Mostrar el registro sencillo del ítem

dc.coverage.spatialInternacionales_ES
dc.creatorRedolfi, Javier
dc.creatorFelissia, Sergio
dc.creatorBernardi, Emanuel
dc.creatorAraguás, Gastón
dc.creatorFlesia, Ana Georgina
dc.date.accessioned2024-10-14T18:49:04Z
dc.date.available2024-10-14T18:49:04Z
dc.date.issued2020-02-27
dc.identifier.citation2020 IEEE International Conference on Industrial Technologyes_ES
dc.identifier.isbn978-1-7281-5754-2
dc.identifier.urihttp://hdl.handle.net/20.500.12272/11620
dc.description.abstractA problem of current agriculture is the large amount of agrochemicals used to boost production due to their cost and the environmental pollution they cause. A partial solution to this problem consists in developing selective spraying techniques through the measurement of a green index that allows the selection of the precise amount of pesticide to be applied according to the specific conditions of each part of the field. Some of the problems of the existing systems are the inability to discriminate between types of vegetation and to pinpoint its location, since they only detect general patches of vegetation. In this work, we introduce a system prototype capable of measuring the presence of vegetation in an area using low-cost devices combined with current computer vision techniques. The system allows to generate a mask with the presence of vegetation in a certain area and it is also capable of distinguishing between different materials unlike current methods, which only allow to distinguish between green and non-green areas. The presented method opens the door to future research which can allow distinguishing between crops and weeds to make an even more selective application. The output of the system can be used also to design another type of weeding method that is not based on the application of agrochemicals.es_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rightsembargoedAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.source2020 IEEE International Conference on Industrial Technology: 791 – 796 (2020)es_ES
dc.subjectPrecision Agriculturees_ES
dc.subjectSelective Sprayinges_ES
dc.subjectComputer Visiones_ES
dc.subjectFisher Vectores_ES
dc.titleLearning to Detect Vegetation Using Computer Vision and Low-Cost Camerases_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.description.affiliationFil: Redolfi, Javier. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina.es_ES
dc.description.affiliationFil: Felissia, Sergio. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina.es_ES
dc.description.affiliationFil: Bernardi, Emanuel. Universidad Tecnológica Nacional. Facultad Regional San Francisco; Argentina.es_ES
dc.description.affiliationFil: Araguás, Gastón. Universidad Tecnológica Nacional. Facultad Regional Córdoba; Argentina.es_ES
dc.description.affiliationFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba; Argentina.es_ES
dc.type.versionpublisherVersiones_ES
dc.rights.use.es_ES
dc.identifier.doihttps://ieeexplore.ieee.org/document/9067316
dc.creator.orcid0000-0003-1240-497Xes_ES
dc.creator.orcid0000-0001-5248-9352es_ES
dc.creator.orcid0000-0002-2478-5477es_ES
dc.creator.orcid0000-0001-6936-3764es_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

embargoedAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como embargoedAccess