Mostrar el registro sencillo del ítem
Comportamiento hidráulico y mecánica de materiales compuestos con suelos de Córdoba
dc.contributor.advisor | Aiassa Martínez, Gonzalo | |
dc.creator | Alercia Biga, Inés carolina | |
dc.date.accessioned | 2021-05-18T15:59:17Z | |
dc.date.available | 2021-05-18T15:59:17Z | |
dc.date.issued | 2020 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/5146 | |
dc.description | Doctorado en Ingeniería. Mención Materiales. Universidad Tecnológica Nacional. Facultad Regional Córdoba.2020 | |
dc.description.abstract | Las mezclas de suelo limoso local con adición de bentonita han sido propuestas por numerosos autores como un material adecuado desde un punto de vista hidráulico para la construcción del sistema de barreras en rellenos sanitarios. Sin embargo, como cualquier material ingenieril dichas mezclas se encuentran sometidas a elevadas presiones verticales como resultado de la disposición diaria de residuos en un vertedero y por lo tanto los crecientes esfuerzos de corte deben ser evaluados para garantizar la estabilidad y seguridad del sistema. Este trabajo de investigación propone el estudio hidráulico y mecánico de suelo limoso local mejorado mediante densificación y agregado de bentonita con énfasis en investigar el rendimiento hidráulico de mezclas sometidas a carga incremental para hallar una función matemática simple que estime la tendencia de comportamiento. Para lograr el propósito, se diseñó y desarrolló un programa experimental incluyendo la ejecución de ensayos de caracterización de las mezclas, ensayos de permeabilidad a pared rígida y a pared flexible mediante el empleo de un permeámetro, ensayos de capilaridad, infiltración sobre terraplenes de prueba construidos en campo mediante el empleo de anillos concéntricos, ensayos de compresión simple y ensayos de compresión confinada e infiltración en edómetros convencionales. Las curvas de infiltración fueron identificadas y simuladas mediante ecuaciones simples. La conductividad hidráulica saturada fue modelada considerando diferentes propuestas entre ellas la reconocida ecuación de Kozeny-Carman. En general, los resultados mostraron cambios en las propiedades y parámetros del suelo limoso local debido a la densificación y adición de bentonita, tales como una mayor plasticidad, menor conductividad hidráulica; mayor resistencia mecánica y mayor cohesión. Las imágenes de alta definición mostraron mayor densificación de la matriz de suelo lo que sugiere que la bentonita provoca un aumentó en el número de contacto entre partículas lo que genera una mejora desde el punto de vista mecánico. El rango óptimo de bentonita (COB) para ser incorporado al suelo limoso local, con el fin de mejorar no solo sus propiedades hidráulicas y mecánicas sino también garantizar la estabilidad del sistema; se encuentra entre 3-6%. Finalmente, la conclusión de esta tesis es que es factible utilizar suelos limosos con adición de bentonita para fines de sellado, siempre que se tengan en cuenta criterios geotécnicos como la resistencia, permeabilidad y un método de compactación adecuado. | es_ES |
dc.description.abstract | Silt- bentonite mixtures have been proposed as a suitable material from a hydraulic point of view for the construction of the barrier system in sanitary landfills. However, such as any other engineering material these mixtures are subjected to high vertical pressures as a result of daily disposal municipal solid waste in a landfill and therefore increasing shear stresses must be evaluated to ensure stability and safety of the system. This research proposes the hydraulic and mechanical study of local silt improved by densification and aggregate of bentonite, with emphasis on investigating the hydraulic performance of mixtures subjected to incremental load in order to find a simple mathematical function that estimates the behavior trend. So that the purpose be achieved, an experimental program was designed and developed including mixtures characterization tests, rigid wall and flexible wall permeability tests, capillary tests, infiltration tests on embankments using concentric rings and unconfined compression tests. The couple hydraulic and mechanical behavior was studied considering the results of oedometric and infiltration tests carried out on saturated silt –bentonite mixtures throughout under different vertical pressure. Infiltration curves were identified and simulated through simple equations. Saturated hydraulic conductivity was simulated considering different models including the recognized Kozeny-Carman equation. In general, results have showed some properties and parameters changes in local silty soils because of the densification and bentonite addition such as increased plasticity, lower hydraulic conductivity; higher mechanical resistance and higher cohesion. High-definition images showed greater densification of the soil matrix which suggests that bentonite causes an increase in the number of contact between particles which generates a mechanical improvement. The optimal range of bentonite (COB) to be incorporated into the local silty soil, in order to improve not only its hydraulic and mechanical properties but also guarantee the stability of the system; it is between 3-6%. Finally, the conclusion of this thesis is that it is feasible to use silty soils with the addition of bentonite for sealing purposes, provided that geotechnical criteria such as resistance, permeability and a suitable compaction method are taken into account. | es_ES |
dc.format | application/pdf | es_ES |
dc.language.iso | spa | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.rights.uri | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.subject | Bentonita | es_ES |
dc.subject | Kozeny-Carman | es_ES |
dc.subject | Loess | es_ES |
dc.subject | Compresión simple | es_ES |
dc.subject | Permeámetro a pared flexible | es_ES |
dc.title | Comportamiento hidráulico y mecánica de materiales compuestos con suelos de Córdoba | es_ES |
dc.type | info:eu-repo/semantics/doctoralThesis | es_ES |
dc.rights.holder | Alercia Biga, Inés Carolina | es_ES |
dc.description.affiliation | Fil: Alercia Biga, Inés Carolina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado; Argentina. | es_ES |
dc.type.version | acceptedVersion | es_ES |
dc.relation.references | Abeele, W.V., (1986). The influence of bentonite on the perrneability of sandy silts. Nuclear and Chemical Waste Management. Nro. 6(1), pp. 81-88. DOI: 10.1016/0191- 815X(86)90091-4. | es_ES |
dc.relation.references | Abichou, T., Benson C.H. and Edil, T.B., (2004). Network model for hydraulic conductivity of sand-bentonite mixtures. Canadian Geotechnical Jurnal. Nro. 41 (4), pp. 698 – 712. | es_ES |
dc.relation.references | Abichou, T., Benson, C.H. and Edil, T.B., (2002). Micro-structure and hydraulic conductivity of simulated sand-bentonite mixtures. Clays and Clay Minerals, Nro. 50 (5), pp. 537–545. | es_ES |
dc.relation.references | Abushanar, J.H and Han, J., (2011). Two dimensional deep seated slope stability analysis of embankment over stone column improvised soft clay. Engineering Geology. Elsevier. Nro 120, pp. 103-110. | es_ES |
dc.relation.references | Acar, Y., and I. Oliveri. (1990). Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transportation Research Record 1219. Transportation Research Board TRB. Nro. 1219, pp.144-159. | es_ES |
dc.relation.references | Aiassa G, Zeballos M, Arrúa P. and Terzariol R, (2008). Infiltración en suelos limosos compactados, XIX Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica, La Plata, Argentina. | es_ES |
dc.relation.references | Aiassa G. and Arrúa P, (2009). Desempeño de barreras sanitarias simples de suelo loéssico compactado, Revista Tecnología y Ciencia, Año 8, pp. 26–40. | es_ES |
dc.relation.references | Aiassa G. y Arrúa, P. (2010). Performance of compacted silty loess as landfill liner material. Proceedings of the 6th International Congress on Environmental Geotechnics. Vol. I. pp. 345-348. ISBN (13): 978-0-07-070710-8, ISBN(10):0-07-0070710-3. Editor and Publisher: McGraw Hill. New Delhi, India. | es_ES |
dc.relation.references | Aiassa, G. y Arrúa, P, (2007). Diseño de mezclas de suelo compactado para la construcción de terraplenes. Revista EIA. Nro.7, pp. 51-61. | es_ES |
dc.relation.references | Aiassa, G.; Arrúa, P. and Eberhardt, M., (2011). Geotechnical and hydrogeological considerations for landfill site selection in the Argentina loess region. International Journal of Earth Sciences and Engineering. Nro. 4(1), pp.1-12. | es_ES |
dc.relation.references | Aiassa, G., Arrua, P., Eberhardt, M., Lopez Bernal, S., Bazán, A., Pérez, M., Danterre, M. and Martín Forchino, M., (2009). Permeabilidad en suelos limosos compactados naturales y estabilizados. ISBN 978-950-42-0121-2. Encuentro de Investigadores y Docentes de Ingeniería 2009 - EnIDI 2009, Los Reyunos, San Rafael. Mendoza, Argentina. | es_ES |
dc.relation.references | Aiassa, G.; Arrúa, P. y Eberhardt, M., (2012). Morfología y tamaño de algunas arenas de la Ciudad de Córdoba. 10° Simposio de Geología Aplicada a la Ingeniería y al Ambiente. Carlos Paz, Argentina. ISBN 978-987-21766-3-1. | es_ES |
dc.relation.references | Aitchison, G.D., (1973). Structurally Unstable Soils. State of the Arts. Proc. of the 8 International Conference on Soils Mechanics and Foundation Engineering. Moscú, URSS. Vol. 3, pp. 161 -190. | es_ES |
dc.relation.references | Alercia Biga, I. C., Arrúa P., Eberhardt M.G. and Aiassa Martinez G.A, (2014). Hydraulic Conductivity in Loessic Stabilized Soil. Fourth International Conference on Geotechnique, Construction Materials and Environment, Brisbane, Australia, ISBN 978-4-9905958-3-8 C3051. | es_ES |
dc.relation.references | Allen, A., (2000). Containment landfills: the myth of sustainability. Engineering Geology. Nro. 60, pp. 3–19. | es_ES |
dc.relation.references | Al-Mukhtar, M; Khattab, S. and Alcover, J.F., (2012). Microstructure and Geotechnical properties of lime-treated expansive clayley soil. Engineering Geology. Elsevier. Pp. 139-140, 17-27. | es_ES |
dc.relation.references | Anderson S. y Hee B., (1995). Hydraulic Conductivity of Compacted Lateritic Soil with Bentonite Admixture. Environmental and Engineering Geoscience I (3): pp.299-312. | es_ES |
dc.relation.references | Arrúa P, Aiassa G., Eberhardt M and Alercia Biga C, (2011). Behavior of collapsible loessic soil after interparticle cementation. International Journal of GEOMATE, Vol. 1, pp. 130–135. | es_ES |
dc.relation.references | Arrúa P., Aiassa G. and Eberhardt M., (2011). Estabilización de Suelos loessicos mediante la incorporación de un aglomerante mineral. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Toronto, Ontario, Canadá. | es_ES |
dc.relation.references | Arrúa, P., Aiassa, G. and Eberhardt, M., (2012). Loess soil stabilized with cement for civil engineering applications. International Journal of Earth Sciences and Engineering. ISSN: 0974-5904. Vol. 5, No 1, pp.10-18 | es_ES |
dc.relation.references | Assallay, A.M., Rogers, C.D.F., Smalley I.J. (1997). Formation and collapse of metastable particle packings and open structures in loess deposits. Eng. Geol., 48: 101–115. | es_ES |
dc.relation.references | ASTM 4767-95. Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. | es_ES |
dc.relation.references | ASTM D 5084-00. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. | es_ES |
dc.relation.references | ASTM D 5856-95. “Standard test methods for measurement of hydraulic conductivity of saturated porous materials using rigid wall compactiond–mold permeameter”. Annual book of ASTM Standards Vol.04.08, American society for Testing Materials Philadelphia, PA. | es_ES |
dc.relation.references | ASTM D2166 / D2166M-16, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, 2016. | es_ES |
dc.relation.references | ASTM D5333 (2003) Norma: Measurement of Colapse Potencial of Soils. | es_ES |
dc.relation.references | Auvinegt, Y. and Hiriargt, (1980). An artificial cooling pond for the Rio Escondido coal fired power plant. Proceedings. ASCE Symposium on Surface Water Impoundments, Minneapolis. Nro. 2, pp. 1089-1098. | es_ES |
dc.relation.references | Barden, L. and Sides, G.R. (1970). Engineering behavior and structure of compacted clay. Journal of Soil Mechanics & Foundations Division 96/SM4, 1171-1197. | es_ES |
dc.relation.references | Barret P. J., (1980). The shape of rock particles, a critical review. Sedimentology, Nro.27: pp.291-303. | es_ES |
dc.relation.references | Baumgartl, T., (2006). Atterberg limits. In: Lal R. (Ed.), Encyclopedia of Soil Science, CRC Press. | es_ES |
dc.relation.references | Benson CH, Daniel DE and Boutwell GP, (1999). Field performance of compacted clay liners. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 5, pp. 390–403. | es_ES |
dc.relation.references | Benson, C.H. and Daniel, D. E., (1994). Minimum thickness of Compacted soil liners: II. Analysis and case histories, ASCE Journal of Geotechnical Engineering. Nro. 120(1), pp. 153-172. . DOI: 10.1061/(ASCE)0733-9410(1994)120:1(153). | es_ES |
dc.relation.references | Benson, C., Zhai, H., and Wang, X. (1994). Estimating the hydraulic conductivity of compacted clay liners. Journal of Geotechnic. Engineering. ASCE. Nro. 120(2).pp 366–387. | es_ES |
dc.relation.references | Berezantzev, V.G., Mustafayev, A.A., Sidorov, N.N., Kovalyov, I.V. and Aliev, S.K., (1969). On the strength of some soils. Proc. 7th Int. Conf. on Soil Mech. Found. Eng., Mexico, 1: 11-19. | es_ES |
dc.relation.references | Bidegain J.C. et al., (2009). Magnetic parameters reflecting pedogenesis in Pleistocene loess deposits of Argentina. Quaternary International Nro. 209, pp. 175–186. | es_ES |
dc.relation.references | Bjerrum, L., Simons, N.E., (1960). Comparison of shear strength characteristics of normally consolidated clays. Proceedings Conference on Shear Strength of Cohesive Clays. ASCE, New York, pp. 711–726. | es_ES |
dc.relation.references | Bloom, A., (1992). Some Questions about the Pampean Loess. Occasional Paper for the Department of Geography. University of Leicester Nro. 23, pp.17-18. | es_ES |
dc.relation.references | Bryant, S.L., Mellor, D.W., Cade, C.A., (1993). Physically representative network models of transport in porous media. AICHE Journal. Vol 39 (3), pp. 387–396. | es_ES |
dc.relation.references | Bolt, G.H. (1956). Physico and chemical analysis of the compressibility of pure clays. Geotechnique Nro. 6(1), pp. 86–93. | es_ES |
dc.relation.references | Bosanquet, C.H., (1923). On the flow of liquids into capillary tubes. Philosophical Magazine. Nro. 6 45(267), pp. 525-531. | es_ES |
dc.relation.references | Boutwell, G., and C. Hedges., (1989). Evaluation of waste retention liners by multivariate statistics. Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro. Pp.815-818. | es_ES |
dc.relation.references | Bozbey I and Guler E, (2006). Laboratory and field-testing for utilization of an excavated soil as landfill liner material, Waste Management, Vol. 26, pp. 1277–1286. | es_ES |
dc.relation.references | Calcaterra, D. and Parise, M. (2010). Weathering as a Predisposing Factor to Slope Movements. Geological Society, London, Engineering Geology Special Publications Nro. 23(1), pp.1–4. Doi: 10.1144/EGSP23.1. | es_ES |
dc.relation.references | Calvet, R. (1972). Adsorption de l’eau sur les argiles; étude de l’hydratation de la montmorillonite. Bulletin Société Chimique de France. Nro. 8, pp. 3097–3104. ISSN: 0037-8968 / 0366-3132. | es_ES |
dc.relation.references | Capdevila, J.A. and Rinaldi, V.A., (2015). Stress – strain behavior of a heterogeneous lightly cemented soil under triaxial compression test, Electronic Journal of Geotechnical Engineering. Nro. 20, pp. 6745-6760. | es_ES |
dc.relation.references | Capdevila J.A., (2008). Comportamiento Tensión-Deformación del Loess del Centro de Argentina en Campo y Laboratorio: Influencia de los Parámetros Estructurales. Tesis Doctoral, Universidad Nacional de Córdoba, Argentina. | es_ES |
dc.relation.references | Cardoso, R. and Das Neves, E. M., (2012). Hydro-mechanical characterization of lime-treated and untreated marls used in a motorway embankment. Engineering Geology. Elsevier. Pp 133-134, pp.76-84. | es_ES |
dc.relation.references | Carman, P.C., (1937). Fluid flow through granular beds. Institute of Chemical Engineers, London. Nro. 15, pp. 150-166. | es_ES |
dc.relation.references | Carman, P.C., (1956). Flow of gases through porous media. Butterworths Scientific Publications, London. | es_ES |
dc.relation.references | Carpenter, G. W. and Stephenson, R. W., (1986). Permeability Testing in the Triaxial Cell," Geotechnical Testing Journal. ASTM, Vol. 9, No. 1, pp. 3-9. | es_ES |
dc.relation.references | Carrier III, W.D., (2003). Goodbye, Hazen; Hello Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering. Nro. 129 (11), pp. 1054-1056. | es_ES |
dc.relation.references | Cetin, H. (2004). Soil-particle and pore orientations during consolidation of cohesive soils. Engineering Geology. Vol. 73. pp. 1-11. | es_ES |
dc.relation.references | CFR, Code of Federal Regulation (1991). Criteria for municipal solid waste landfill. 40/CFR/258. United States of America. | es_ES |
dc.relation.references | Chalermyanont T. and Akirrul S., (2005). Compacted sand-bentonite mixtures for hydraulic containment liners. Songklanakarin J.Sci. Technol.Vol 27(2).pp 313-323. | es_ES |
dc.relation.references | Chapuis, R.P. and Aubertin, M., (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal. Nro. 40 (3), pp. 616-628. https://doi.org/10.1139/t03-013. | es_ES |
dc.relation.references | Chapuis, R., (1981). Permeability testing of soil-bentonite mixtures. Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm. Nro. 4, pp. 744- 745. | es_ES |
dc.relation.references | Chapuis, R.P. and Aubertin, M., (2004). Reply to the discussion by D. Hansen on “On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils”. Canadian Geotechnical Journal. Nro. 41 (5), pp. 994-996. https://doi.org/10.1139/t04-029. | es_ES |
dc.relation.references | Chapuis, R.P., (2012). Predicting saturated hydraulic conductivity of soils: a review. Bulletin of Engineering Geology and the Environment. Nro. 71 (3), pp. 401-434. https://doi.org/10.1007/s10064-12-0418-7. | es_ES |
dc.relation.references | Chapuis R., Lavoie G. and Girard D., (1992). Design, construction, performance, and repair of the soil-bentonite liners of two lagoons. Canadian Geotechnical. Journal. Nro. 29, pp. 638-649. | es_ES |
dc.relation.references | Chapuis, R.P, (2002). Full- scale hydraulic performance of soil bentonite and compacted clays liners. Canadian Geotechnical Journal. Nro 39, pp. 417-439. | es_ES |
dc.relation.references | Cho, G. Dodds, J. and Santamarina, J. (2006). Particle shape effects on packing density, stineffness and strength- Natural and crushed sands. Journal of Geotechnical and Geoenvironmetal engineering. ASCE. Nro. 132 (5), pp. 591-602. | es_ES |
dc.relation.references | Cho, S.E, (2012). Probabilistic analysis on seepage that considers the special variability of permeability for an embankment on soil foundation. Engineering Geology. Elsevier. Pp. 133-134, 30-39. | es_ES |
dc.relation.references | Clariá J.J. y Rinaldi, V.A., (2007). Shear wave velocity of a compacted clayey silt, Geotechnical Testing Journal. Nro. 30(5), pp. 1-10. | es_ES |
dc.relation.references | Benson Craig H. and John Trast., (1995). Hydraulic Conductivity of thirteen compacted clays. Clays and Clay Minerals, Vol. 43, No. 6, pp.669-681. | es_ES |
dc.relation.references | Cuevas, J.; Leguey, S. and Garrido, A., (2009). Behavior of kaolinite and illite based clays as landfills barriers. Applied Clay science. Nro 42, pp. 497-509. | es_ES |
dc.relation.references | Cuisinier, O, Auriol, J.C, Le Borgne, T. and Deneele, D., (2011). Microestructure and hidraulic conductivity of a compacted lime-treated soil”, Journal of Engineering Geology. Vol. 123, 2011 pp.187-193. | es_ES |
dc.relation.references | Daniel D.E, (1984). Predicting hydraulic conductivity of clay liners. Journal of Geotechnical Engineering, 110, Nro. 2, pp. 285-300. | es_ES |
dc.relation.references | Daniel, D. (1987). Earthen liners for land disposal facilities. In Geotechnical Practice for Waste Disposal, GSP Nro. 13, ASCE. Pp.21-39. | es_ES |
dc.relation.references | Daniel, D.E. and Benson, C.H. (1990). Water content-density criteria for compacted soil liners. J. of Geotech. Eng., ASCE 116(12): Vol. 181, pp. 1-1830. | es_ES |
dc.relation.references | Daniel, D.E. and Benson, C.H. (1990). Water content-density criteria for compacted soil liners. Journal of Geotechnical Engineering. ASCE. Nro. 116(12), pp. 1811-1830. | es_ES |
dc.relation.references | Daniel, D.E and Wu, Y.K., (1993). Compacted Clay liners and covers for arid sites. Journal of Geotechnical Engineering. Nro. 119 (2), pp. 223-237. | es_ES |
dc.relation.references | D'Appolonia, D. (1980). Soil-bentonite slurry trench cutoffs. Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers ASCE Nro. 106 - GT4. Pp. 399-417. | es_ES |
dc.relation.references | Das, B.M, (2008). Advanced Soil Mechanics. 3a Ed. Taylor and Francis. Nueva York. | es_ES |
dc.relation.references | Day, S.R. and Daniel, D.E., (1985). Hydraulic conductivity of two prototype clay liners. ASCE Journal of Geotechnical Engineering. Nro. 111, pp. 957-970. | es_ES |
dc.relation.references | Delage, P., Howat, M.D. and Cui, Y.J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay Engineering Geology, Nro. 50 (1/2), pp. 31-48. | es_ES |
dc.relation.references | Delage, P., Marcial, D., Cui, Y. J. & Ruiz, X., (2006). Ageing effects in a compacted bentonite: a microstructure approach. Geotechnique 56, Nro. 5, pp. 291–304. | es_ES |
dc.relation.references | Dewhurst, D.N., Aplin, A.C. and Sarda, J.P. (1999). Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. Journal of Geophysical Research: Solid Earth Nro. 104 (B12), pp. 29261–29274. Doi: 10.1029/1999JB900276. | es_ES |
dc.relation.references | Di Maio, C., Santoli, L. and Schiavone, P., (2004). Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state. Mechanics of Materials. Nro. 36 (5–6), pp. 435–451. | es_ES |
dc.relation.references | Dolinar Bojana, (2009). Predicting the hydraulic conductivity of saturated clays using plasticityvalue correlations. Applied Clay Science. Nro. 45 (1-2), pp. 90-94. | es_ES |
dc.relation.references | Duncan, J. M., Wright, S.G. and Brandon, T. (2014) Soil strength and slope stability. John Wiley & Sons, Hoboken, New Jersey. ISBN 978-1-118-65165-0 (cloth); ISBN 978-1-118-91795-4 (ebk); 978-1-118-91796-1 (ebk). | es_ES |
dc.relation.references | Dunn R.J., (1986). Clay liners and barriers. Considerations of compacted clay structures. Proceedings of the International Symposium on Environmental Geotechnology. Ed. H.Fang. pp. 293-302. | es_ES |
dc.relation.references | Ebina, T., Minja, J.A., Nagase, T., Onodera, Y. and Chattereje, A., (2004). Correlation of hydraulic conductivity of clay-sand compacted specimens with clay properties. Applied Clay Science. Nro. 26, pp. 3–12. | es_ES |
dc.relation.references | Eigenbrod, K. D and Burak, J.P., (1990). Measuremnet of B- Values than unity for Thinly, interbedded Varved Clay. Geotechnical Testing Journal, vol. 13, Nro 4.pp. 370-374. | es_ES |
dc.relation.references | Elsbury B. et al., (1990). Lessons Learned from Compacted Clay Liner. Journal of Geotechnical Engineering. ASCE. Vol. 116, Issue 11. | es_ES |
dc.relation.references | scario, V. and Sáez, J., (1987). The shear strength under high suction values. Written discussion. Session 5, Proc. 9th European Conf. On Soil Mech. And Fdn. Eng., Vol. 3. Balkema, Dublin: 1157. | es_ES |
dc.relation.references | Evangelista, M.C. y Clariá, J.J., (2008). Mejoramiento de limos loéssicos mediante la adición de bentonita para su uso en barreras. XIX Congreso Argentino de Mecánica de Suelos Ingeniería Geotécnica. La Plata, Argentina. | es_ES |
dc.relation.references | Farrar M. and Coleman D., (1967). The correlation of surface area with others properties of nineteen british clay soils. Journal of soil science. Vol. 18. Nro.1, pp. 118-124. | es_ES |
dc.relation.references | Fleming, I., Sharma, J. and Jogi, M., (2006). Shear strength of geomembrane–soil interface under unsaturated conditions, Geotextiles and Geomembranes. Nro. 24, pp. 274-284. | es_ES |
dc.relation.references | Folk, R.L., (1955). Student operator error in determination of roundness, sphericity, and grain size, Journal of Sedimentary Petrology, vol. 25, No. 4, pp. 297-301. | es_ES |
dc.relation.references | Folkes D., (1982). Control of contaminant migration by the use of liners. “Fifth Canadian Geotechnical Colloquium”. Nro. 19. Vol 3, pp. 320-344. | es_ES |
dc.relation.references | Francisca, F.M., Cuestas, G.A. and Rinaldi, V.A., (1998). Estudio de permeabilidad en limos loéssicos. Memorias del Encuentro de Geotécnicos Argentinos GT´98. Córdoba, Argentina. DOI: 10.13140/2.1.1157.3127. | es_ES |
dc.relation.references | Francisca, F.M., Redolfi, E.R. and Prato, C.A., (2002). Análisis de tuberías enterradas en suelos loéssicos: Efecto de la saturación del suelo. Revista internacional de desastres naturales, accidentes e infraestructura civil. Nro. 2(2), pp. 3-19. | es_ES |
dc.relation.references | Francisca, F.M., (2007). Evaluating the constrained modulus and collapsibility of loess from standard penetration test. International Journal of Geomechanics. Nro. 7 (4), pp. 307- 310. | es_ES |
dc.relation.references | Francisca, F., Glatstein, D.A. and Nieva, P., (2009). Conductividad hidráulica de limos compactados y estabilizados con bentonita y zeolita. III congreso interamericano de residuos sólidos de AIDIS. | es_ES |
dc.relation.references | Francisca, F.M., and Glatstein, D.A., (2010). Long-term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science, Nro. 49 (3), pp. 187-193. | es_ES |
dc.relation.references | Francisca F, Glatstein A, (2012). Influencia del desarrollo bacteriano en barreras de suelos compactados.XXI Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica, pp. 978-987. | es_ES |
dc.relation.references | Fredlund, D.G., Rahardjo, H. and Fredlund, M.D., (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc. Capítulo 5. | es_ES |
dc.relation.references | Freeze, R.A y Cherry, J.A., (1979). Groundwater. Prentice hall, inc, Englewood Cliffs, New jersey. Pp. 604. | es_ES |
dc.relation.references | Gaaver K., (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal. Nro. 51 (3), pp. 205–210. | es_ES |
dc.relation.references | Gao, L. (2011). Study on microstructural effects on collapsibility of loess and its evaluation methods. Ph.D., Dalian University of Technology, China. | es_ES |
dc.relation.references | Garcia-Bengochea, I, Lovell, C.W. and Altschaefflf, A., (1979). Pore distribution and permeability of silty clays. Journal of the Geotechnical Engineering Division ASCE. 105. 839-856. | es_ES |
dc.relation.references | Ghazi, A. F., (2015). Engineering characteristics of compacted sand-bentonite mixtures. Retrieved from http://ro.ecu.edu.au/theses/1615. | es_ES |
dc.relation.references | Gibbs, H.J. and Holland, W.Y., (1960). Petrographic and engineering properties of loess. Eng. Mono. Nro. 28, U.S. Bureau of Reclamation, Denver. | es_ES |
dc.relation.references | Giménez, R.G., de la Villa, R.V., and Martin, J.A.G., (2012). Characterization of loess in central Spain: a microstructural study. Environmental Earth Sciences, 65:2125–2137. doi:10.1007/s12665-011-1193-7. | es_ES |
dc.relation.references | Giroud, J.P. and Bonaparte, R., (1989). Leakage through liners constructed with geomembranes –Part II. Composite Liners, Geotextiles and Geomembranes Nro. 8, pp. 71-111. | es_ES |
dc.relation.references | Glatstein A., (2013). Comportamiento de materiales reactivos en barreras permeables para la retención de contaminantes. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Tesis doctoral. | es_ES |
dc.relation.references | Glatstein A, Francisca FM,(2014). Hydraulic conductivity of compacted soils controlled by microbial activity.Environmental technology 35 (15), pp.1886-1892. | es_ES |
dc.relation.references | Gleason M.H., Daniel, D. and Eykholt, G.R., (1997). Calcium and Sodium bentonite for hydraulic containment aplications. Journal of Geotechnical and Geoenvironmental Engineering. New York ASCE. Nro. 123 (5), pp. 438-445. | es_ES |
dc.relation.references | Grim, R. E., (1953). Clay mineralogy: McGraw-Hill Book Co., Inc. | es_ES |
dc.relation.references | Gunduz, Z. and Arman, H., (2007). Possible Relationships between Compression And Recompression Indices of a Low–Plasticity Clayey Soil. The Arabian Journal for Science and Engineering. Nro. 32(2B), pp. 178-190. | es_ES |
dc.relation.references | Haeri S.M., Zamani A. and Garakani A., (2012). Collapse Potential and Permeability of Undisturbed and Remolded Loessial Soil Samples. 2nd European Conference on Unsaturated Soils. Napoli, Italy. | es_ES |
dc.relation.references | Hamdi, N. and Srasra, E., (2013). Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Management. Nro. 33 pp. 60–66. | es_ES |
dc.relation.references | Hamdi, N. and Srasra, E., (2008). Interaction of aqueous acidic-fluoride waste with natural Tunisian soil. Clays and Clay Minerals. Nro. 56 (2), pp. 259–271. | es_ES |
dc.relation.references | Hamraoui, A. and Nylander, T., (2002). Analytical approach for the Lucas-Washburn equation. Journal of Colloid and Interface Science. Nro. 250(2), pp. 415-421. | es_ES |
dc.relation.references | Haug, M. and Wong, L., (1992). Impact of molding water content on hydraulic conductivity of compacted sand-bentonite. Canadian Geotechnical Journal. Nro. 29(2), pp. 253-262. | es_ES |
dc.relation.references | Harrop and Williams, K., (1985). Clay liner permeability: evaluation and variation. ASCE Journal of Geotechnical Engineering. Nro. 111, pp 1211-1225. | es_ES |
dc.relation.references | Hejazi S., Sheikhzadeh M., Abtahi S. and Zadhoush A., (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials 30.pp. 100–116. | es_ES |
dc.relation.references | Holtz R. and Kovacz W., (1981). An Introduction to Geotechnical Engineering. Prentice Hall, Englewoods Cliffs, New Jersey. ISBN: 013484394-0. | es_ES |
dc.relation.references | Holtz, W.G. and Gibbs, H.J., (1951). Consolidation and related properties of loessial soils. ASTMAmer. Soc. Testing Materials, Spec. Tech. Publ. Nro. 236, pp. 9-26. | es_ES |
dc.relation.references | Holtz, W.G., (1985). Predicting hydraulic conductivity of clay liners: Discussion. ASCE Journal of Geotechnical Engineering. Nro. 111, pp. 1457-1459. | es_ES |
dc.relation.references | Horpibulsuk, S., et. Al., (2011). Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science. Nro. 52, pp. 150–159. | es_ES |
dc.relation.references | Hyang-Sig Ahn, and Ho Young Jo, (2009). Influence of exchangeable cations on hydraulic conductivity of compacted bentonite. Journal of Applied Clay Science. Nro. 44, pp. 144-150. | es_ES |
dc.contributor.coadvisor | Arrúa, Pedro | |
dc.rights.use | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | es_ES |