Mostrar el registro sencillo del ítem

dc.creatorSoto, Salvador
dc.creatorPollo Cattaneo, Ma. Florencia
dc.creatorYepes Calderon, Fernando
dc.date.accessioned2024-07-12T17:05:16Z
dc.date.available2024-07-12T17:05:16Z
dc.date.issued2023-10-28
dc.identifier.citationSoto, S.; Pollo-Cattaneo, M. F. & Yepes-Calderon, F. (2023). “Automated Diagnosis of Prostate Cancer Using Artificial Intelligence. A Systematic Literature Review”. En “6th International Conference on Applied Informatics” (ICAI 2023). CCIS Series Volume 1874. Pages 77-92. Springer International Publishing. 26 al 28 Octubre 2023 - ISBN-e: 978-3-031-46813-1. ISSN: 1865-0929. ISSN-e: 1865-0937 - DOI: https://doi.org/10.1007/978-3-031-46813-1es_ES
dc.identifier.isbn978-3-031-46813-1
dc.identifier.issn1865-0929
dc.identifier.urihttp://hdl.handle.net/20.500.12272/11123
dc.description.abstractProstate cancer is one of the most preventable causes of death. Periodic testing, seconded by precursors such as living habits, heritage, and exposure, to specify materials, help healthcare providers achieve early detection, a desirable scenario that positively correlates with survival. However, the currently available diagnosing mechanisms have a great opportunity of improvement in terms of invasiveness, sensitivity and timing before patients reach advanced stages with a significant probability of metastasis. Supervised artificial intelligence enables early diagnosis and excludes patients from unpleasant biopsies. In this work, we gathered information about methodologies, techniques, metrics, and benchmarks to accomplish early prostate cancer detection, including pipelines with associated patents and knowledge transfer mechanisms intending to find the reasons precluding the solutions from being masively adopted in the standats of carees_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.subjectArtificial intelligencees_ES
dc.subjectProstate canceres_ES
dc.subjectdiagnosises_ES
dc.subjectAutomatic pathology diagnosises_ES
dc.titleAutomated diagnosis of prostate cancer using Artificial Intelligence: a systematic literature reviewes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationPollo Cattaneo, Ma. Florencia; Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentinaes_ES
dc.description.affiliationYepes Calderon, Fernando; GYM Group SA - Departamento I+R; Colombiaes_ES
dc.description.affiliationSoto, Salvador; Universidad Tecnológica Nacional. Facultad Regional Buenos Aires; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionpublisherVersiones_ES
dc.rights.use-es_ES
dc.identifier.doi10.1007/978-3-031-46813-1
dc.creator.orcid0000-0003-4197-3880es_ES
dc.creator.orcid0000-0001-9184-787Xes_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem