Browsing by Author "Ledesma , Brenda Cecilia"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Bimetallic platinum/iridium modified mesoporous catalysts applied in the hydrogenation of HMF.(Universidad Tecnológica Nacional Regional Córdoba., 2018) Ledesma , Brenda Cecilia; Juárez , Juliana María; Beltramone , Andrea Raquel; Beltramone , Andrea Raquel; Juárez , Juliana MaríaThe catalytic transformation of 5-hydroxymethylfurfural (HMF) to produce 2,5-dimethylfuran (DMF) was studied over bimetallic (PtIr) and monometallic (Pt) catalysts supported on CMK-3 and SBA-15 mesoporous materials. The optimum temperature and pressure for the maximum production of DMF were 120° and 15 atm. