Mostrar el registro sencillo del ítem

dc.contributor.advisorAiassa Martínez, Gonzalo
dc.creatorAlercia Biga, Inés carolina
dc.date.accessioned2021-05-18T15:59:17Z
dc.date.available2021-05-18T15:59:17Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.12272/5146
dc.descriptionDoctorado en Ingeniería. Mención Materiales. Universidad Tecnológica Nacional. Facultad Regional Córdoba.2020
dc.description.abstractLas mezclas de suelo limoso local con adición de bentonita han sido propuestas por numerosos autores como un material adecuado desde un punto de vista hidráulico para la construcción del sistema de barreras en rellenos sanitarios. Sin embargo, como cualquier material ingenieril dichas mezclas se encuentran sometidas a elevadas presiones verticales como resultado de la disposición diaria de residuos en un vertedero y por lo tanto los crecientes esfuerzos de corte deben ser evaluados para garantizar la estabilidad y seguridad del sistema. Este trabajo de investigación propone el estudio hidráulico y mecánico de suelo limoso local mejorado mediante densificación y agregado de bentonita con énfasis en investigar el rendimiento hidráulico de mezclas sometidas a carga incremental para hallar una función matemática simple que estime la tendencia de comportamiento. Para lograr el propósito, se diseñó y desarrolló un programa experimental incluyendo la ejecución de ensayos de caracterización de las mezclas, ensayos de permeabilidad a pared rígida y a pared flexible mediante el empleo de un permeámetro, ensayos de capilaridad, infiltración sobre terraplenes de prueba construidos en campo mediante el empleo de anillos concéntricos, ensayos de compresión simple y ensayos de compresión confinada e infiltración en edómetros convencionales. Las curvas de infiltración fueron identificadas y simuladas mediante ecuaciones simples. La conductividad hidráulica saturada fue modelada considerando diferentes propuestas entre ellas la reconocida ecuación de Kozeny-Carman. En general, los resultados mostraron cambios en las propiedades y parámetros del suelo limoso local debido a la densificación y adición de bentonita, tales como una mayor plasticidad, menor conductividad hidráulica; mayor resistencia mecánica y mayor cohesión. Las imágenes de alta definición mostraron mayor densificación de la matriz de suelo lo que sugiere que la bentonita provoca un aumentó en el número de contacto entre partículas lo que genera una mejora desde el punto de vista mecánico. El rango óptimo de bentonita (COB) para ser incorporado al suelo limoso local, con el fin de mejorar no solo sus propiedades hidráulicas y mecánicas sino también garantizar la estabilidad del sistema; se encuentra entre 3-6%. Finalmente, la conclusión de esta tesis es que es factible utilizar suelos limosos con adición de bentonita para fines de sellado, siempre que se tengan en cuenta criterios geotécnicos como la resistencia, permeabilidad y un método de compactación adecuado.es_ES
dc.description.abstractSilt- bentonite mixtures have been proposed as a suitable material from a hydraulic point of view for the construction of the barrier system in sanitary landfills. However, such as any other engineering material these mixtures are subjected to high vertical pressures as a result of daily disposal municipal solid waste in a landfill and therefore increasing shear stresses must be evaluated to ensure stability and safety of the system. This research proposes the hydraulic and mechanical study of local silt improved by densification and aggregate of bentonite, with emphasis on investigating the hydraulic performance of mixtures subjected to incremental load in order to find a simple mathematical function that estimates the behavior trend. So that the purpose be achieved, an experimental program was designed and developed including mixtures characterization tests, rigid wall and flexible wall permeability tests, capillary tests, infiltration tests on embankments using concentric rings and unconfined compression tests. The couple hydraulic and mechanical behavior was studied considering the results of oedometric and infiltration tests carried out on saturated silt –bentonite mixtures throughout under different vertical pressure. Infiltration curves were identified and simulated through simple equations. Saturated hydraulic conductivity was simulated considering different models including the recognized Kozeny-Carman equation. In general, results have showed some properties and parameters changes in local silty soils because of the densification and bentonite addition such as increased plasticity, lower hydraulic conductivity; higher mechanical resistance and higher cohesion. High-definition images showed greater densification of the soil matrix which suggests that bentonite causes an increase in the number of contact between particles which generates a mechanical improvement. The optimal range of bentonite (COB) to be incorporated into the local silty soil, in order to improve not only its hydraulic and mechanical properties but also guarantee the stability of the system; it is between 3-6%. Finally, the conclusion of this thesis is that it is feasible to use silty soils with the addition of bentonite for sealing purposes, provided that geotechnical criteria such as resistance, permeability and a suitable compaction method are taken into account.es_ES
dc.formatapplication/pdfes_ES
dc.language.isospaes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.subjectBentonitaes_ES
dc.subjectKozeny-Carmanes_ES
dc.subjectLoesses_ES
dc.subjectCompresión simplees_ES
dc.subjectPermeámetro a pared flexiblees_ES
dc.titleComportamiento hidráulico y mecánica de materiales compuestos con suelos de Córdobaes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.rights.holderAlercia Biga, Inés Carolinaes_ES
dc.description.affiliationFil: Alercia Biga, Inés Carolina. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado; Argentina.es_ES
dc.type.versionacceptedVersiones_ES
dc.relation.referencesAbeele, W.V., (1986). The influence of bentonite on the perrneability of sandy silts. Nuclear and Chemical Waste Management. Nro. 6(1), pp. 81-88. DOI: 10.1016/0191- 815X(86)90091-4.es_ES
dc.relation.referencesAbichou, T., Benson C.H. and Edil, T.B., (2004). Network model for hydraulic conductivity of sand-bentonite mixtures. Canadian Geotechnical Jurnal. Nro. 41 (4), pp. 698 – 712.es_ES
dc.relation.referencesAbichou, T., Benson, C.H. and Edil, T.B., (2002). Micro-structure and hydraulic conductivity of simulated sand-bentonite mixtures. Clays and Clay Minerals, Nro. 50 (5), pp. 537–545.es_ES
dc.relation.referencesAbushanar, J.H and Han, J., (2011). Two dimensional deep seated slope stability analysis of embankment over stone column improvised soft clay. Engineering Geology. Elsevier. Nro 120, pp. 103-110.es_ES
dc.relation.referencesAcar, Y., and I. Oliveri. (1990). Pore fluid effects on the fabric and hydraulic conductivity of laboratory-compacted clay. Transportation Research Record 1219. Transportation Research Board TRB. Nro. 1219, pp.144-159.es_ES
dc.relation.referencesAiassa G, Zeballos M, Arrúa P. and Terzariol R, (2008). Infiltración en suelos limosos compactados, XIX Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica, La Plata, Argentina.es_ES
dc.relation.referencesAiassa G. and Arrúa P, (2009). Desempeño de barreras sanitarias simples de suelo loéssico compactado, Revista Tecnología y Ciencia, Año 8, pp. 26–40.es_ES
dc.relation.referencesAiassa G. y Arrúa, P. (2010). Performance of compacted silty loess as landfill liner material. Proceedings of the 6th International Congress on Environmental Geotechnics. Vol. I. pp. 345-348. ISBN (13): 978-0-07-070710-8, ISBN(10):0-07-0070710-3. Editor and Publisher: McGraw Hill. New Delhi, India.es_ES
dc.relation.referencesAiassa, G. y Arrúa, P, (2007). Diseño de mezclas de suelo compactado para la construcción de terraplenes. Revista EIA. Nro.7, pp. 51-61.es_ES
dc.relation.referencesAiassa, G.; Arrúa, P. and Eberhardt, M., (2011). Geotechnical and hydrogeological considerations for landfill site selection in the Argentina loess region. International Journal of Earth Sciences and Engineering. Nro. 4(1), pp.1-12.es_ES
dc.relation.referencesAiassa, G., Arrua, P., Eberhardt, M., Lopez Bernal, S., Bazán, A., Pérez, M., Danterre, M. and Martín Forchino, M., (2009). Permeabilidad en suelos limosos compactados naturales y estabilizados. ISBN 978-950-42-0121-2. Encuentro de Investigadores y Docentes de Ingeniería 2009 - EnIDI 2009, Los Reyunos, San Rafael. Mendoza, Argentina.es_ES
dc.relation.referencesAiassa, G.; Arrúa, P. y Eberhardt, M., (2012). Morfología y tamaño de algunas arenas de la Ciudad de Córdoba. 10° Simposio de Geología Aplicada a la Ingeniería y al Ambiente. Carlos Paz, Argentina. ISBN 978-987-21766-3-1.es_ES
dc.relation.referencesAitchison, G.D., (1973). Structurally Unstable Soils. State of the Arts. Proc. of the 8 International Conference on Soils Mechanics and Foundation Engineering. Moscú, URSS. Vol. 3, pp. 161 -190.es_ES
dc.relation.referencesAlercia Biga, I. C., Arrúa P., Eberhardt M.G. and Aiassa Martinez G.A, (2014). Hydraulic Conductivity in Loessic Stabilized Soil. Fourth International Conference on Geotechnique, Construction Materials and Environment, Brisbane, Australia, ISBN 978-4-9905958-3-8 C3051.es_ES
dc.relation.referencesAllen, A., (2000). Containment landfills: the myth of sustainability. Engineering Geology. Nro. 60, pp. 3–19.es_ES
dc.relation.referencesAl-Mukhtar, M; Khattab, S. and Alcover, J.F., (2012). Microstructure and Geotechnical properties of lime-treated expansive clayley soil. Engineering Geology. Elsevier. Pp. 139-140, 17-27.es_ES
dc.relation.referencesAnderson S. y Hee B., (1995). Hydraulic Conductivity of Compacted Lateritic Soil with Bentonite Admixture. Environmental and Engineering Geoscience I (3): pp.299-312.es_ES
dc.relation.referencesArrúa P, Aiassa G., Eberhardt M and Alercia Biga C, (2011). Behavior of collapsible loessic soil after interparticle cementation. International Journal of GEOMATE, Vol. 1, pp. 130–135.es_ES
dc.relation.referencesArrúa P., Aiassa G. and Eberhardt M., (2011). Estabilización de Suelos loessicos mediante la incorporación de un aglomerante mineral. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Toronto, Ontario, Canadá.es_ES
dc.relation.referencesArrúa, P., Aiassa, G. and Eberhardt, M., (2012). Loess soil stabilized with cement for civil engineering applications. International Journal of Earth Sciences and Engineering. ISSN: 0974-5904. Vol. 5, No 1, pp.10-18es_ES
dc.relation.referencesAssallay, A.M., Rogers, C.D.F., Smalley I.J. (1997). Formation and collapse of metastable particle packings and open structures in loess deposits. Eng. Geol., 48: 101–115.es_ES
dc.relation.referencesASTM 4767-95. Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils.es_ES
dc.relation.referencesASTM D 5084-00. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter.es_ES
dc.relation.referencesASTM D 5856-95. “Standard test methods for measurement of hydraulic conductivity of saturated porous materials using rigid wall compactiond–mold permeameter”. Annual book of ASTM Standards Vol.04.08, American society for Testing Materials Philadelphia, PA.es_ES
dc.relation.referencesASTM D2166 / D2166M-16, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, PA, 2016.es_ES
dc.relation.referencesASTM D5333 (2003) Norma: Measurement of Colapse Potencial of Soils.es_ES
dc.relation.referencesAuvinegt, Y. and Hiriargt, (1980). An artificial cooling pond for the Rio Escondido coal fired power plant. Proceedings. ASCE Symposium on Surface Water Impoundments, Minneapolis. Nro. 2, pp. 1089-1098.es_ES
dc.relation.referencesBarden, L. and Sides, G.R. (1970). Engineering behavior and structure of compacted clay. Journal of Soil Mechanics & Foundations Division 96/SM4, 1171-1197.es_ES
dc.relation.referencesBarret P. J., (1980). The shape of rock particles, a critical review. Sedimentology, Nro.27: pp.291-303.es_ES
dc.relation.referencesBaumgartl, T., (2006). Atterberg limits. In: Lal R. (Ed.), Encyclopedia of Soil Science, CRC Press.es_ES
dc.relation.referencesBenson CH, Daniel DE and Boutwell GP, (1999). Field performance of compacted clay liners. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 5, pp. 390–403.es_ES
dc.relation.referencesBenson, C.H. and Daniel, D. E., (1994). Minimum thickness of Compacted soil liners: II. Analysis and case histories, ASCE Journal of Geotechnical Engineering. Nro. 120(1), pp. 153-172. . DOI: 10.1061/(ASCE)0733-9410(1994)120:1(153).es_ES
dc.relation.referencesBenson, C., Zhai, H., and Wang, X. (1994). Estimating the hydraulic conductivity of compacted clay liners. Journal of Geotechnic. Engineering. ASCE. Nro. 120(2).pp 366–387.es_ES
dc.relation.referencesBerezantzev, V.G., Mustafayev, A.A., Sidorov, N.N., Kovalyov, I.V. and Aliev, S.K., (1969). On the strength of some soils. Proc. 7th Int. Conf. on Soil Mech. Found. Eng., Mexico, 1: 11-19.es_ES
dc.relation.referencesBidegain J.C. et al., (2009). Magnetic parameters reflecting pedogenesis in Pleistocene loess deposits of Argentina. Quaternary International Nro. 209, pp. 175–186.es_ES
dc.relation.referencesBjerrum, L., Simons, N.E., (1960). Comparison of shear strength characteristics of normally consolidated clays. Proceedings Conference on Shear Strength of Cohesive Clays. ASCE, New York, pp. 711–726.es_ES
dc.relation.referencesBloom, A., (1992). Some Questions about the Pampean Loess. Occasional Paper for the Department of Geography. University of Leicester Nro. 23, pp.17-18.es_ES
dc.relation.referencesBryant, S.L., Mellor, D.W., Cade, C.A., (1993). Physically representative network models of transport in porous media. AICHE Journal. Vol 39 (3), pp. 387–396.es_ES
dc.relation.referencesBolt, G.H. (1956). Physico and chemical analysis of the compressibility of pure clays. Geotechnique Nro. 6(1), pp. 86–93.es_ES
dc.relation.referencesBosanquet, C.H., (1923). On the flow of liquids into capillary tubes. Philosophical Magazine. Nro. 6 45(267), pp. 525-531.es_ES
dc.relation.referencesBoutwell, G., and C. Hedges., (1989). Evaluation of waste retention liners by multivariate statistics. Proceedings, 12th International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro. Pp.815-818.es_ES
dc.relation.referencesBozbey I and Guler E, (2006). Laboratory and field-testing for utilization of an excavated soil as landfill liner material, Waste Management, Vol. 26, pp. 1277–1286.es_ES
dc.relation.referencesCalcaterra, D. and Parise, M. (2010). Weathering as a Predisposing Factor to Slope Movements. Geological Society, London, Engineering Geology Special Publications Nro. 23(1), pp.1–4. Doi: 10.1144/EGSP23.1.es_ES
dc.relation.referencesCalvet, R. (1972). Adsorption de l’eau sur les argiles; étude de l’hydratation de la montmorillonite. Bulletin Société Chimique de France. Nro. 8, pp. 3097–3104. ISSN: 0037-8968 / 0366-3132.es_ES
dc.relation.referencesCapdevila, J.A. and Rinaldi, V.A., (2015). Stress – strain behavior of a heterogeneous lightly cemented soil under triaxial compression test, Electronic Journal of Geotechnical Engineering. Nro. 20, pp. 6745-6760.es_ES
