

The 7th Conference of the International Society For Applied Phycology

Fucoidan content and composition of *Colpomenia sinuosa* and *Myriogloea major* from Argentine Patagonia

N. M. A. Ponce, F. G. Dellatorre, E. Latour, P. Raffo and C. Stortz

Aquaculture & Fisheries Research and Development Group – National Technological University

GIDTAP-UTN Grupo de Investigación y Desarrollo Tecnológico en Acuicultura y Pesca

ISAP 2021

May 14,2021 to August 13,2021 Virtual Platform

Illustrated by Hiroko Uchida

Fernando Gaspar Dellatorre – <u>dellatorcnp@gmail.com</u> / +54 9 280 4394457

ISAP 2021

Introduction

- Fucoidans are a class of sulfated polysaccharides, present in the cell wall of brown seaweeds, with intense bioactivity and increasing commercial applications.
- A common trait of brown seaweeds fucoidans is their high content of L-fucose residues and sulfate.
- Fucoidan from different species show variable amounts of other sugars or glucuronic acid and have also variable structural characteristics [1].
- The bioactivity of fucoidans is determined by their chemical composition and structure and is consequently linked to their biological origin.
- In this work, we present preliminary data on fucoidan yield and sulfate and monosaccharide composition of Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier and Myriogloea major Asensi 1973, an endemic species of Argentine Patagonia.

Materials and methods

ISAP 2021

Samples taken from were an intertidal rocky shore in the southwest margin of Nuevo gulf (Patagonia, Argentina) between January and May 2019.

Macroalgal thalli were cleaned, washed, air-dried, and milled.

Myriogloea major Asensi 1973

Order: Ectocarpales

Family: Chordariaceae

Cylindrical, solid, very gelatinous thalli, between 20 cm to more than one meter in length, with a diameter between 0.5 and 1.0 cm.

Colpomenia sinuosa (Mertens ex Roth) Derbès & Solier 1851

Order: Ectocarpales Family: Scytosiphonaceae

Spherical, light brown, early hollow thalli, from spherical to irregularly flattened and somewhat sinuous, with extended base, 3 to 10 cm in diameter when mature.

ISA

2021

Materials and methods: Fucoidan extraction

 Fucoidan extraction technique was adapted from Ponce et al., (2003). An acid (0.01 M HCl; pH = 2) extraction (6 h at room temperature) followed by centrifugation, filtration, dialysis, and freeze-drying

Materials and methods: Characterization of the extracts

- Total carbohydrates were determined in the dried extract by the phenol-sulphuric method using fucose as standard.
- The sulfate content was determined turbidimetrically.
- Uronic acid content was determined according to the method of Filisetti-Cozzi & Carpita.
- Monosaccharide composition was determined by GC after acid hydrolysis and reduction to acetylated alditols [2]

Results and discussion

ISAP

2021

- Extraction yield (% in dry weight basis) was 1.3 \pm 0.05 % and 19.8 \pm 0.4 % for C. sinuosa and M. majors respectively.
- Neutral carbohydrates (anhydrous) mass proportion was 55.4 \pm 0.6 and 70.8 \pm 1.7 respectively for C. sinuosa and M. major.
- Uronic acids represented a 9.3 \pm 1.2 and for C. sinuosa and 8.5 \pm 0.8 for Myriogloea major.
- Sulphate groups (expressed as SO3Na) represented a mass proportion of 14.3 \pm 1.2 and 24.4 \pm 3.3 respectively for C. sinuosa and M. major.

Monosaccharide composition:

	Colpomenia sinuosa	Myriogloea major
Fucose	46 ±2.8 %	82.2 ±7.8 %
Galactose	18.9 %	2.1 %
Xylose	18.1 %	2.0 %
Arabinose	11.2 %	-
Mannose	5.3 %	-
Glucose	tr	13.6 %

Conclusion

 Preliminary results suggest that M. major could be a suitable candidate for fucoidan production. Further studies are needed to elucidate chemical structure and composition and to evaluate potential therapeutic properties.

• References:

- [1] M.T. Ale, A.S. Meyer, Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation, RSC Advances, 3 (2013) 8131-8141.
- [2] N.A. Ponce, C.A. Pujol, E.B. Damonte, M.L. Flores, C.A. Stortz, Fucoidans from the brown seaweed *Adenocystis utricularis*: extraction methods, antiviral activity and structural studies, Carbohydrate Research, 338 (2003) 153–165.