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ABSTRACT

Metric-temporal databases are a new database model that
combines metric spaces with temporal databases to pro-
cess similarity queries within a time interval or snapshot.
The Historical FHQT is a metric-temporal index which has
shown to be competitive answering this type of queries.
This index store a list of valid snapshots where each one
contains an Fixed Height Queries Tree that indexes all ob-
jects existing at that instant. In this paper we present an
improvement to this access method that consists in using
different sets of pivots for the Fixed Height Queries Tree
that correspond to consecutive time instants. The experi-
mental results show this modification improves the filtering
capacity of the index.

Keywords: metric spaces, temporal databases, indexes,
metric-temporal databases.

1 INTRODUCTION

Traditional databases are built around the concept of
structured data and exact searching: the database is
divided in records, each record having a fully compa-
rable key; querying the database return all the records
whose keys are exactly equal to the search key. Actu-
ally, the databases have included the ability to store
new data types such as images, audio, video, text.
The traditional models of databases are not useful in
this new framework because of three reasons: first,
the data are unstructured, this means that it is not
possible anymore to organize them in records and
fields; second, the exact searching has not interest;
third, conventional databases capture a single state of
the reality and it is insufficient for applications that
requieres the support of past, current or even future
data.

The metric spaces model [1, 2, 4, 5, 6, 10] forma-
lizes the similarity search concept in nontraditional
databases. This type of search is frequently found
in diverse topics of computer science such as voice
and image recognition, text compression, computa-
tional biology, artificial intelligence, data mining, etc.
Temporal Databases [13, 9] is a database model that
supports time-dependent data. While in traditional
databases deal with time as any other type of data, this
model incorporates time as a dimension. The Metric-
Temporal Databases model [7, 8, 11] combines fea-
tures of both models mentioned above allowing simi-
larity query that considers too, the temporal aspect.
This involves searching for objects similar to a given
query within an interval whose duration overlaps the
range provided by the query. As an example, consider
a collection of photographic record of people entering
a bank for a given period of time; it could be interes-
ting to find people with similar faces to a given one
that were in the bank within a time interval. In this
paper we are interested in access methods (indexes)
for this kind of database.

In [8] the Historical Fixed Height Queries Tree (H-
FHQT) is proposed. This is a metric-temporal ac-
cess method that store a list of valid instants of time
t1, t2, · · · , tk where each ti contains a metric index,
the Fixed Height Queries Tree (FHQT), with all valid
objects at the instant ti. In this paper we present an
improvement to this index that is mainly suitable for
interval metric-temporal queries.

The paper is organized as follows. Section 2 descri-
bes the related work, defining the concepts necessary
for understanding this work. Section 3 presents our
contribution, the Pivot H-FHQT index. Section 4



Figure 1: On the left, a set of points and the division of the space when u11 is taken as a pivot and the
distances have been discretized. On the right, a FHQT for this set of points. We also show a query q over
the set of points.

shows the experimental evaluation of the index and
finally, Section 5 presents the conclusions and future
work.

2 RELATED WORK

In this section we describe the metric spaces model,
the metric-temporal model and the indexes that form
the basis of this work.

2.1 Metric Spaces

Searching in non-traditional databases (e.g. images,
fingerprints, audio clips, etc.) deter the concept of
exact searching. There is no point in searching for
a bitwise equal object when presenting a query. We
search instead for similar objects.

In [6] is shown that the similarity search problem
can be expressed as follows: given a set X of objects
and a distance function d, defined among them, that
quantifies their similitude, the aim is to retrieve all the
elements similar to a given one. This function d satis-
fies the properties required to be a distance function:
positivity (d(x, y) ≥ 0), simetry (d(x, y) = d(y, x))
and triangle inequality (d(x, y) ≤ d(x, z) + d(z, y)).

The smaller the distance between two objects,
the more similar. The pair (X, d) is called metric
space. A finite subset U ⊆ X , which will be called
database, is the set of objects where we search.

One of the typical queries over this new database
model is the range query denoted by (q, r)d. Given a
query q ∈ X and a tolerance radius r, a range query
retrieve all elements within a distance r from q in the
the database U , this is:

(q, r)d = {u ∈ U : d(q, u) ≤ r}
The total query time T can be calculated

as T = #evaluations of d × complexity(d) +
extra CPU time+ I/O time. In many applications, the

evaluation of function d is so costly that the other
terms in the formulae can be neglected. This is the
complexity model we used in this work; therefore,
our complexity measure will be the number of evalu-
ations of the distance function d.

A range query can be trivially answered by an
exhaustive examination of the database. Unfortu-
nately, this is generally very costly in real applica-
tions, (O(n) distance evaluations where n = |U |).
To avoid this situation, the database is preprocessed
using an indexing algorithm whose aim is to build
a data structure or index, designed to save distance
evaluations at query time.

In [6] the authors present a unifier development for
all the existing solutions in this topic. In that survey
the authors state that the metric spaces indexing algo-
rithms are based on, first, partitioning the space into
equivalence classes and, second, a subsequent index-
ation of each class. Afterwards, at query time, some
of these classes can be discarded using the index and
an exhaustive search is maked only on the remaining
classes. The main difference between the existing in-
dexing algorithms is how they build the equivalence
classes. Basically there are two groups: pivots-based
algorithms and compact partitions-based algorithms.

The Fixed Height Queries Tree (FHQT) [1] be-
longs to the pivot-based algorithms group and it is
basically a variant of the Fixed Queries Tree[1] where
all the leaves are at the same depth. Originally these
structures were proposed for discrete distance func-
tions, but they can be suitable for continuous dis-
tances [6, 12].

The FHQT is a tree built from an element p, called
pivot, that can be chosen arbitrarily or by some pivot
selection techniques [3]. For each distance i, we de-
fine Ci = {u ∈ U/(d(p, u) = i} as the set of all ele-
ments at distance i to the root p. For any nonempty
Ci, we build a child of p labeled i where we recur-



Figure 2: Example H-FHQT built on the time interval [1..12].

sively build the FHQT for Ci. This process is re-
peated until the leaves are at the same depth h and
have no more that b elements. All the pivots stored
in the nodes of the same level are the same and, of
course, not necessarily belong to the set stored in the
subtree. Note that the total number of pivots is deter-
mined by the height of the tree.

A search for a query element q proceeds down
the tree by computing at each level the dis-
tance between q and the pivot pi for that level.
We call signature of the query q to the vector
(d(q, p1), d(x, p2), · · · , d(q, pk)) where k is the num-
ber of pivots used. The triangle inequality is used in
order to filter out elements in the database without
measuring their distance to the query q. If we are at
internal node v with pivot pi then all children of v la-
beled j such that |d(q, pi)− j| > r can be discarded.
Items that can not be discarded form part of a list of
candidates. These candidates are compared with the
query q to determine whether they belong or not to
the answer.

Figure 1 shows an example of a FHQT with two
pivots. On the left is showed the space division that
produces the selection of u11 as pivot and on the right
the FHQT resulting of choose u5 and u11 as pivots.

2.2 Metric-Temporal Database

This type of database allows searching for non-
structured objects that have an associated validity in-
terval. A metric-temporal space is defined as a pair
(U, d), where U = O × N × N denote the universe
of valid objects and d : O × O → R is a distance
function.

Each element u ∈ U is a 3-tuple (obj, ti, tf ) where
obj is an object (i.e a picture, sound, string, etc.)
and [ti, tf ] is the validity period of obj. The dis-
tance function d, which measures the similarity be-
tween two objects, satisfies the properties of a met-
ric (positivity, symmetry, reflexivity and triangle in-
equality). A metric-temporal query is defined as a
4-tuple (q, r, tiq, tfq)d, such that: (q, r, tiq, tfq)d =

{o/(o, tio, tfo) ∈ X ∧ d(q, o) ≤ r ∧ tio ≤ tfq ∧
tiq ≤ tfo)).

A trivial way to answer a metric-temporal query,
avoiding the sequential scan, is to build a metric in-
dex adding a time interval of validity to each object.
Given a query (q, r, tiq, tfq)d,, firstly we use a met-
ric index to discard objects obj that are farther than
r from q, and then perform a review on the set of el-
ements non-discarded in the first step in order to de-
termine which objects form the answer to the query.
They are those whose range overlaps with [tiq, tfq].

The main drawback of this trivial solution is that
the time component is not used to improve the filter-
ing ability of index, in this process only the metric
component is used. A better strategy is to use both
metric and temporal components to discard objects at
query time.

The Historical-FHQT (H-FHQT) [8] is a metric-
temporal index that uses both metric and tempo-
ral components to efficiently answer metric-temporal
queries. This index is composed by a list of valid
snapshots where each one contains an FHQT that in-
dexes all objects existing at that instant. The FHQT
of different instants have different depths, i.e. differ-
ent numbers of pivots, depending on the amount of
objects to be indexed. The number of pivots used in
each tree is calculated as dlog2(|oi|)e , where |oi| is
the number of objects alive at instant i. In this way,
trees with greater depth than necessary are avoided,
and consequently the storage cost is reduced. Al-
though the number of pivots varies in different in-
stants, it always works with the same pivots and at
the same order. This means that if the instant i needs
ki pivots and the instant j needs kj pivots, where
ki < kj , then the first ki pivots are equal in both
instants. This avoids that a query is compared with
different sets of pivots in different instants, implying
increase the number of distance function evaluations
to calculate the signature of q at each time.

Figure 2 shows an example of an H-FHQT built on
the time interval [1..12]. As can be see, the object o2



is alive at the interval [4..6], d(o2, p1) = d(o2, p2) =
1 and d(o2, p3) = 3. We denote fhqti to the FHQT
that correspond the instant i, and ki to its number
of pivots. A metric-temporal query (q, r, tiq, tfq)d is
answered by the H-FHQT in the following way: for
each instant i included in the query interval, a similar-
ity range query is made on the corresponding fhqti
and then the resulting sets are joined. Figure 3 shows
the search algorithm. The extend process calculate
the signature of the query on as-needed basis. If ki

is greater than the maximum number of pivots used
so far, the signature is extended to ki pivots. Other-
wise the signature already contains all the necessary
information to perform a range search over fhqti.

3 IMPROVING THE H-FHQT
PERFORMANCE: PIVOT H-FHQT

As described on the previous section, the aim of using
the same group of pivots for different fhqt involved
in an H-FHQT is to avoid calculation of different sig-
natures for each time instant. But, let us suppose that
an object o such as o /∈ (q, r, tiq, tqf )d, is valid in se-
veral moments of time i included in the interval of the
query. If the object o could not be discarded by fhqti,
then the only chance to be discarded by the fhqti+1

is that the number of pivots ki+1 is greater than ki,
so these additional pivots could eliminate o (let us re-
member the elimination rule of the search algorithm
seen in section 2.1). This means that the filtering abi-
lity of fhqti+1 against the object o is reduced to the
filtering ability of the additional pivots, if they exist.
One solution to this problem is to use disjoint sets of
pivots for consecutive fhqt, although increases the
number of distance evaluations when calculating the
signature of the query q, also increases the likelihood
of reducing the number of candidates which should
be compared with q.

These ideas were the basis for design changes to

H-FHQT (q, r, tiq , tfq , d) : set
1. R = ∅
2. last = 0
3. for tiq ≤ i ≤ tfq

4. if ki > last
5. signatureq = extend(sigatureq , last, ki)
6. last = ki

7. end if
8. R = R ∪ Range(q, r, d,fhqti, signatureq , ki)
9. end for
10. return(R)
∗fhqti is the FHQT at instant i and ki is

the number of pivots of fhqti

∗Range process make (q, r)d on fhqti using
the first ki elements of signatureq.

Figure 3: Metric-temporal search algorithm on a H-
FHQT

improve the H-FHQT performance. We call this new
version Pivot H-FHQT (PH-FHQT).

In a PH-FHQT the fhqti is built with different piv-
ots that the fhqti−1 and the fhqti+1. To achieve this
goal, each fhqti take the first ki available pivots from
a global list of pivots (p0, p1, · · · , pm−1), which is
handled as a circular list: the fhqt1 use the first k1

pivots, fhqt2 uses the k2 following pivots, and so on,
until reach the last available pivot from the list. Then,
it is resumed from the beginning. The construction of
consecutive fhqt with different set of pivots gives to
the index more filtering power from the metric point
of view.

Figure 4 shows an example of a PH-FHQT built
on the interval time [1, 12]. It has valid objects only
at the instants 5, 7, 8 and 9. As can be seen fhqt′s
having different depths depending on the number of
objects indexed.

To query the PH-FHQT we proceed in a similar
way that the used for the H-FHQT, i.e. the instants i
included in the query interval are selected, then each
of the corresponding fhqti are queried for similarity
and finally the resulting sets are joined in a non-trivial
way. For each fhqti, a set Ci of candidates and a set
Di of rejected elements are obtained. For an object
o to be a final candidate, must belong at least to one
of the Ci involved and to none of the Di, i.e. the
object o should have survived at all pivots of the in-
volved fhqti. Then, since the filtering capacity of
the fhqti is independent of the filtering capacity of
the fhqti−1, the filtering is more efective.

Figure 5 shows the search algorithm on PH-FHQT.
The compute process calculate the signature of the
query q using the pivots of fhqti. This signature is
used por range process to make a range search on
the fhqti, returning the set of candidates Ci and the
set of rejected elements Di. At the end, all objects
belonging to Ci and not to Di, make the final list of
candidates which are compared with q to determine
the final result.

PH-FHQT (q, r, tiq, tfq, d) : set
1. C = D = R = ∅
2. for tiq ≤ i ≤ tfq

3. signatureiq = compute(q, pivots(fhqti))
4. (Ci, Di) = range(q, r, d, fhqti, signatureiq , i, ki)
5. C = C ∪ Ci

6. D = D ∪Di

7. end for
8. C = C −D
9. for all o ∈ C
10. if d(q, o) ≤ r then R = R ∪ {o}
11. end for
12. return(R)

Figure 5: Metric-temporal search algorithm on a PH-
FHQT



Figure 4: Example Pivot H-FHQT built on the time interval [1..12].

4 EXPERIMENTAL EVALUATION

For our experiments, we used two vectorized im-
age databases widely used by the metric spaces com-
munity: Colors, containing 761-dimensional vectors
and Nasa, with 20-dimensional vectors, available at
http://www.sisap.org/library/dbs/vectors.

From both, batches of sizes 5,000, 10.000 and
15.000 were randomly generated. An identifier and a
validity interval were assigned to each object. The in-
terval indicates the validity time of the object, within
the range [1..1000]. The Euclidean distance was used
as distance function in both cases. From now on,
well refer the metric-temporal databases generated,
as NasaMT and ColorsMT.

For each of the six databases created, 100 metric-
temporal range queries were generated by randomly
taking 100 elements from each batch, varying the
query radii and interval.We have considered queries
retrieving on average 1%, 5% and 10% of the dataset,
this means radii 5, 9 and 11 for ColorsMT y radii 7, 9
and 11 for NasaMT. The query intervals used the val-
ues: instant, 10%, 25% and 50% of the total range.

In the H-FHQT, each fhqt was constructed tak-
ing pivots from the same list of randomly chosen el-
ements from the database. In the case of PH-FHQT,
a global list of pivots with a cardinality ranging from
dlog2(|Oi|)e to dlog2(|Oi|)e ∗ 2 was generated.

Because of space reasons, only most relevant re-
sults will be included; intermediate results will not be
exposed but are available on demand.

Figure 6 shows the results obtained for the Col-
orsMT database with 5000 objects for instant and in-
terval queries with the H-FHQT and the PH-FHQT.
The X-axis represent the search radii and the Y-axis,
the average number of distance evaluations. As can
be seen, the PH-FHQT index has better performance
than the H-FHQT performing 12% less distance eval-
uations. This improvement is more significant in the
case of interval queries, reaching up to 26% less dis-
tance function evaluations. In all cases the percent-
age of improvement decreases as the search radius
increase, reaching 7% in the case of instant queries
and a 10% for interval queries. The results obtained

with batches of 10,000 and 15,000 elements followed
the same pattern.

The results obtained for the NasaMT with 5.000
objects as show in Figure 7. In this case, we can see
that for instant queries the PH-FHQT outperforms the
H-FHQT only when r = 7, achieving an improve-
ment of 1%.In contrast, for r = 9 and r = 11 the H-
FHQT is more competitive than the PH-FHQT, get-
ting improvements of 2% and 3% respectively. It is
noted for these two cases that the improvement rate
increase when the search radius increases. Instead,
when analyzing the results for the interval queries,
we see that the PH-FHQT index is the most effi-
cient in all cases considered. The improvements vary
between 2% and 14%, decreasing as increasing the
search radii. These results obtainded with batches of
10,000 and 15,000 objects folloved the same pattern.

5 CONCLUSIONS AND FUTURE WORK

In this paper we presented an improvement to the H-
FHQT metric-temporal index consisting in to allow
the use of different groups of pivots for trees that
correspond to consecutive instants. This originated
a new index, the PH-FHQT, which proved to be more
competitive than its predecessor, the H-FHQT, in all
interval queries executed on the NasaMT and Col-
orsMT databases. For instant queries on ColorsMT,
the PH-FHQT outperforms in all cases the H-FHQT,
and for the NasaMT database, was more competitive
in 66% of the tests. The improvements observed in
this index are due to the greater power of filtering that
is achieved by generating consecutive fhqti with dif-
ferent sets of pivots. Regarding future work we in-
tend to improve this index with respect to the storage
space required. The aim is to detect equal subtrees at
different instants in order to reuse such structures to
avoid redundancy in storage.
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Figure 6: Distance evaluations for ColorsMT, using query intervals instant, 10%, 25% and 50%.
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Figure 7: Distance evaluations for NasaMT, using query intervals instant, 10%, 25% and 50%.
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