dc.relation.referencesCapdevila J.A., (2008). Comportamiento Tensión-Deformación del Loess del Centro de Argentina en Campo y Laboratorio: Influencia de los Parámetros Estructurales. Tesis Doctoral, Universidad Nacional de Córdoba, Argentina.es_ES
dc.relation.referencesCardoso, R. and Das Neves, E. M., (2012). Hydro-mechanical characterization of lime-treated and untreated marls used in a motorway embankment. Engineering Geology. Elsevier. Pp 133-134, pp.76-84.es_ES
dc.relation.referencesCarman, P.C., (1937). Fluid flow through granular beds. Institute of Chemical Engineers, London. Nro. 15, pp. 150-166.es_ES
dc.relation.referencesCarman, P.C., (1956). Flow of gases through porous media. Butterworths Scientific Publications, London.es_ES
dc.relation.referencesCarpenter, G. W. and Stephenson, R. W., (1986). Permeability Testing in the Triaxial Cell," Geotechnical Testing Journal. ASTM, Vol. 9, No. 1, pp. 3-9.es_ES
dc.relation.referencesCarrier III, W.D., (2003). Goodbye, Hazen; Hello Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering. Nro. 129 (11), pp. 1054-1056.es_ES
dc.relation.referencesCetin, H. (2004). Soil-particle and pore orientations during consolidation of cohesive soils. Engineering Geology. Vol. 73. pp. 1-11.es_ES
dc.relation.referencesCFR, Code of Federal Regulation (1991). Criteria for municipal solid waste landfill. 40/CFR/258. United States of America.es_ES
dc.relation.referencesChalermyanont T. and Akirrul S., (2005). Compacted sand-bentonite mixtures for hydraulic containment liners. Songklanakarin J.Sci. Technol.Vol 27(2).pp 313-323.es_ES
dc.relation.referencesChapuis, R.P. and Aubertin, M., (2003). On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Canadian Geotechnical Journal. Nro. 40 (3), pp. 616-628. https://doi.org/10.1139/t03-013.es_ES
dc.relation.referencesChapuis, R., (1981). Permeability testing of soil-bentonite mixtures. Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm. Nro. 4, pp. 744- 745.es_ES
dc.relation.referencesChapuis, R.P. and Aubertin, M., (2004). Reply to the discussion by D. Hansen on “On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils”. Canadian Geotechnical Journal. Nro. 41 (5), pp. 994-996. https://doi.org/10.1139/t04-029.es_ES
dc.relation.referencesChapuis, R.P., (2012). Predicting saturated hydraulic conductivity of soils: a review. Bulletin of Engineering Geology and the Environment. Nro. 71 (3), pp. 401-434. https://doi.org/10.1007/s10064-12-0418-7.es_ES
dc.relation.referencesChapuis R., Lavoie G. and Girard D., (1992). Design, construction, performance, and repair of the soil-bentonite liners of two lagoons. Canadian Geotechnical. Journal. Nro. 29, pp. 638-649.es_ES
dc.relation.referencesChapuis, R.P, (2002). Full- scale hydraulic performance of soil bentonite and compacted clays liners. Canadian Geotechnical Journal. Nro 39, pp. 417-439.es_ES
dc.relation.referencesCho, G. Dodds, J. and Santamarina, J. (2006). Particle shape effects on packing density, stineffness and strength- Natural and crushed sands. Journal of Geotechnical and Geoenvironmetal engineering. ASCE. Nro. 132 (5), pp. 591-602.es_ES
dc.relation.referencesCho, S.E, (2012). Probabilistic analysis on seepage that considers the special variability of permeability for an embankment on soil foundation. Engineering Geology. Elsevier. Pp. 133-134, 30-39.es_ES
dc.relation.referencesClariá J.J. y Rinaldi, V.A., (2007). Shear wave velocity of a compacted clayey silt, Geotechnical Testing Journal. Nro. 30(5), pp. 1-10.es_ES
dc.relation.referencesBenson Craig H. and John Trast., (1995). Hydraulic Conductivity of thirteen compacted clays. Clays and Clay Minerals, Vol. 43, No. 6, pp.669-681.es_ES
dc.relation.referencesCuevas, J.; Leguey, S. and Garrido, A., (2009). Behavior of kaolinite and illite based clays as landfills barriers. Applied Clay science. Nro 42, pp. 497-509.es_ES
dc.relation.referencesCuisinier, O, Auriol, J.C, Le Borgne, T. and Deneele, D., (2011). Microestructure and hidraulic conductivity of a compacted lime-treated soil”, Journal of Engineering Geology. Vol. 123, 2011 pp.187-193.es_ES
dc.relation.referencesDaniel D.E, (1984). Predicting hydraulic conductivity of clay liners. Journal of Geotechnical Engineering, 110, Nro. 2, pp. 285-300.es_ES
dc.relation.referencesDaniel, D. (1987). Earthen liners for land disposal facilities. In Geotechnical Practice for Waste Disposal, GSP Nro. 13, ASCE. Pp.21-39.es_ES
dc.relation.referencesDaniel, D.E. and Benson, C.H. (1990). Water content-density criteria for compacted soil liners. J. of Geotech. Eng., ASCE 116(12): Vol. 181, pp. 1-1830.es_ES
dc.relation.referencesDaniel, D.E. and Benson, C.H. (1990). Water content-density criteria for compacted soil liners. Journal of Geotechnical Engineering. ASCE. Nro. 116(12), pp. 1811-1830.es_ES
dc.relation.referencesDaniel, D.E and Wu, Y.K., (1993). Compacted Clay liners and covers for arid sites. Journal of Geotechnical Engineering. Nro. 119 (2), pp. 223-237.es_ES
dc.relation.referencesD'Appolonia, D. (1980). Soil-bentonite slurry trench cutoffs. Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers ASCE Nro. 106 - GT4. Pp. 399-417.es_ES
dc.relation.referencesDas, B.M, (2008). Advanced Soil Mechanics. 3a Ed. Taylor and Francis. Nueva York.es_ES
dc.relation.referencesDay, S.R. and Daniel, D.E., (1985). Hydraulic conductivity of two prototype clay liners. ASCE Journal of Geotechnical Engineering. Nro. 111, pp. 957-970.es_ES
dc.relation.referencesDelage, P., Howat, M.D. and Cui, Y.J. (1998). The relationship between suction and swelling properties in a heavily compacted unsaturated clay Engineering Geology, Nro. 50 (1/2), pp. 31-48.es_ES
dc.relation.referencesDelage, P., Marcial, D., Cui, Y. J. & Ruiz, X., (2006). Ageing effects in a compacted bentonite: a microstructure approach. Geotechnique 56, Nro. 5, pp. 291–304.es_ES
dc.relation.referencesDewhurst, D.N., Aplin, A.C. and Sarda, J.P. (1999). Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. Journal of Geophysical Research: Solid Earth Nro. 104 (B12), pp. 29261–29274. Doi: 10.1029/1999JB900276.es_ES
dc.relation.referencesDi Maio, C., Santoli, L. and Schiavone, P., (2004). Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state. Mechanics of Materials. Nro. 36 (5–6), pp. 435–451.es_ES
dc.relation.referencesDolinar Bojana, (2009). Predicting the hydraulic conductivity of saturated clays using plasticityvalue correlations. Applied Clay Science. Nro. 45 (1-2), pp. 90-94.es_ES
dc.relation.referencesDuncan, J. M., Wright, S.G. and Brandon, T. (2014) Soil strength and slope stability. John Wiley & Sons, Hoboken, New Jersey. ISBN 978-1-118-65165-0 (cloth); ISBN 978-1-118-91795-4 (ebk); 978-1-118-91796-1 (ebk).es_ES
dc.relation.referencesDunn R.J., (1986). Clay liners and barriers. Considerations of compacted clay structures. Proceedings of the International Symposium on Environmental Geotechnology. Ed. H.Fang. pp. 293-302.es_ES
dc.relation.referencesEbina, T., Minja, J.A., Nagase, T., Onodera, Y. and Chattereje, A., (2004). Correlation of hydraulic conductivity of clay-sand compacted specimens with clay properties. Applied Clay Science. Nro. 26, pp. 3–12.es_ES
dc.relation.referencesEigenbrod, K. D and Burak, J.P., (1990). Measuremnet of B- Values than unity for Thinly, interbedded Varved Clay. Geotechnical Testing Journal, vol. 13, Nro 4.pp. 370-374.es_ES
dc.relation.referencesElsbury B. et al., (1990). Lessons Learned from Compacted Clay Liner. Journal of Geotechnical Engineering. ASCE. Vol. 116, Issue 11.es_ES
dc.relation.referencesscario, V. and Sáez, J., (1987). The shear strength under high suction values. Written discussion. Session 5, Proc. 9th European Conf. On Soil Mech. And Fdn. Eng., Vol. 3. Balkema, Dublin: 1157.es_ES
dc.relation.referencesEvangelista, M.C. y Clariá, J.J., (2008). Mejoramiento de limos loéssicos mediante la adición de bentonita para su uso en barreras. XIX Congreso Argentino de Mecánica de Suelos Ingeniería Geotécnica. La Plata, Argentina.es_ES
dc.relation.referencesFarrar M. and Coleman D., (1967). The correlation of surface area with others properties of nineteen british clay soils. Journal of soil science. Vol. 18. Nro.1, pp. 118-124.es_ES
dc.relation.referencesFleming, I., Sharma, J. and Jogi, M., (2006). Shear strength of geomembrane–soil interface under unsaturated conditions, Geotextiles and Geomembranes. Nro. 24, pp. 274-284.es_ES
dc.relation.referencesFolk, R.L., (1955). Student operator error in determination of roundness, sphericity, and grain size, Journal of Sedimentary Petrology, vol. 25, No. 4, pp. 297-301.es_ES
dc.relation.referencesFolkes D., (1982). Control of contaminant migration by the use of liners. “Fifth Canadian Geotechnical Colloquium”. Nro. 19. Vol 3, pp. 320-344.es_ES
dc.relation.referencesFrancisca, F.M., Cuestas, G.A. and Rinaldi, V.A., (1998). Estudio de permeabilidad en limos loéssicos. Memorias del Encuentro de Geotécnicos Argentinos GT´98. Córdoba, Argentina. DOI: 10.13140/2.1.1157.3127.es_ES
dc.relation.referencesFrancisca, F.M., Redolfi, E.R. and Prato, C.A., (2002). Análisis de tuberías enterradas en suelos loéssicos: Efecto de la saturación del suelo. Revista internacional de desastres naturales, accidentes e infraestructura civil. Nro. 2(2), pp. 3-19.es_ES
dc.relation.referencesFrancisca, F.M., (2007). Evaluating the constrained modulus and collapsibility of loess from standard penetration test. International Journal of Geomechanics. Nro. 7 (4), pp. 307- 310.es_ES
dc.relation.referencesFrancisca, F., Glatstein, D.A. and Nieva, P., (2009). Conductividad hidráulica de limos compactados y estabilizados con bentonita y zeolita. III congreso interamericano de residuos sólidos de AIDIS.es_ES
dc.relation.referencesFrancisca, F.M., and Glatstein, D.A., (2010). Long-term hydraulic conductivity of compacted soils permeated with landfill leachate. Applied Clay Science, Nro. 49 (3), pp. 187-193.es_ES
dc.relation.referencesFrancisca F, Glatstein A, (2012). Influencia del desarrollo bacteriano en barreras de suelos compactados.XXI Congreso Argentino de Mecánica de Suelos e Ingeniería Geotécnica, pp. 978-987.es_ES
dc.relation.referencesFredlund, D.G., Rahardjo, H. and Fredlund, M.D., (2012). Unsaturated Soil Mechanics in Engineering Practice. John Wiley & Sons, Inc. Capítulo 5.es_ES
dc.relation.referencesFreeze, R.A y Cherry, J.A., (1979). Groundwater. Prentice hall, inc, Englewood Cliffs, New jersey. Pp. 604.es_ES
dc.relation.referencesGaaver K., (2012). Geotechnical properties of Egyptian collapsible soils. Alexandria Engineering Journal. Nro. 51 (3), pp. 205–210.es_ES
dc.relation.referencesGao, L. (2011). Study on microstructural effects on collapsibility of loess and its evaluation methods. Ph.D., Dalian University of Technology, China.es_ES
dc.relation.referencesGarcia-Bengochea, I, Lovell, C.W. and Altschaefflf, A., (1979). Pore distribution and permeability of silty clays. Journal of the Geotechnical Engineering Division ASCE. 105. 839-856.es_ES
dc.relation.referencesGhazi, A. F., (2015). Engineering characteristics of compacted sand-bentonite mixtures. Retrieved from http://ro.ecu.edu.au/theses/1615.es_ES
dc.relation.referencesGibbs, H.J. and Holland, W.Y., (1960). Petrographic and engineering properties of loess. Eng. Mono. Nro. 28, U.S. Bureau of Reclamation, Denver.es_ES
dc.relation.referencesGiménez, R.G., de la Villa, R.V., and Martin, J.A.G., (2012). Characterization of loess in central Spain: a microstructural study. Environmental Earth Sciences, 65:2125–2137. doi:10.1007/s12665-011-1193-7.es_ES
dc.relation.referencesGiroud, J.P. and Bonaparte, R., (1989). Leakage through liners constructed with geomembranes –Part II. Composite Liners, Geotextiles and Geomembranes Nro. 8, pp. 71-111.es_ES
dc.relation.referencesGlatstein A., (2013). Comportamiento de materiales reactivos en barreras permeables para la retención de contaminantes. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Tesis doctoral.es_ES
dc.relation.referencesGlatstein A, Francisca FM,(2014). Hydraulic conductivity of compacted soils controlled by microbial activity.Environmental technology 35 (15), pp.1886-1892.es_ES
dc.relation.referencesGleason M.H., Daniel, D. and Eykholt, G.R., (1997). Calcium and Sodium bentonite for hydraulic containment aplications. Journal of Geotechnical and Geoenvironmental Engineering. New York ASCE. Nro. 123 (5), pp. 438-445.es_ES
dc.relation.referencesGrim, R. E., (1953). Clay mineralogy: McGraw-Hill Book Co., Inc.es_ES
dc.relation.referencesGunduz, Z. and Arman, H., (2007). Possible Relationships between Compression And Recompression Indices of a Low–Plasticity Clayey Soil. The Arabian Journal for Science and Engineering. Nro. 32(2B), pp. 178-190.es_ES
dc.relation.referencesHaeri S.M., Zamani A. and Garakani A., (2012). Collapse Potential and Permeability of Undisturbed and Remolded Loessial Soil Samples. 2nd European Conference on Unsaturated Soils. Napoli, Italy.es_ES
dc.relation.referencesHamdi, N. and Srasra, E., (2013). Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. Waste Management. Nro. 33 pp. 60–66.es_ES
dc.relation.referencesHamdi, N. and Srasra, E., (2008). Interaction of aqueous acidic-fluoride waste with natural Tunisian soil. Clays and Clay Minerals. Nro. 56 (2), pp. 259–271.es_ES
dc.relation.referencesHamraoui, A. and Nylander, T., (2002). Analytical approach for the Lucas-Washburn equation. Journal of Colloid and Interface Science. Nro. 250(2), pp. 415-421.es_ES
dc.relation.referencesHaug, M. and Wong, L., (1992). Impact of molding water content on hydraulic conductivity of compacted sand-bentonite. Canadian Geotechnical Journal. Nro. 29(2), pp. 253-262.es_ES
dc.relation.referencesHarrop and Williams, K., (1985). Clay liner permeability: evaluation and variation. ASCE Journal of Geotechnical Engineering. Nro. 111, pp 1211-1225.es_ES
dc.relation.referencesHejazi S., Sheikhzadeh M., Abtahi S. and Zadhoush A., (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials 30.pp. 100–116.es_ES
dc.relation.referencesHoltz R. and Kovacz W., (1981). An Introduction to Geotechnical Engineering. Prentice Hall, Englewoods Cliffs, New Jersey. ISBN: 013484394-0.es_ES
dc.relation.referencesHoltz, W.G. and Gibbs, H.J., (1951). Consolidation and related properties of loessial soils. ASTMAmer. Soc. Testing Materials, Spec. Tech. Publ. Nro. 236, pp. 9-26.es_ES
dc.relation.referencesHoltz, W.G., (1985). Predicting hydraulic conductivity of clay liners: Discussion. ASCE Journal of Geotechnical Engineering. Nro. 111, pp. 1457-1459.es_ES
dc.relation.referencesHorpibulsuk, S., et. Al., (2011). Compressibility and permeability of Bangkok clay compared with kaolinite and bentonite. Applied Clay Science. Nro. 52, pp. 150–159.es_ES
dc.relation.referencesHyang-Sig Ahn, and Ho Young Jo, (2009). Influence of exchangeable cations on hydraulic conductivity of compacted bentonite. Journal of Applied Clay Science. Nro. 44, pp. 144-150.es_ES
dc.contributor.coadvisorArrúa, Pedro
dc.rights.usehttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.eses_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess