Mostrar el registro sencillo del ítem
Turbidity estimation by machine learning modeling and remote sensing techniques applied to a treatment plant water inlet
dc.creator | Gauto, Víctor Hugo | |
dc.creator | Utgés, Enid Marta | |
dc.creator | Hervot, Elsa Ivonne | |
dc.creator | Tenev, María Daniela | |
dc.creator | Farías, Alejandro Rubén | |
dc.date.accessioned | 2024-10-07T18:29:47Z | |
dc.date.available | 2024-10-07T18:29:47Z | |
dc.date.issued | 2024-01-14 | |
dc.identifier.citation | 4th LA Sustainable Development of Energy Water and Environment Systems Conference; SDEWES 2024 | es_ES |
dc.identifier.issn | 2706-3674 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/11589 | |
dc.description.abstract | Water availability and sanitation are among the UN Sustainable Development goals for 2030. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. Clean water is a scarce resource fundamental for human development and well-being. Treatment plants depend on the current water quality state to properly provide clean water. Combining laboratory measurements, provided by a water plant in Resistencia city, Argentina, and remote sensing data, i.e., surface reflectance, from Sentinel-2 platform, several algorithms were developed, trained, and compared for turbidity estimation. The model with the highest performance metrics was a random forest model, with Pearson’s coefficient of determination (R2) 0.918 and root-mean squared error (RMSE) 138.8 nephelometric turbidity units (NTU). Global feature importance and partial dependencies profiles techniques were applied to the random forest model to understand the spectral bands effects. Turbidity maps and time series were made and analyzed. | es_ES |
dc.format | es_ES | |
dc.language.iso | eng | es_ES |
dc.rights | openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.rights.uri | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |
dc.subject | machine learning | es_ES |
dc.subject | random forest | es_ES |
dc.subject | remote sensing | es_ES |
dc.title | Turbidity estimation by machine learning modeling and remote sensing techniques applied to a treatment plant water inlet | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.affiliation | Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | es_ES |
dc.description.affiliation | Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | es_ES |
dc.description.affiliation | Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | es_ES |
dc.description.affiliation | Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | es_ES |
dc.description.affiliation | Farías, Alejandro Rubén. Universidad Tecnológica Nacional. Facultad Regional Resistencia. Grupo de Investigación Sobre Temas Ambientales y Químicos; Argentina. | es_ES |
dc.description.peerreviewed | Peer Reviewed | es_ES |
dc.relation.projectid | Estimar indicadores de calidad de agua en la cuenca media del río Paraná para el desarrollo de un algoritmo mediante técnicas de teledetección satelital. | es_ES |
dc.relation.projectid | MSECRE0008604 | es_ES |
dc.type.version | publisherVersion | es_ES |
dc.rights.use | Acceso abierto | es_ES |
dc.creator.orcid | 0000-0001-9960-8558 | es_ES |
dc.creator.orcid | 0009-0003-5263-5198 | es_ES |
dc.creator.orcid | 0000-0003-0860-9139 | es_ES |
dc.creator.orcid | 0009-0008-3378-942X | es_ES |