangent (vertical and horizontal)

lines to the ellipse. The bounding box defines the image

interest region to seek for matching. Furthermore, it is also

shown the feature patch (of 41x41 pixels) which is saved

for each image features, and the warped patch (of 13x13

pixels). The latter is obtained applying a warping transfor-

mation based on the camera predicted pose given by the

filter. The used similarity measurement for matching is

the normalized cross-correlation. Results of image features

matching can be seen in Fig. 2 where crosses (in green

color) show the matching point, corresponding to maxi-

mum cross-correlation values.

5 RESULTS

The evaluation of the implemented monocular SLAM algo-

rithm is performed using the RAWSEEDS dataset [20]. This

dataset includes information from different sensors taken

by a robot moving in an indoor environment, including a

digital camera of 320 × 240 pixels. Furthermore, robot

Figure 3: Image feature matching. Left: Measurement

prediction, uncertainty and bounding box. Right: Interest

region (bottom), feature patch (middle) and warped patch

(top).
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Figure 4: Estimation error in robot pose (xr, yr, θr) (from

top to bottom respectively), together with 3σ bounds.
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Figure 5: Ground truth (green), odometry (blue) and esti-

mated (red) robot path for 12m corridor.

pose ground truth is also available which is aimed to eval-

uate the performance of SLAM and robot pose estimation

algorithms.

Figure 4 shows the estimation error of robot pose to-

gether with the uncertainties in the estimation given by 3σ
bounds, and Fig. 5 shows the robot path; both of the same

SLAM running. These results are obtained with the robot

moving along a corridor similar to Fig. 3. It can be ob-

served how the uncertainty of the estimated robot y coordi-

nate decrease after the robot deviate from the initial straight

path. This is due to a better estimation of map landmarks

after they are seen from different camera orientations. On

the other hand, the estimation error in x coordinate at the

end of the path (of approx. 12m) is near to 15cm (1.25%),

given that a single camera cannot measure depth. How-

ever, even though the limited field of view of the camera

the estimated y coordinate is rather accurate, being of less

than 5cm at the end of the shown path. It is worthy to note

the low estimation error in robot orientation showing that a

monocular system is an accurate orientation sensor.

Figure 6 shows the robot pose estimation error together

with the error using robot odometry, similar errors in robot

x coordinate for both estimated and odometric can be ap-

preciated. However, estimated error in y coordinate is of

1m against 3.5m for odometry apart of being unbounded.

As previously, a low estimation error in orientation is ob-

served for the whole path. Lastly, Fig. 7 shows the odomet-

ric, estimated and ground truth path for the whole running

corresponding to Fig. 6.

6 CONCLUSIONS

The implementation of EKF-based monocular SLAM sys-

tem applied to a wheeled mobile robot was presented. It

is based on the state of the art of undelayed landmark ini-

tialization using the inverse depth parametrization. It was

shown in details each part of the presented monocular vi-

sual SLAM system. The implemented algorithm was tested

using a freely available dataset developed specifically for

visual SLAM evaluation.

Presented results show the behavior of the monocular

SLAM focused mainly for robot pose estimation. Even

though a single camera as the only sensor is not able to

perceive scene depth besides of having a limited field of

view, it was shown that it can be used in monocular SLAM

for robot pose estimation. Moreover, it was verified with

real data the precision of the implemented approach used

for robot pose estimation for a straight path in typically in-

door corridors, as well as for a longer path. Results demon-

strated, as theory suggests that a monocular vision system

acts as a very precise orientation sensor, mainly due to the

usage of inverse depth parametrization for undelayed land-

mark initialization.

Future works includes the proposition of a new strategy
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Figure 6: Robot pose odometry and estimation error, in

(xr, yr, θr) (from top to bottom respectively).
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Figure 7: Ground truth (green), odometry (blue) and esti-

mated (red) robot path of length more than 70m.
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for image feature detection and matching, based on robust

image point descriptors. This can improve data association

and therefore the accuracy in the filter estimation.
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