Mostrar el registro sencillo del ítem

dc.creatorVega, Jorge Rubén
dc.creatorGodoy, José Luis
dc.creatorMarchetti, Jacinto L.
dc.date.accessioned2018-09-11T19:49:37Z
dc.date.available2018-09-11T19:49:37Z
dc.date.issued2014
dc.identifier.citationChemometrics and Intelligent Laboratory Systems, v.130, pp. 182-191 (2014)es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/3107
dc.description.abstractThis work aims at comparing several features of Principal Component Analysis (PCA) and Partial Least Squares Regression (PLSR), as techniques typically utilized for modeling, output prediction, and monitoring of multivariate processes. First, geometric properties of the decomposition induced by PLSR are described in relation to the PCA of the separated input and output data (X-PCA and Y-PCA, respectively). Then, analogies between the models derived with PLSR and YX-PCA (i.e., PCA of the joint input–output variables) are presented; and regarding to process monitoring applications, the specific PLSR and YX-PCA fault detection indices are compared. Numerical examples are used to illustrate the relationships between latent models, output predictive models, and fault detection indices. The three alternative approaches (PLSR, YX-PCA and Y-PCA plus X-PCA) are compared with regard to their use for statistical modeling. In particular, a case study is simulated and the results are used for enhancing the comprehension of the PLSR properties and for evaluating the discriminatory capacity of the fault detection indices based on the PLSR and YX-PCA modeling alternatives. Some recommendations are given in order to choose the more appropriate approach for a specific application: 1) PLSR and YX-PCA have similar capacity for fault detection, but PLSR is recommended for process monitoring because it presents a better diagnosing capability; 2) PLSR is more reliable for output prediction purposes (e.g., for soft sensor development); and 3) YX-PCA is recommended for the analysis of latent patterns imbedded in datasets.es_ES
dc.formatapplication/pdf
dc.language.isospaes_ES
dc.publisherRevista Chem And Intell Lab Systes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subjectChemometricses_ES
dc.subjectIntelligent Laboratory Systemses_ES
dc.titleRelationships between PCA and PLS-regressiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationFil: Vega, Jorge Rubén. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.es_ES
dc.description.affiliationFil: Godoy, José Luis. CONICET-Universidad Nacional del Litoral. INTEC; Argentina.es_ES
dc.description.affiliationFil: Marchetti, Jacinto L. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.es_ES
dc.description.affiliationFil: Vega, Jorge Rubén. Universidad Tecnológica Nacional. Facultad Regional Santa Fe; Argentina.es_ES
dc.description.affiliationFil: Godoy, José Luis. Universidad Tecnológica Nacional. Facultad Regional Paraná; Argentina.es_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_ES
dc.type.snrdinfo:ar-repo/semantics/artículoes_ES
dc.rights.useCondiciones de Uso desde su aprobación / presentaciónes_ES
dc.rights.useAtribución-NoComercial-CompartirIgual 4.0 Internacional*


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess