Show simple item record

dc.creatorRaffo, Javier Leandro
dc.creatorGrossi, Ricardo
dc.date.accessioned2020-09-18T14:40:04Z
dc.date.available2020-09-18T14:40:04Z
dc.date.issued2012-11
dc.identifier.issn1666-6070
dc.identifier.urihttp://hdl.handle.net/20.500.12272/4544
dc.description.abstractThe present paper deals with the free transverse vibration of a tapered anisotropic plate with several arbitrarily located internal line hinges and non-smooth boundary, elastically restrained against rotation and translation. The equations of motion and its associated boundary and transition conditions are rigorously derived using Hamilton’s principle. The governing eigen value problem is solved employing a combination of the Ritz method and the Lagrange multipliers method. The deflections of the plate and the Lagrange multipliers are approximated by polynomials as coordinate functions. The developed algorithm allows obtaining approximate solutions for plates with different geometries and boundary conditions, including edges and line hinges elastically restrained. In order to obtain an indication of the accuracy of the developed mathematical model, some cases available in the literature are considered. New results are presented for different boundary conditions and restraint conditions in the internal line hinges.es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherASOCIACIÓN ARGENTINA DE MECÁNICA COMPUTACIONAL AMCAes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.uriAtribución-NoComercial-CompartirIgual 4.0 Internacional*
dc.subjectUTNes_ES
dc.subjectFRDes_ES
dc.subjectVibrationses_ES
dc.subjectAnisotropic plateses_ES
dc.subjectInternal line hingeses_ES
dc.titleBoundary and Eigenvalue Problems for Anisotropic Plates with Several Internal Line Hingeses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.holderRaffo, Javier Leandroes_ES
dc.description.affiliationFil: Raffo, Javier Leandro. Universidad Tecnológica Nacional. Facultad Regional Delta. Investigación, Ciencia y Tecnología. CENES. Grupo de Mecánica computacional; Argentina.es_ES
dc.description.affiliationFil: Grossi, RIcardo. Universidad Tecnológica Nacional. Facultad Regional Delta. Investigación, Ciencia y Tecnología. CENES. Grupo de Mecánica computacional; Argentina.es_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.relation.referenceshttp://www.cimec.org.ar/ojs/index.php/mc/article/view/4481/4411es_ES
dc.rights.useAtribución–No Comercial–Compartir Igual (by-nc-sa)es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess