Mostrar el registro sencillo del ítem

dc.creatorPasinato, Hugo D.
dc.creatorMoguilner Rhe, Nicolás F.
dc.date.accessioned2024-05-10T21:42:46Z
dc.date.available2024-05-10T21:42:46Z
dc.date.issued2024-04-24
dc.identifier.urihttp://hdl.handle.net/20.500.12272/10758
dc.description.abstractIn this study, we explore the application of an artificial recurrent neural network (RNN) called Long Short-Term Memory (LSTM) as an alternative to a turbulent Reynolds-Averaged Navier- Stokes (RANS) model. The LSTM models are utilized to predict the shear Reynolds stress in developed and developing turbulent channel flows. We conduct comparative analyses, comparing the LSTM results propagated through computational fluid dynamics (CFD) simulations with the outcomes from the κ − ϵ model and data acquired from direct numerical simulation (DNS). These analyses demonstrate a good performance of the LSTM approaces_ES
dc.formatplaines_ES
dc.language.isospaes_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.subjectLSTMes_ES
dc.subjectTurbulent Flowses_ES
dc.subjectModelos Ranses_ES
dc.titleModeling Turbulent Flows with LSTM Neural Networkes_ES
dc.typeinfo:eu-repo/semantics/otheres_ES
dc.rights.holderPasinato Hugo Daríoes_ES
dc.description.affiliationPasinato, Hugo D. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentinaes_ES
dc.description.affiliationMoguilner Rhe, Nicolás F. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionacceptedVersiones_ES
dc.rights.useCreative Commons / Atribución- Sin Obraes_ES
dc.identifier.doi-doi


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess