Mostrar el registro sencillo del ítem

dc.creatorRottoli, Giovanni Daián
dc.creatorMerlino, Hernán Daniel
dc.creatorGarcía Martínez, Ramón
dc.date.accessioned2018-12-13T11:47:04Z
dc.date.available2018-12-13T11:47:04Z
dc.date.issued2017
dc.identifier.citationInternational Conference on Software Engineering & Knowledge Engineering. Ed. USA KSI Research Inc. and Knowledge Systems Institute, 410415 (2017)es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/3323
dc.description.abstractSpatial clustering is an important field of spatial data mining and knowledge discovery that serves to partition a spatial data set to obtain disjoint subsets with spatial elements that are similar to each other. Existing algorithms can be used to perform three types of cluster analyses, including clustering of spatial points, regionalization and point pattern analysis. However, all these existing methods do not provide a description of the discovered spatial clusters, which is useful for decision making in many different fields. This work proposes a knowledge discovery process for the description of spatially referenced clusters that uses decision tree learning algorithms. Two proofs of concept of the proposed process using different spat ial clustering algorithm on real data are also provided.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectKnowledge discovery processes_ES
dc.subjectSpatial clusteringes_ES
dc.subjectRegionalizationes_ES
dc.subjectDecision tree learninges_ES
dc.subjectSpatial data mininges_ES
dc.titleKnowledge discovery process for description of spatially referenced clusterses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holderRottoli, Giovanni Daián ; Merlino, Hernán Daniel ; García Martínez, Ramónes_ES
dc.description.affiliationFil: Rottoli, Giovanni Daián. Universidad Nacional de Lanús; Argentina.es_ES
dc.description.affiliationFil: Merlino, Hernán Daniel. Universidad Nacional de Lanús; Argentina.es_ES
dc.description.affiliationFil: García Martínez, Ramón. Universidad Nacional de Lanús. Departamento Desarrollo Productivo y Tecnológico. Grupo de Investigación en Sistemas de Información; Argentina.es_ES
dc.description.affiliationFil: Rottoli, Giovanni Daián. Universidad Tecnológica Nacional. Facultad Regional Concepción del Uruguay. Departamento Ingeniería en Sistemas de Información. Grupo de Investigación en Bases de Datos; Argentina.
dc.description.affiliationFil: Rottoli, Giovanni Daián. Universidad Nacional de La Plata; Argentina.
dc.description.affiliationFil: García Martínez, Ramón. Comisión de Investigaciones Científicas; Argentina.
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.type.snrdinfo:ar-repo/semantics/documento de conferenciaes_ES
dc.rights.useNo comercial con fines academicoses_ES
dc.rights.useAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.doi10.18293/SEKE2017-013


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess