Mostrar el registro sencillo del ítem

dc.creatorPalumbo, Felix
dc.date.accessioned2024-04-03T20:54:07Z
dc.date.available2024-04-03T20:54:07Z
dc.date.issued2021-02-21
dc.identifier.urihttp://hdl.handle.net/20.500.12272/10299
dc.description.abstractIn this paper, we extend the application of the Quasi-Static Memdiode model to the realistic SPICE simulation of memristor-based single (SLPs) and multilayer perceptrons (MLPs) intended for large dataset pattern recognition. By considering ex-situ training and the classification of the hand-written characters of the MNIST database, we evaluate the degradation of the inference accuracy due to the interconnection resistances for MLPs involving up to three hidden neural layers. Two approaches to reduce the impact of the line resistance are considered and implemented in our simulations, they are the inclusion of an iterative calibration algorithm and the partitioning of the synaptic layers into smaller blocks. The obtained results indicate that MLPs are more sensitive to the line resistance effect than SLPs and that partitioning is the most effective way to minimize the impact of high line resistance valueses_ES
dc.formatplaines_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.rights.uriCC0 1.0 Universal*
dc.subjectBreakdownes_ES
dc.titleMinimization of the Line Resistance Impact on Memdiode-Based Simulations of Multilayer Perceptron Arrays Applied to Pattern Recognitiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationUnidad de Investigación y Desarrollo de las Ingenierías (UIDI), Facultad Regional Buenos Aires, Universidad Tecnológica Nacional (UTN-FRBA), Buenos Aires C1179AAQ, Argentines_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionpublisherVersiones_ES
dc.rights.useinvestigaciones_ES
dc.identifier.doi/10.3390/jlpea11010009


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess