Browsing by Author "Ledesma , Brenda Cecilia"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Experimental desing optimization of the tetralin hydrogenation over Ir-Pt-SBA-15.(Univesidsad Tecnológica Nacional., 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda CeciliaExperiment design-response surface methodology (RSM) is used in this work to model and optimize two responses in the hydrogenation of tetralin to decalin using bimetallic Ir–Pt-SBA-15 catalyst. In this study, we analyze the influence of the nature of the catalyst (metal molar fraction and metal loading), the catalyst/substrate ratio and the temperature of the reaction as factors for the design. The responses analyzed were conversion at 3 h and at 5 h of reaction time. The response surfaces were obtained with the Box– Behnken design, finding the best combination between the reaction parameters that allowed optimizing the process. By applying the statistic methodology, the higher levels of the two objective functions were obtained employing the catalyst with 1 wt.% of iridium and 0.7–0.8 wt.% of platinum; the optimal ratio between mass of catalyst and mole of tetralin was 17–19 g/mol and temperature between 200 and 220 ◦CItem Hydrogenation of tetralin in presence of nitrogen using a noble-bimetallic couple over a Ti-modified SBA-15.(Univesidsad Tecnológica Nacional., 2016) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Pecchi, Gina; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Ledesma , Brenda CeciliaMonometallic Pt- and bimetallic Pt-Ir-modified Ti-SBA-15 were used in the hydrogenation of tetralin to decalin in the presence of 150 ppm of N as quinoline and indole at 250 ◦C and 15 atm of pressure of hydrogen, using a Parr reactor. The catalyst was synthesized using sol-gel method and Ti was added during the synthesis using Tetraethyl Orthotitanate. Pt/Ir was added by wetness impregnation. The catalysts prepared were extensively characterized by X-ray diffraction (XRD), N2 adsorption isotherms, UV–vis DRS, Raman spectroscopy, XPS, TEM-EDS and TPR. UV–vis-DRS and Raman spectroscopy confirmed that Ti was incorporated in tetrahedral coordination in the framework of the SBA-15. The analysis showed that the mesoporous structure was maintained after metal incorporation and Ti incorporation helps to reduce significantly the size of the metals clusters and improves its dispersion considerably. Pt-Ir/Ti-SBA 15 was the most active catalyst. The experimental data were quantitatively represented by a modified Langmuir-Hinshelwood type rate equation. The preliminary results show these materials as a promising catalyst for HDT reactions.Item Noble-bimetallic supported CMK-3 as a novel catalyst for hydrogenation of tetralin in the presence of sulfur and nitrogen.(Univesidsad Tecnológica Nacional., 2016) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Juárez , Juliana María; Gómez Costa, Marcos Bruno; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Juárez , Juliana María; Ledesma , Brenda CeciliaCarbon ordered mesoporous CMK-3 with high surface area and high pore volume promotes a very good dispersion of Pt or Ir monometallic and Pt-Ir-bimetallic crystallites in the carbon framework. High active and stable nanospecies are responsible for the good activity and selectivity found in the hydrogenation of tetralin to decalin in the presence of N as indole and S as dibenzothiophene under mild conditions in a Batch reactor. The catalysts prepared were extensively characterized by XRD, N2 adsorption isotherms, XPS, TEM, ICP, CO Chemisorption and TPR. The analysis showed that the carbon mesoporous structure was maintained after metal incorporation, and very high dispersed metal-supported catalyst was obtained. The activity was compared using the turnover number, Pt-Ir-CMK-3 being the most active cat alyst in the presence of the inhibitors. The bimetallic catalyst showed more resistance to inhibition than monometallic catalysts. The reusability of Pt-Ir-CMK-3 suggests that it is a potential catalyst for hydrotreating reactions.Item Novel and simple one-pot method for the synthesis of Ti02 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds.(Univesidsad Tecnológica Nacional., 2016) Rivoira , Lorena Paola; Ledesma , Brenda Cecilia; Juárez , Juliana María; Beltramone , Andrea Raquel; Juárez , Juliana María; Ledesma , Brenda CeciliaTi-CMK-3 carbon mesoporous was prepared using a novel synthesis method. This new method avoids the hard template synthesis used commonly. The precursors of silicon, carbon and titanium are incorporated together with the other components during the only step of the synthesis. The method developed here, allows reducing time and energy consumption by 60% and thus, the cost of the overall process of synthesis. Structural and textural characterization of the titanium modified-mesoporous carbon was performed by N2 adsorption, XRD, UV–Vis DRS, XPS, Raman spectroscopy and TEM. The characterization results indicated that the textural and structural properties of the material synthesized by the short time method are comparable with the properties of the material prepared by the hard template method. Ti modified-mesoporous carbon was synthesized by dif- ferent methods in order to prepare catalysts to be tested in the oxidative desulfurization (ODS) of sulfur com- pounds. The catalyst prepared by the one-pot method is capable to oxidize high amount of sulfur (2000 ppm) in only 30 min of reaction time at 60–80 °C. The good performance and stability of the catalyst prepared using a novel synthesis method was attributed to well dispersed anatase nanospecies over the high area mesoporous carbon. Main advantage of the present study is the reduction of time and cost in the synthesis of the new material and the applicability for ODS reactions.Item Novel preparation of CMK-3 nanostructured material modified with titania applied in hydrogen uptake and storage.(Univesidsad Tecnológica Nacional., 2016) Juárez , Juliana María; Ledesma , Brenda Cecilia; Gómez Costa, Marcos Bruno; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Ledesma , Brenda CeciliaThis work deals with the development of a novel procedure to synthesize titania-modified nano structured carbon employing Ti-SBA-15 as hard template. The new mesoporous carbon displays high specific surface area of 1044 m2/g and large pore volume of 0.7 cm3/g. XRD pattern of Ti-CMK-3 indicates that the ordered structure of this material is similar to the CMK-3. XRD, XPS and UVeVis-DRS analysis indicated that Ti is highly dispersed as anatase phase in Ti-CMK-3. The synthesized Ti-CMK-3 exhibited significantly enhanced H2 storage properties (2.6 wt%, equivalent to 13 mmol/g) compared with CMK-3 without Ti (2.2 wt%, 11 mmol/g) at 77 K and 10 bar.Item Reservorio nanoscópico de hidrógeno a partie de biorresiduos de cáscara de naranjas.(Univesidsad Tecnológica Nacional., 2022) Juárez , Juliana María; Ledesma , Brenda Cecilia; Anunziata , Oscar Alfredo; Gómez Costa , Marcos Bruno; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Ledesma , Brenda CeciliaEste trabajo aborda el enfoque de valorización de biorresiduos para el desarrollo de un novedoso nanomaterial carbonoso para ser utilizado en la adsorción de hidrógeno como una alternativa en el uso de hidrógeno verde. En esta investigación, los carbones activados se sintetizaron a partir de cáscara de naranja utilizando diferentes condiciones de síntesis. Con los carbones activados obtenidos con la mejor estructura y textura se estudió la adsorción de hidrógeno y los efectos en la meso/microporosidad de estos. La activación del carbón se realizó mediante un proceso químico con ácido fosfórico como agente activador, variando la concentración de ácido, la relación sustrato / agente activador y el tiempo de contacto entre ellos. El mejor material se obtuvo utilizando tiempo de carbonización de 1 h, temperatura de carbonización de 470oC, concentración de ácido fosfórico de 50% en peso y con área BET de 1402 m2 / g. Dicho material mejoró significativamente el comportamiento de almacenamiento de H2 en comparación con el carbón nanoestructurado del tipo CMK-3 (3,1% en peso a -196,15 oC y 10 bar). El material sintetizado es prometedor en la absorción de hidrógeno por fuerzas de enlace débiles (fisisorción).Item Sulfur elimination by oxidative desulfurization with titanium-modified SBA-16.(Univesidsad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Ponte , María Virginia; Martínez , María Laura; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Martínez , María Laura; Ponte , María Virginia; Ledesma , Brenda Cecilia; Vallés , Verónica AlejandraTiO2-modified mesoporous SBA-16 and titanium-substituted mesoporous SBA-16 were developed and tested in the oxidative desulfurization (ODS) of dibenzothiophene prevailing in liquid fuel. Pure TiO2 was used as reference. The titania-based catalysts were characterized by chemical analysis, XRD, EDX and TEM. The titanium state as tetrahedral (in Ti-SBA-16 sample) or octahedral (in TiO2/SBA-16 sample) coordination surrounding in the silicate matrix was determined by XPS, UV–vis DRS, FTIR, Raman and XANES. We assessed the impact exerted on performance of different reaction variables, including (nature and amount of the active catalytic species, phase system, molar ratio of oxidant H2O2 and DBT, reaction temperature, nature of the substrate and reuse of catalysts). In addition, we carried out a kinetic study and the activation energy was determined. We achieved 90% of S removal from a 0.2 wt.% dibenzothiophene solution at 60 ◦C in less than 1 h of reaction. The best catalytic results are obtained with high exposed surface of nanometric TiO2 species of TiO2/SBA-16 sample. The activated catalyst is very active in ODS reaction and can be reused four times with no loss in activity.