Mostrar el registro sencillo del ítem

dc.creatorMavolo, Luca
dc.creatorXodo, Daniel
dc.creatorMavolo, Pablo
dc.date.accessioned2023-12-04T18:22:24Z
dc.date.available2023-12-04T18:22:24Z
dc.date.issued2020
dc.identifier.issn2315-7739
dc.identifier.urihttp://hdl.handle.net/20.500.12272/9022
dc.description.abstractThis study is to determine the feasible productivity of a plot of land in large fields where the quality of the soil and the weather conditions fluctuate every year, hindering optimum soybean production practices. The aim is to predict 8 sceneries through the artificial neural network model and study its reliability. Then predict 7 feasible sceneries to achieve a good sowing strategy on certain plots of land and with certain types of seeds. Finally, to make a prediction using the average historical rainfall data collected during the studied months and to observe the fluctuations on the yield in accordance with previous predictions. The artificial neural network is the method used and it was provided by soft RISK Industrial 7.6 (Neural Tools). The result is going to be compared with the data collected from the company “Nueva Castilla” of Trenque Lauquen (Buenos Aires province, Argentina) to determine the practical and technical feasibility of the model. These data correspond to more than 17 years of climate and weather analysis, soil and soybean yield with different types of seeds.es_ES
dc.formatpdfes_ES
dc.language.isoenges_ES
dc.language.isoenges_ES
dc.rightsopenAccesses_ES
dc.subjectArtificial neural networkes_ES
dc.subjectsoybean (glycine max)es_ES
dc.subjectrainfall, yield predictiones_ES
dc.titlePredictive Analytics of Plots For Soybean Productiones_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationMavolo Luca. Universidad Tecnológica Nacional. Facultad Regional Trenque Lauquen; Argentinaes_ES
dc.description.affiliationXodo Daniel. Universidad Tecnológica Nacional. Facultad Regional Trenque Lauquen; Argentinaes_ES
dc.description.affiliationMavolo Pablo. Universidad Tecnológica Nacional. Facultad Regional Trenque Lauquen; Argentinaes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versionpublisherVersiones_ES
dc.rights.useNo permitir el uso comercial de la obra No permitir modificaciones de la obraes_ES
dc.identifier.doi1015413/ajar.2020.0130


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem