Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Brüls, Olivier"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Impact between spherical rigid bodies including frictional effects
    (International Journal of Numerical Method and Engineering, 2024-10-30) Sánchez, Eliana; Cosimo, Alejandro; Brüls, Olivier; Cardona, Alberto; Cavalieri, Federico J.
    This work presents a new contact element which allows to simulate the impact between spherical bodies assuming instantaneous local impact events by the classical Newton impact law and a rigid behaviour of the bodies. The geometrical properties of the spheres are described by a rigid body formulation with translational and rotational degrees of freedom. In addition, an extension of the non-smooth generalized α time integration scheme applied to multi-impact collisions including Coulomb’s friction is given. Six numerical examples are presented to evaluate the robustness and the performance of the proposed methodology.
  • Thumbnail Image
    Item
    Non-smooth numerical solution for Coulomb friction and sliding, rolling and spinning resistance applied to flexible multibody system dynamics
    (Multibody System Dynamics, 2023-06) Sánchez, Eliana; Cosimo, Alejandro; Brüls, Olivier; Cardona, Alberto; Cavalieri, Federico J.
    This paper presents the general motion of a sphere in contact with a rigid planar rigid surface under rolling, sliding and spinning friction in the context of non-smooth contact dynamics. The equation of motion are solved by the non smooth generalized α implicit time integration scheme where the constrains at position and at velocity level are satisfied exactly without requiring to define any penalty parameter. The geometrical properties of the spheres are described by a rigid body formulation with translational and rotational degrees of freedom. The robustness and the performance of the proposed methodology is demonstrated by different examples including both flexible and/or rigid elements.
  • Thumbnail Image
    Item
    Simulación de cuerpos rígidos esféricos sujetos a colisiones de impacto múltiple y efectos de fricción
    (XXXVII MECOM, 2021) Sánchez, Eliana; Cavalieri, Federico J.; Cosimo, Alejandro; Brüls, Olivier; Cardona, Alberto
    En este trabajo se estudia el movimiento de cuerpos rígidos esféricos sometidos a efectos de fricción por medio de la ley de Coulomb y colisiones de impacto múltiple, en el marco del Método de los Elementos Finitos. Para la integración de las ecuaciones de movimiento se utiliza el esquema de integración temporal α generalizado no suave, en tanto que la solución del problema de contacto se aborda con una formulación dual mixta basada en un método Langrangiano aumentado. Para la descripción de la dinámica de las esferas se utiliza un modelo de cuerpo rígido con grados de libertad de traslación y de rotación. Finalmente, para evaluar la eficiencia numérica de la metodología propuesta, se estudia el movimiento de tres esferas en contacto con un plano rígido sujetas a colisiones de impacto múltiple.
  • Thumbnail Image
    Item
    Simulation of spherical rigid bodies subject to friction with multiple impacts
    (11th ECCOMAS, 2023-07) Sánchez, Eliana; Cardona, Alberto; Cosimo, Alejandro; Brüls, Olivier; Cavalieri, Federico J.
    This work introduces a novel methodology for simulating multiple impacts between spherical rigid bodies under frictional contact, within the framework of nonsmooth contact dynamics and the finite element method for large rotations. The approach extends a previously developed frictionless impact algorithm based on Newton’s impact law (Cosimo et al., 2020) to incorporate sliding, rolling, and drilling friction effects. The core contribution lies in the sequential resolution of impact problems over vanishing time intervals, redefining the active contact set in both normal and tangential directions. Closed contacts with zero pre-impact velocity are considered inactive, enhancing numerical robustness.The method employs advanced sphere-plane and sphere-sphere contact elements (Cavalieri et al., 2021), and solves the contact problem using an augmented Lagrangian formulation. The equations of motion are integrated with the nonsmooth generalized-α time integration scheme, ensuring stable and accurate results. A billiard break scenario is used as a numerical benchmark to validate the method’s ability to handle simultaneous impacts with and without friction. Two cases are considered: one without rolling resistance and another including a rolling resistance radius of ρ = 0.005 m. Results demonstrate that the proposed method avoids interpenetration, unlike penalty-based formulations, and significantly reduces computational time from 25,000 s to 40 s. This strategy is efficient, fully automatic, and avoids the need for manual sequencing or topological analysis of impact events, making it a promising tool for complex multibody dynamics simulations.

 

UTN | Rectorado

Sarmiento 440

(C1041AAJ)

Buenos Aires, Argentina

+54 11 5371 5600

SECRETARÍAS
  • Académica
  • Administrativa
  • Asuntos Estudiantiles
  • Ciencia y Tecnología
  • Consejo Superior
  • Coordinación Universitaria
  • Cultura y Extensión Universitaria
  • Igualdad de género y Diversidad
  • Planeamiento Académico y Posgrado
  • Políticas Institucionales
  • Relaciones Internacionales
  • TIC
  • Vinculación Tecnológica
  • Comité de Seguridad de la Información
ENLACES UTN
  • DASUTeN
  • eDUTecNe
  • APUTN
  • ADUT
  • FAGDUT
  • FUT
  • SIDUT
ENLACES EXTERNOS
  • Secretaría de Educación
  • CIN
  • CONFEDI
  • CONEAU
  • Universidades