Mostrar el registro sencillo del ítem
New contributions to non linear process monitoring through kernel partial least squares
dc.creator | Vega, Jorge Ruben | |
dc.creator | Godoy, José Luis | |
dc.creator | Marchetti, Jacinto | |
dc.creator | Zumoffen, David | |
dc.date.accessioned | 2018-09-14T22:08:31Z | |
dc.date.available | 2018-09-14T22:08:31Z | |
dc.date.issued | 2013 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/3119 | |
dc.description.abstract | The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to nonlinear process monitoring are presented. To this effect, the measurement decomposition, the development of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for purposes of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the models are also given, which are related to an appropriate order selection and the adoption of the kernel function parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for monitoring a nonlinear process. The effectiveness of the proposed methods is confirmed by using simulation examples. Keywords: KPLS Modeling, Fault Detection, Fault Diagnosis, Prediction Risk Assessment, Nonlinear Processes. | es_ES |
dc.format | application/pdf | |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.subject | nonlinear | es_ES |
dc.subject | process monitoring | es_ES |
dc.subject | Kernel Partial | es_ES |
dc.title | New contributions to non linear process monitoring through kernel partial least squares | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.description.affiliation | Fil: Vega, Jorge Ruben/ Universidad Tecnològica Nacional. Argentina | es_ES |
dc.description.peerreviewed | Peer Reviewed | es_ES |
dc.relation.projectid | Técnicas numéricas de estimación y optimización: aplicaciones en problemas de nanotecnologìa y de energía eléctrica, | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.type.snrd | info:ar-repo/semantics/artículo | es_ES |
dc.rights.use | Condiciones de Uso libre desde su aprobación / aprobación | es_ES |
dc.rights.use | Atribución-NoComercial-CompartirIgual 4.0 Internacional | * |