Mostrar el registro sencillo del ítem
Knowledge discovery process for description of spatially referenced clusters
dc.creator | Rottoli, Giovanni Daián | |
dc.creator | Merlino, Hernán Daniel | |
dc.creator | García Martínez, Ramón | |
dc.date.accessioned | 2018-12-13T11:47:04Z | |
dc.date.available | 2018-12-13T11:47:04Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | International Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017) | es_ES |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/3323 | |
dc.description.abstract | Spatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided. | es_ES |
dc.format | application/pdf | es_ES |
dc.language.iso | eng | es_ES |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Knowledge discovery process | es_ES |
dc.subject | Spatial clustering | es_ES |
dc.subject | Regionalization | es_ES |
dc.subject | Decision tree learning | es_ES |
dc.subject | Spatial data mining | es_ES |
dc.title | Knowledge discovery process for description of spatially referenced clusters | es_ES |
dc.type | info:eu-repo/semantics/conferenceObject | es_ES |
dc.rights.holder | Rottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramón | es_ES |
dc.description.affiliation | Fil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina. | es_ES |
dc.description.affiliation | Fil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina. | es_ES |
dc.description.affiliation | Fil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina. | es_ES |
dc.description.affiliation | Fil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina. | |
dc.description.affiliation | Fil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina. | |
dc.description.affiliation | Fil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina. | |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.type.snrd | info:ar-repo/semantics/documento de conferencia | es_ES |
dc.rights.use | No comercial con fines academicos | es_ES |
dc.rights.use | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.doi | 10.18293/SEKE2017-013 |