Agricultural Pollution: Mitigating the Effects of Pesticides

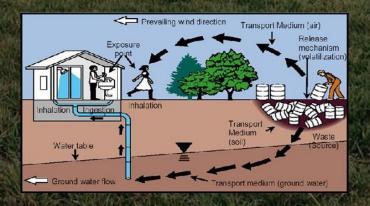
Universidad Tecnológica Nacional – Facultad Regional Paraná

Electronics Engineering Department – Students:

- Lucas Cusit
- Lucas E. Heit

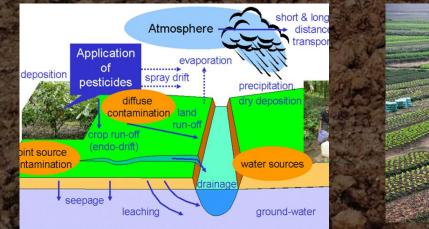
English II - 2023

- Traditional agriculture was sustainable for thousands of years without harming the land.
- Modern agriculture, with the use of pesticides, has caused agricultural pollution, degraded the land and harmed the environment.
- Sustainable agriculture is crucial, as highlighted in the United Nations' Sustainable Development Goal No. 2, "Zero Hunger."



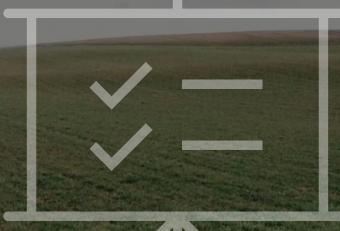
Contextualization

- Pesticides are substances used to control or eradicate pests.
- Pesticides can cause land degradation.
- The degradation of the land affects three aspects:
 - > The harvest (crops)
 - > The environment (animals, natural resources, etc.)
 - > The people (indirect or direct ways)



Thesis Statement

- The focus will be on:
 - > The issue of pesticide use in agriculture.
 - \succ The exploration of mitigating strategies for pesticides effects.
 - > The severity of pesticide pollution in cultivated areas and its environmental implications.



Map of the presentation

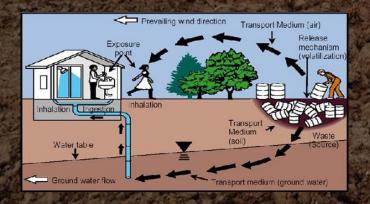
• First Part: Problem Description

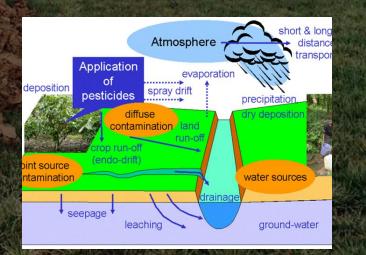
Account of the pollution by means of pesticides

- ✓ Identification of the severity of the problem
- Implications in the contamination of the environment
- Second Part: Solutions
 - ✓ Mitigation Strategies for pesticides
- Third Part: Advantages and Disadvantages
- Final Part: Conclusion

Problem Description:

Concept of pesticides


- Pesticides are substances used to control pests, diseases, undesirable plants, and animals that affect food production, storage, and transportation.
- Pesticides are intended to target specific pests, but they can contain various compounds like fungicides, herbicides, rodenticides, etc., which may affect non-target organisms.



Problem Description:

Solution with a cost

- Pesticides offer quick and efficient solutions.
- Excessive use can affect the agricultural environment and the food product.
- The use of pesticides generates various types of contamination (contamination of food, air, water, land and animals).

Problem Description:

Pesticides are efficient at controlling pests, but they cause these problems:

- They make people and animals sick
- They contaminate water, air and soil
- They put ecosystems at risk
- They contaminate food

Ultraviolet (UV) light can be used to degrade pesticides, primarily through a process known as photodegradation.

It is based on:

- Its exposure to chemicals
- Decomposition of its molecules

UV light can be used in:

- Production chains
- Field
- Potabilization plants

Figure 1: UV Disinfection Process [1]

Solutions:

B) Degradation of pesticides by microorganisms

Pesticides can be degraded through biodegradation, which is a process that involves the complete breakdown of an organic compound into its inorganic constituents.

It can be achieved by exposing agrochemicals to:

- Fungus
- Microbes
- Enzymes

Enzyme	Organism	Pesticide	Enzyme	Organism	Pesticide
Oxidoreductases (Gox)	Pseudomonas sp. LBr	- Glyphosate	Phosphotriesterases:	Agrobacterium radiobacter	Insecticides phosphotriester
	Agrobacterium strain T10		OPH/OpdA	Pseudomonas diminuta	
Monooxygenases:				Flavobacterium sp.	
ESd	Mycobacterium sp.	Endosulphan and Endosulphato	Haloalkane Dehalogenases:	Sphingobium sp.	Hexachlorocyclohexa ne (β and δ isomers)
Ese	Arthrobacter sp.	Endosulphan, Aldrin, Malation, DDDT and Endosulphato	LinB	Shingomonas sp.	
			AtzA	Pseudomonas sp. ADP	Herbicides chloro-s- trazina
Cyp1A1/1 ^a 2	Rats	Atrazine, Norflurazon and Isoproturon	TrzN	Nocardioides sp.	Herbicides chloro-s- trazina
Cyp76B1	Helianthus tuberosus	Linuron, Chlortoluron and Isoproturon	LinA	Sphingobium sp.	Hexachlorocyclohexa ne (γ isomers)
P450	Pseudomonas putida	Hexachlorobenzene and Pentachlorobenzene		Shingomonas sp.	
			TfdA	Ralstonia eutropha	2,4 - dichlorophenoxyaceti c acid and pyridyl- oxyacetic
Dioxygenases (TOD)	Pseudomonas putida	Herbicides Trifluralin			
E3	Lucilia cuprina	Synthetic pyrethroids and insecticides	DMO	Pseudomonas maltophilia	Dicamba

Table 1: UV Disinfection Process [2]

Solutions:

C) Replacement of insecticides by biological control

Integrated pest management (IPM) focuses on:

- Reduce pest populations using natural enemies.
- Emphasize biological control of insects, weeds and plant diseases.
- Identify suitable natural enemies.
- Ensure that they do not harm non-target organisms.
- Produce them in large quantities and find methods for their long-term preservation.

Advantages and Disadvantages:

A) <u>Pesticide Degradation by Ultraviolet Light:</u>

- ✓ Advantages: Environmentally friendly, compact, durable and configurable
- Disadvantages: Only for few unwelcomed microbial beings

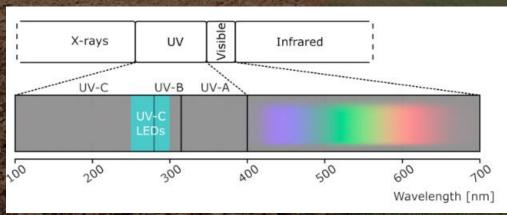


Figure 3: Range of configurable wavelength [1]

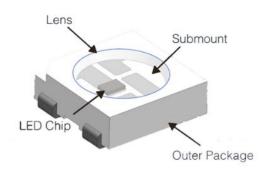


Figure 2: UV-C LED Structure [1]

Advantages and Disadvantages:

B) <u>Pesticide Degradation by Microorganisms:</u>

- \checkmark Advantage: Effective solution without the drawbacks of chemical pesticides.
- Disadvantage: Knowledge of pesticide composition for ideal catalytic method selection.

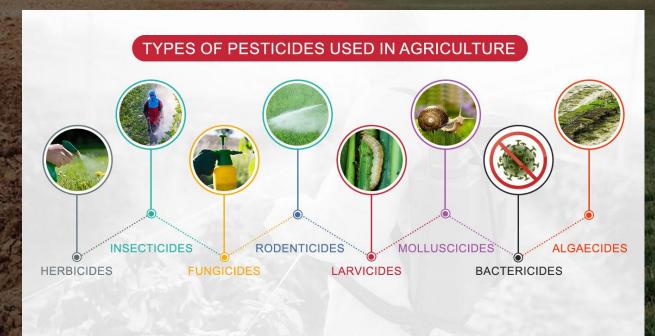


Figure 4: Types of pesticides used in agriculture [3]

Advantages and Disadvantages:

C) Replacement of Insecticides with Biological Control:

- Advantages: Reduces chemical pesticide use, minimizes environmental pollution, and enhances crop quality
- \checkmark Has specific targeting.
- Disadvantages: Not always effective, particularly against native pests; natural enemies can become pests.

Conclusion:

In conclusion, it can be said that:

- The use of agrochemicals poses risks to human and animal health and the environment.
- The solutions presented include alternatives to agrochemicals, which are favorable.
- The transformation towards a world with more sustainable agricultural practices depends on market demand, which emphasizes the importance of consumer support for such transformations.

The End Thanks for your attention

Universidad Tecnológica Nacional – Facultad Regional Paraná

Electronics Engineering Department – Students:

- Lucas Cusit
- Lucas E. Heit

English II - 2023

References:

[1] "UV-C LED Technology." AquiSense Technologies. https://aquisense.com/uvc-led-technology/ (accessed Nov.15, 2023)

[2] A. Shelton, "Biological Control." Cornell University College of Agriculture and Life Sciences. https://biocontrol.entomology.cornell.edu/what.php (accessed Nov.15, 2023)
[3] "Types Of Pesticides Used In Farming – Importance And Benefits." TractorJunction.com https://www.tractorjunction.com/blog/types-of-pesticides-used-in-farming/ (accessed: Nov.15, 2023).

[4] "Pesticides in food." www.food.gov.uk. https://www.food.gov.uk/business-guidance/pesticides-in-food (accessed Nov.10, 2023)

[5]"Sustainable Development Goals: 17 goals to transform our world." Food and Agriculture Organization of the United Nations. https://www.fao.org/3/CA3121EN/ca3121en.pdf (accessed Nov.15, 2023)

[6] V.M. Pathak et. al., "Current status of pesticides effects on environment, human health and its ecofriendly management as bioremediation: A comprehensive review," Front.Microbiol., vol.13, Aug. 2022. Accessed: Nov.15, 2023. doi: https://doi.org/10.3389/fmicb.2022.962619 [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmicb.2022.962619/full

 [7] W. Aktar, D. Sengupta, and A. Chowdhury, "Impact of pesticides use in agriculture: their benefits and hazards," Interdiscip. Toxicol., vol. 2, no. 1, pp. 1–12, 2009. Accessed: Nov.15, 2023. doi: https://doi.org/10.2478/v10102-009-0001-7 [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2984095/#:~:text=Pesticides%20can%20contaminate%20soil%2C%20water,%2C%20and%20non%2Dtarget%20plants
[8] M.L. Ortiz Hernandez, E. Sánches Salinas, E. Dantán Gonzalez and M.L. Castrejón Godínez, "Pesticide Biodegradation: Mechanisms, Genetics and Strategies to Enhance the Process," Biodegradation-Life of Science, vol. 1, no. 1, December. 2012. Accessed: Nov.15, 2023. doi: 10.5772/56098. [Online]. Available: https://www.intechopen.com/chapters/45111

[9] J.A. Arroyave Rojas, L.F. Garcés Giraldo, A. F. Cruz Castellanos, "Fotodegradación del pesticida Mertect empleando fotofenton con lampara de luz ultravioleta," Revista Lasallista de Investigación, vol. 3, no. 2, pp. 19-24, July-Dec. 2006. Accessed: Nov.15, 2023. [Online]. Available: https://www.redalyc.org/pdf/695/69530204.pdf
[10] "Biological "Green" Alternatives to Chemical Pesticides." Agricultural Research Service U.S. department of agriculture. https://www.ars.usda.gov/oc/utm/biological-green-alternatives-to-chemical-pesticides/ (accessed Nov.15, 2023)

Electronics Engineering Department – Students:

- Lucas Cusit
- Lucas E. Heit

English II - 2023

Agricultural Pollution: Mitigating the Effects of Pesticides

Universidad Tecnológica Nacional – Facultad Regional Paraná

Electronics Engineering Department – Students:

- Lucas Cusit
- Lucas E. Heit

English II - 2023