
Object Detection Based Software System
for Automatic Evaluation of Cursogramas

Images

Pablo Pytel(B), Matías Almad, Rocío Leguizamón, Cinthia Vegega(B),
and Ma Florencia Pollo-Cattaneo(B)

Grupo de Estudio en Metodologías de Ingeniería en Software (GEMIS), Facultad Regional
Buenos Aires, Universidad Tecnológica Nacional, Buenos Aires, Argentina

{ppytel,cvegega,fpollo}@frba.utn.edu.ar

Abstract. The aim of this work is to describe the tasks performed to carry out
the development of a software system capable of detecting and recognizing the
symbols ofCursogramas in images by using a Deep Learning model that has been
trained from scratch. In this way, we seek to assist teachers of an undergraduate
subject to automatically evaluate diagrams made as part of the practical exercise
of their students. For this purpose, in addition to having carried out a process of
understanding the problem and identifying the available data, tasks of technology
selection and construction of each of the components that are part of the system are
also carried out. Therefore, although the problem domain belongs to the field of
university education, thiswork ismore related to the engineering and technological
aspect of the application of Artificial Intelligence to solve complex problems.

Keywords: Cursogramas · Object detection · Deep learning · Artificial
intelligence

1 Introduction

A Cursograma is a work tool, which allows to represent graphically the movement of
documents that correspond to a certain administrative procedure [1]. Its main objective
is to be able to represent a routine, without falling into the complexity of the graph, since
this can lead to misinterpretation [2]. Given its usefulness, this method is taught within
the subject ‘Sistemas y Organizaciones’ in the first level of the career ‘Information
Systems Engineering’ [3] within the Facultad Regional Buenos Aires of Universidad
Tecnológica Nacional (Argentina). This annual course is part of the integrating core and
crosses the curriculum at different levels [4].

As it usually happens with any type of practical exercise, in order to achieve a
good handling of these diagrams, students must perform a large number of exercises.
But, they also need to have feedback on the correction of the exercises. Since there are
no automatic methods that allow revision, the evaluation work is carried out manually
by teachers and assistants. In many cases, the proposal provided by the students may

© Springer Nature Switzerland AG 2021
H. Florez and M. F. Pollo-Cattaneo (Eds.): ICAI 2021, CCIS 1455, pp. 39–54, 2021.
https://doi.org/10.1007/978-3-030-89654-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-89654-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-89654-6_4

40 P. Pytel et al.

present some minor differences. For this reason, the correction of each diagram requires
a considerable amount of time, since the resolutionmust be analyzed in depth, in addition
to paying special attention to the analysis process that the students carry out at the time
of the resolution.

In this context, the objective of this work is to describe the tasks carried out for
the implementation of a software system that allows the automatic evaluation of Cur-
sograma diagrams made by students in the practical work of the subject. Such a tool
would generate benefits for both teachers and students. For this purpose, first in Sect. 2
the description of the problem is presented with its main particularities that must be
considered to carry out the implementation of the software system. Then, in Sect. 3, the
proposed solution is presented describing each of the main components that have been
necessary to develop in order to achieve the objective. The results obtained are shown
in Sect. 4. Finally, Sect. 5 presents the conclusions and future lines of work.

2 Problem Description

The subject ‘Sistemas y Organizaciones’ belongs to the first year of the career and is
therefore mandatory for students who have passed the entrance course to the career.
In the year 2020 the number of new students has been approximately 1400, so there
are courses with more than 80 students. This has motivated the subject chair to apply
Artificial Intelligence technologies to assist the teaching-learning process [5]. Among
the objectives of this Intelligent System is a software system in charge of reviewing,
correcting and automatically evaluating the Cursograma diagrams made by the students
as part of the practical exercise of the course.

As a result of several requirements elicitation sessions, applying an engineering
process similar to the one proposed in [6], it has been possible to obtain the neces-
sary information to determine the requirements and constraints to be considered in the
development of this software system.

On the one hand, the symbols used in Cursogramas have been surveyed and can be
found in [7]. Later, an “expert” of the chair has also been trained to know the main rules
that define the valid ways in which the symbols should be connected to each other.

On the other hand, the main functionality is identified as the automatic evaluation of
images that include the Cursogramas made by the students. For this purpose, not only
the symbol template with the rules previously mentioned must be taken into account, but
also the particularities of the statement of the exercise solved by the students. Likewise,
the operation to be included in the system is defined, from the reception of the images
from the students to the return with their revision. This review should provide the student
with a quantitative evaluation of the exercise as well as a set of qualitative observations
on corrections. This means that, for each image reviewed, the mistakes and problems
encountered should be marked, indicating, in each case, the nature of the error.

Once the problem to be solved has been determined, a bibliographic search has been
carried out to try to find similar developments that could be used or adapted to meet the
elicited requirements. In this sense, several proposals have been found where Artificial
Intelligence is used for the automatic evaluation of diagramsboth in thefield of education,
as well as, for professional usage. However, the proposals found are oriented towards

Object Detection Based Software System 41

UML-type diagrams [8–12] Engineering CAD Drawing [13], and Digital Logic Circuit
diagrams [14] among others, which have different characteristics and symbols from
Cursogramas and then are not useful for the considered problem. Consequently, it has
been decided to implement a totally new software system oriented to the particularities
of the subject in question.

3 Proposed Solution

Considering all the requirements and restrictions that the software system must fulfill,
work has begun on its design and development. In order to fulfill the objective of the
software system to be developed, it is essential to apply a technology that automatically
allows recognizing the symbols presented in the Cursograma image, and also their
relative location in the diagram in order to determine how they are connected to each
other. The construction of thisDetectionModel is described in Sect. 3.1.Having achieved
a Symbol Detection Model, then the development of the main component is stared. This
component deals with the evaluation of theCursograma exercises solved by the students
for a specific exercise. The details about the functionalities of this Evaluation program
are presented in Sect. 3.2.

3.1 Construction of the Symbol Detection Model

Since it is preferred to use a ‘Machine Learning’ algorithm [15] that can “learn” to
recognize the symbols, the application of Deep Learning Neural Networks [16], which
are better known as ‘Deep Learning’, is selected. From the great variety of existing
models for Deep Learning networks [17], a variety of Convolutional Neural Networks or
CNN [18, 19] called ‘ObjectDetectionModel’ [20] has been selected for thiswork. Since
there are a large number of possible architectures for implementing Object Detection
Models, specifically, three types are considered, the Faster R-CNN Inception version
2 [21], the SSD MobileNet version 2 [22] and the R-FCN ResNet 101 [23]. Although
models of these three architectures are available that already “know” how to detect
objects in an image, none are useful for working with Cursograma symbols. Therefore,
only zero-trained architectures can be used by applying the corresponding algorithm to
determine the set of values for a set of parameters in a way that represents the behavior
of a set of available data [15, 29, 30].

However, in order to learn to detect the symbols, this training algorithm requires
that, a set of additional “annotations”. In our case, for each image of a Cursograma we
need an XML file [24] which indicates the coordinates of a region (or “box”) where
each symbol is located and a “label” indicating the type of symbol in question. Since
this information is not available (and its manual generation requires a lot of effort), it
has been decided to develop an ad-hoc program to automatically generate random cases
of Cursogramas. For each case, the diagram will be recorded in a PNG type image,
and all the complementary information in the XML file. In order to carry out this case
generation, the standardized format of symbols and rules defined by an “expert teacher”
will be used.

42 P. Pytel et al.

Once this program has been developed, it is used to generate the cases (each one
consisting of a PNG image and an associated XMLfile) for the construction of the model
for the detection of the Cursograma diagram symbols. In the first instance, 1,000 cases
are generated, 90% of which are used for training and the rest for validation. With them,
the three types of architectures mentioned above are trained and validated. As can be
seen in Table 1, none of them generate acceptable results. The SSD architecture has the
worst results, while Faster R-CNN has the best results although it tends to detect fewer
symbols present in the image than R-FCN so its recall is lower.

Since the processing speed is not as important as the model accuracy, it is decided to
discard the SSD architecture and continue the trainingwith the other two architectures by
adding more examples. After adding 4,000 new cases (thus generating a total of 5,000),
the architectures are re-trained and validated, obtaining the results shown in Table 1.
As can be seen, now R-FCN is the one with the best results, being acceptable. After
analyzing in detail, it is discovered that most of the errors have to do with the detection
of the symbol that corresponds to a ‘Decision’. Although the ‘Decision’ symbol is quite
a very simple symbol to recognize, two connections (generally one vertical and one
horizontal) come out of this symbol, which seems to confuse the model. Therefore, it is
decided to add another 500 new examples of diagrams where decisions appear in order
to retrain the R-FCN architecture. As can be seen in the last row of Table 1, an almost
perfect model is obtained.

Table 1. Results of the symbol detection model’s first training and validation.

Cases generated Model architecture Validation metrics

Accuracy Precision Recall

1,000 SSD 51.6% 74.1% 63.1%

Faster R-CNN 63.7% 88.5% 69.4%

R-FCN 56.3% 63.7% 82.9%

5,000 Faster R-CNN 59.7% 90.2% 63.9%

R-FCN 99.5% 99.6% 99.9%

5,500 R-FCN 99.9% 99.9% 100%

Nevertheless, after a meeting where the expert teachers of the subject review the
first results, they complained that that all the symbols always have the same letters and
numbers, for example the documents have the same type (“F0”), while the controls and
operations appear with “1”. Another shortcoming that they also consider important is
the lack of examples of document copies, where each copy may have a different circuit.
All these issues have more to do with the diagram generator program, and therefore a
new version is developed that corrects them.

As the previously trained model is used to handling only symbols with “hardcoded”
letters and numbers, a new one must be train to handle these changes using a new batch
of generated cases (each one including a PNG and XML files). The new batch includes
11,934 cases for training and 1,326 cases for validation.

Object Detection Based Software System 43

Despite of using the same architecture R-FCN, in order to obtain a reliable model,
several training sessions have been performed. In each of these sessions, several training
parameters has been tried to change to improve the model performance. Based on a
later result analysis it is detected that the critical one has been the quantity of training
steps. As it can be seen in Table 2, by increasing the quantity of cycles performed
during the training, the model accuracy and recall change considerably. However, after
the 50,000 steps milestone, the model performance starts again to decline because the
model is over-trained and thus loses its generalization capabilities. On that account, the
50,000 training steps is selected to be used for the evaluation program. Although, its
performance is affected by ‘false positives’, they are related to symbol connectors so
this is not considered a problem to carry out the evaluation of the diagrams, and the
construction of the Symbol Detection Model is considered as successfully completed.

Table 2. Results of the symbol detection model’s second training and validation.

Model architecture Training steps Validation metrics

Accuracy Precision Recall

R-FCN 10,000 97.5% 99.9% 97.5%

20,000 98.5% 99.9% 98.5%

50,000 99.5% 99.9% 99.5%

100,000 99.2% 99.9% 99.2%

3.2 Implementation of the Evaluation Program

The Evaluation program is the software component that deals with the evaluation of the
Cursograma exercises solved by the students. This is performed using another diagram
that is used as a reference at the time of the review. This other diagram must obviously
comply with both the general rules mentioned above, as well as the particularities of the
exercise statement.

These two diagrams, the one provided by the students to be evaluated and the one
provided by the teachers for references, are provided in the form of PNG images. There-
fore, to carry out the evaluation, first the symbol Detection Model is applied on each
image obtaining a list of detected symbols. Also, when a detected symbol includes a let-
ter and/or number (e.g. a document), they are recognized using the open source Tesseract
Optical Character Recognition (OCR) Engine [25, 28]. As a result, two lists are obtained
(one for the students’ image and another for teacher’s) that for each detected symbol
includes: the symbol class, its relative position in the diagram and the OCR string with
the corresponding letters and numbers.

When the lists are available, they are processed by comparing them using an ad-hoc
algorithm. For each the students’ symbol the following rules are analyzed:

– If there is a match in the teacher’s list where a symbol has the same class, relative
position and OCR string, then the students’ symbol is marked as correct.

44 P. Pytel et al.

Fig. 1. Example of evaluating a students’ diagram. (Color figure online)

– If there is a match in the teacher’s list where a symbol has the same class and relative
position but different OCR string, then the students’ symbol is marked as mistake in
symbol text.

– If there is a match in the teacher’s list where a symbol has the same class and OCR
string but different relative position, then the students’ symbol is marked as mistake
in symbol location.

– If there is a match in the teacher’s list where a symbol has different class but the same
relative position and OCR string, then the students’ symbol is marked as mistake in
symbol class.

– If there is not a match in the teacher’s list, then the students’ symbol is marked as
mistake of over indicated symbol.

Object Detection Based Software System 45

Finally,when the all the entries in the students’ list are processed, if there is a teacher’s
symbol that has not been matched, then this teacher’s symbol is marked as mistake of
missing symbol.

The results of this evaluation algorithm are highlighted in the students’ image mark-
ing them with colors (green color if it is correct, red color otherwise) as it can be seen
in Fig. 1. In case of “missing” teacher’s symbols, the location is established by a special
function that uses position of other symbols matched in both diagrams as landmarks.
Furthermore, a grade for the exercise is “calculated” and recorded in the header of the
image with the corresponding observations where the detected mistakes are explained.

4 Results

This section presents the results of the tests performed to confirm that the developed
Evaluation programworks correctly. This is achieved by running the component onmany
different diagrams to review. In this case, it has been decided to use again completely
randomly generated cases as explained in Sect. 4.1. Thismeans that none of the test cases
used here correspond to real exercises of the subject but, anyway, they are considered
useful to check how the software behaveswith different situations. Using these generated
cases, in Sect. 4.2 a study case is utilize to explain the results of evaluating a students’
diagram. Later, in Sect. 4.3 its robustness is verified by contrasting the results of normal
and “noisy” images. Finally, in Sect. 4.4, the evaluation results are analyzed by expert
professors of the subject to decide if the diagrams have been evaluated correctly.

4.1 Generation of Test Cases

In order to generate these test cases that are available in the repository [26], the following
procedure used is as follows:

First, 5 different diagrams are generated, each with a different level of complexity,
which are taken as reference images provided by the teacher. That is, these images (that
stored in the “Teacher_diagrams” folder of [26]) are taken as if they were the correct
resolution of an exercise and are used as a basis for the revision of the students’ diagrams.

On the other hand, the students’ diagrams are also generated automatically to obtain
10 new images. To these images a copy of the 5 reference images are added in order
to be able to corroborate that the software works correctly in cases where there is no
error. Moreover, a noise function is applied to these 15 images to generate images that
will be used to verify the capabilities of the detection model. This function applies a
kind of ‘Salt-and-Pepper’ noise [27] that changes the value of random pixels in order
to generate unanticipated disturbances in the image. These changes are few but they are
very noisy. As a result, the effect is similar to sprinkling white and black dots on the
image. All the “noisy” images have the suffix “DAn” in their file name so they can be
easily identified. In this way, a total of 30 students’ exercises to evaluate are obtained
and store in the “Students_diagrams” folder of [26].

Once all the test images have been generated, the automatic evaluation program is run
for each combination, so that each of the 30 students’ images is reviewed against each of
the 5 reference teacher’s images. Upon completing the evaluation of all combinations, it

46 P. Pytel et al.

is observed that the evaluation program takes between 5 and 8 s to process each image.
In total then 150 evaluations are carried out and recorded in the “Evaluation_results”
folder of [26]. Note that to facilitate their organization and search, in the name of these
images the identifier of the teacher’s reference image is indicated first and then the
image corresponding to the student’s exercise. Thus, for example, in Fig. 1, the results
of evaluating the “noisy” student’s image ‘02’ by using as reference the teacher’s image
‘01’.

Finally, as the observations written in the evaluation image’s header are in spanish,
to assist non-spanish speakers understand the detected mistakes, a multiple color version
of each evaluation is generated. To highlight the different evaluation results, the color
Greenis used to identify the symbols that are correct,Orangeto show amistake of class,
location or OCR string, Violetfor those that are over indicated and Redfor those that
are missing. This version of the example shown previously in Fig. 1 can be seen below
in Fig. 2. Also, the multiple is available for all the images in the “Evaluation_results”
folder of [26] and are identified with the suffix “-mc” in their file name.

4.2 Analysis of a Case Study

The objective of the case study is demonstrating the results of evaluating a students’
diagram by analyzing the example shown in Fig. 1 and 2. This example is generated
after evaluating the students’ diagram ‘15’ (shown in the left column of Table 3) based
on the teacher’s reference diagram ‘02’ (shown in the right column of the same table).

As it can be noted, in spite of having a similar beginning, after the third symbol the
students’ and teacher’s diagrams have a lot of differences. Therefore, it is clear why that
the evaluation result image has a bad grade (“MAL” in spanish) and a lot of symbols
highlighted in non-green color. But, in fact, this example is interesting because it includes
all the types of evaluation mistakes, and that is why it is used as a case study.

In order to analyze the evaluation results, below each one of highlighted marks
of Fig. 2 from top to bottom is explained. Also, for the purpose of facilitating this
explanation, the Table 4 is presented where Fig. 2 is separated into parts and matched to
the corresponding parts of the teacher’s reference image.

1) At the beginning of both diagrams, the first symbol is a “not identified process”,
then it is a perfect match and the symbol is highlighted as correct in greencolor.

2) This “not identified process” is in an external sector of the organization, which is
separated from the internal sector by a dotted line that is drawn in both diagrams,
so it is also a perfect match and the symbol is highlighted as correct in greencolor.

3) As a result of this “not identified process”, a document is generated that is transferred
to an internal sector of the organization. Despite that this transfer is carried out
correctly, the type of document indicated (which is recognized by the OCR engine)
is incorrect. It can be noted that the teacher’s documents are an “OC-0” but the
students’ are an “OP-0”. As a result, the mistake in symbol text is described in the
image’s header (items 1 and 2) and highlighted in orangecolor.

4) Later, in the internal sector a “control” must be performed, but the students use an
“operation” symbol. Then, there is a mistake in symbol class which is highlighted
in orangecolor and described as item 4 of the image’s header.

Object Detection Based Software System 47

Fig. 2. Example of evaluating a students’ diagram with multiple colors. (Color figure online)

5) Moreover, the previously “control” must apply a “logical query” to a “permanent
file”, that the students have omitted. Then, these two symbols are marked as miss-
ing (items 3 and 5 of the image’s header) and their corresponding positions in the
students’ image are highlighted in redcolor.

6) After a “control” there is always a “decision”, but the students have not included it.
The position of this “decision” should be where the document “F0” is located, but
this document will be used afterwards. Therefore, the “decision” is also marked as

48 P. Pytel et al.

Table 3. Student and teacher diagrams used in the evaluation example.

Students’ original image Teacher’s reference image

missing (item 7 of the image’s header) and its corresponding position is highlighted
in redcolor.

7) The document “F0” is correctly indicated, but it is located in a wrong position of
the diagram. Then, the document is marked as mistake in symbol location (item 6
of the image’s header), highlighted in orangecolor and the correct position is also
marked in the diagram with a thin orangebox. On the other hand, this document
also is transferred to another internal sector of the organization but this is missing
in the students’ image, so it is marked in item 8 and its corresponding position is
highlighted in redcolor.

8) In the new internal sector of the organization, twomore symbols aremissing (an “op-
eration” and a “cut start connector”). Therefore, both are marked as missing (items
11 and 15 of the image’s header) and their corresponding positions are highlighted
in redcolor.

9) Finally, in the old internal sector, there are three types of mistakes:

– First, the document “CH0” is missing, so it is marked in item 12 of the image’s
header and its corresponding position is highlighted in redcolor.

Object Detection Based Software System 49

Table 4. Analysis of the evaluation of the students’ diagram example.

1

2

3

4

5

6

7

8

9

Students’ Evaluation Result part Corresponding Teacher’s reference part

50 P. Pytel et al.

– Secondly, the students have included a “cut start connector” instead of a “perma-
nent file”, so this is marked as amistake in symbol class (item 14) and highlighted
in orangecolor.

– And third, there is a “control” that uses a “logical query” to a “permanent file”
that are marked as mistake of over indicated symbol (items 9, 10 and 13) and
highlighted in violetcolor.

This last mistake is interesting to be discussed in a little more detail. Although one
might come to think that these three symbols correspond to the mistakes previously
indicated in (3) and (4), it can be noted that their location are well below the diagram. If
the Evaluation program will try to use them as a correct landmark, it would have to mark
all the previous symbols as over indicated, and all the following symbols as missing.
Since the idea is to try to reuse as much as possible the symbols available in the students’
diagram, it is considered that this kind of review is correctly performed.

4.3 Verification of the Robustness with “Noisy” Images

A question that has arisen during development is how the Evaluation program will
behave with images that are not 100% “perfect” (i.e. images that present some degree of
pixel error or noise). The main concern was directed to confirm if the previously trained
Symbol Detection Model would be able to detect the symbols in this type of images. In
order to perform this verification (as has been described in Sect. 4.1) a “noisy” version
of the students’ images have been generated, and then evaluated by the software as a
normal exercise diagram.

As a result, for each exercise there is a normal version and a “noisy” version that
have been comparedmanually to determine if the Evaluation programgenerates different
results. After reviewing all the pairs of images, differences have been detected in the
evaluation of noisy images, but, surprisingly the differences were not due to the Symbol
Detection Model.

Despite presenting different noise levels, the trainedmodel is able to accurately detect
the symbols present in the evaluated images. But, there is an issue with the Tesseract
OCREngine used to recognize the characters included in some symbols. For example, as
it can be seen in the left column of Table 5, when the students’ diagram ‘04’ is evaluated
using the teacher’s diagram ‘04’ as reference, obviously there are not mistakes (all
the symbols are in greencolor) because they are the same image. However, when the
“noisy” version of the student’s diagram is processed (right column of Table 5), three
orangecolor mistakes are indicated in the “document” symbols. These errors are related
to the mistake in symbol text because the OCR Engine cannot recognize correctly the
letters and numbers in each symbol. Despite of the black pixels, a human can read that
the documents’ strings are “RE-0”, “NP-0” and “OP-0”, but the OCR Engine recognizes
them as “RE” (without any number), “NP.N8” and “OP.OO”. As the Evaluation program
trusts in the strings provided by the OCR process, then mistakes are marked incorrectly.

Given that the evaluation of images with this degree of noise should not be normal
in real diagrams, and that the OCR engine is an external element used by the software,
it is considered that this issue does not invalidate the development or the tests presented

Object Detection Based Software System 51

in this article. However, it has been decided to initiate a review of other available OCR
engines that are more robust to be applied in a future version of the Evaluation program.

4.4 Discussions of the Evaluation Results

In this section, the main comments received by the expert teachers of the subject after
reviewing the evaluations made by the software system are presented.

From their point of view, the software works in an acceptable manner, being able to
correctly detect 100% of the symbols present in each image, which allows it to highlight
different types of mistakes consistent with the reference image. Also, the observations
indicated by the software system are considered as useful for the students. In fact, this
will allow students to better understand their mistakes and try to avoid them in future
exercises.

Table 5. Examples of comparing the evaluation of students’ normal and “noisy” images.

Evaluation of students’ image Evaluation of students’ “noisy” image

On the other hand, it is believed that the grades assigned by the system in most of the
cases are correct. From the expert teachers’ point of view, it is considered that in around
80% of the cases, the assigned grade is consistent with the errors found. However, there
are some errors that perhaps should be different, since there aremistakes that the software
considers to be minor when in fact they should be serious mistakes. Such is the case of
the “timing lines” that are important in a diagram since they indicate that the routine
being plotted is performed every certain quantity if time or by certain specific condition
(e.g. when a shortage of merchandise is detected). Given its importance, this should

52 P. Pytel et al.

be considered a serious mistake that indicates that the student does not understand that
this routine is not always performed. Likewise, a “decision” should always be placed
under a “control”. If this “decision” is not placed by the student, then it is a serious
conceptual error and should be considered with more relevance than just considering
that the symbol is missing. The same happens if the diagram is not finished with the
corresponding end symbols that could be a “file”, a “destruction” action, a “process” or
a “connector”. Therefore, it should be possible to differentiate them from other types of
missing symbols.

Finally, it has been detected an issue associated to the location of some missing
symbols. Although the location is correctly identified by the detection model, on some
occasions, the location of themissing symbols is not 100%correct andmight overlapwith
other symbol. This has been requested to be solved in future versions, since otherwise
the students will not be able to understand the mistake they made.

5 Conclusions

In this paper we have described the tasks carried out for the implementation of a software
system that allows the automatic evaluation of Cursograma diagrams made as part of
the exercise of the students of an undergraduate course. So, although the domain of the
problem belongs to the field of education, this work has more to do with the engineering
and technological aspect of the application of Artificial Intelligence to solve complex
problems.

First, a process of understanding the problem to be solved has been carried out,
identifying the particularities of its domain and defining the requirements to be met.
Taking all this into account, different technologies are studied that allow achieving the
desired objective. As a result the use of object detection models based on Deep Neural
Networks is selected. Then, the construction and testing of each of the components that
are part of the software system are performed. Two of these components are auxiliary
but necessary to achieve the third. On the one hand, a random diagram generator is
developed. On the other, a model capable of recognizing the symbols is trained and
validated with the diagrams previously generated. And finally, a program that applies
this detection model to review and correct the students’ exercises. It can be observed
that, to try to achieve a complex objective with many restrictions, the problem has been
worked on in a modular way, with separate components that apply different approaches
but converge to the same goal.

Finally, the results of the diagram evaluator are presented and analyzed. From the
results obtained, it can be concluded that the software system works in an acceptable
manner by being able to recognize different types of symbols, identify differences and
correct four types of mistakes. But, although much progress has been made in principle,
there is still a lot of work to be done before this software can be made operational for
use by students. Consequently, as future lines of work, the following stand out:

– review other OCR engines that may have greater robustness when performing
character recognition in noisy images;

– correct the issue associated with the location of missing symbols improving the
system’s ability to avoid overlaps with other objects;

Object Detection Based Software System 53

– identify and implement the different rules that used by teachers to assign the grades
to exercises taking into account the seriousness of the mistake detected; and

– continue working on improving the robustness of the object Detection Model so that
it supports a greater variety in the characteristics of the diagrams to be processed.

References

1. Pollo-Cattaneo, M.F.: The Organization and its Information Systems, 1st edn. Editorial CEIT,
Buenos Aires (2017). ISBN 978-987-1978-36-6

2. IRAM (1974). IRAM 34503: Administrative procedures. General guidelines for the design
of forms for graphic representation, 1st edn. Argentine Institute for Standardization and
Certification (in force since 03/05/1974)

3. UTN-FRBA:Analytical programof the chair ‘Systems andOrganizations’ - Plan 2008 (2008).
https://tinyurl.com/y7xx33y5. Accessed May 2021

4. UTN:Curricular designof the InformationSystemsEngineering career - Plan2008.Ordinance
UTN-1150 (2008). https://tinyurl.com/yb22zm2q. Accessed June 2021

5. Cohen, P.R., Feigenbaum, E.A.: The Handbook of Artificial Intelligence, vol. 3. Butterworth-
Heinemann (2014)

6. Vegega, C., Pytel, P., Pollo-Cattaneo, M.F.: Elicitation of requirements for the construction of
predictive models based on intelligent systems in education. In: Proceedings of XXV CACIC
2019, pp. 980–989 (2019). ISBN 978-987-688-377-1

7. Chair SyO: Template of Symbols for use in Cursogramas to be used in the subject ‘Systems
and Organizations’ of UTN FRBA (2020). https://tinyurl.com/y6jdnfy3. Accessed June 2021

8. Outair,A., Lyhyaoui,A., Tanana,M.: Towards an automatic evaluation ofUMLclass diagrams
by graph transformation. Int. J. Comput. Appl. 95(21), 36–41 (2014). https://doi.org/10.5120/
16721-7063

9. Lino, A. D.P., Rocha, A.: Automatic evaluation of ERD in e-learning environments. In: 2018
13th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–5 (2018)

10. Schäfer, B., Keuper, M., Stuckenschmidt, H.: Arrow R-CNN for handwritten diagram recog-
nition. Int. J. Doc. Anal. Recogn. (IJDAR) 24(1–2), 3–17 (2021). https://doi.org/10.1007/s10
032-020-00361-1

11. Anwer, S., El-Attar, M.: An evaluation of the statechart diagrams visual syntax. In: 2014
International Conference on Information Science & Applications (ICISA), pp. 1–4 (2014)

12. Vachharajani, V., Pareek, J., Gulabani, S.: Effective labelmatching for automatic evaluation of
use-case diagrams. In: 2012 IEEE 4th International Conference on Technology for Education,
pp. 172–175 (July 2012)

13. Elyan,E., Jamieson,L.,Ali-Gombe,A.:Deep learning for symbols detection and classification
in engineering drawings. Neural Netw. 129, 91–102 (2020)

14. Altun, O., Nooruldeen, O.: SKETRACK: stroke-based recognition of online hand-drawn
sketches of arrow-connected diagrams and digital logic circuit diagrams. Sci. Program. 2019,
1–17 (2019). https://doi.org/10.1155/2019/6501264

15. Alpaydin, E.: Introduction to Machine Learning. MIT Press (2014)
16. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117

(2015)
17. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
18. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network.

In: 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. IEEE
(2017)

https://tinyurl.com/y7xx33y5
https://tinyurl.com/yb22zm2q
https://tinyurl.com/y6jdnfy3
https://doi.org/10.5120/16721-7063
https://doi.org/10.1007/s10032-020-00361-1
https://doi.org/10.1155/2019/6501264

54 P. Pytel et al.

19. Zhou, D.X.: Universality of deep convolutional neural networks. Appl. Comput. Harmon.
Anal. 48(2), 787–794 (2020)

20. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet,
D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

21. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.: Rethinking the inception architecture for
computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2818–2826 (2016)

22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted resid-
uals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4510–4520 (2018)

23. Huang, J., Rathod, V., et al.: Speed/accuracy trade-offs for modern convolutional object detec-
tors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7310–7311 (2017)

24. Khandelwal, R.: COCO and Pascal VOC data format for Object detection. Medium (2019).
https://tinyurl.com/y5fgyb9n. Accessed June 2021

25. Smith, R.W.: History of the Tesseract OCR engine: what worked and what didn’t. In: Docu-
ment Recognition and Retrieval XX, vol. 8658, p. 865802. International Society for Optics
and Photonics (February 2013)

26. GEMIS: Randomly Generated Cases with its Results (2021). https://tinyurl.com/7k8mhrtw.
Accessed June 2021

27. Bovik, A.C. (ed.): The Essential Guide to Image Processing. Academic Press (2009)
28. Velosa, F., Florez, H.: Edge solution with machine learning and open data to interpret signs

for people with visual disability. CEUR Workshop Proc. 2714, 15–26 (2020)
29. Zuluaga, J.Y., Yepes-Calderon, F.: Tensor domain averaging in diffusion imaging of small

animals to generate reliable tractography. ParadigmPlus 2(1), 1–19 (2021)
30. Espinosa, C., Garcia, M., Fernando Yepes-Calderon, J., McComb, G., Florez, H.: Prostate

cancer diagnosis automation using supervised artificial intelligence. a systematic literature
review. In: Florez, H., Misra, S. (eds.) ICAI 2020. CCIS, vol. 1277, pp. 104–115. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-61702-8_8

https://doi.org/10.1007/978-3-319-10590-1_53
https://tinyurl.com/y5fgyb9n
https://tinyurl.com/7k8mhrtw
https://doi.org/10.1007/978-3-030-61702-8_8

	Object Detection Based Software System for Automatic Evaluation of CursogramasImages
	1 Introduction
	2 Problem Description
	3 Proposed Solution
	3.1 Construction of the Symbol Detection Model
	3.2 Implementation of the Evaluation Program

	4 Results
	4.1 Generation of Test Cases
	4.2 Analysis of a Case Study
	4.3 Verification of the Robustness with “Noisy” Images
	4.4 Discussions of the Evaluation Results

	5 Conclusions
	References

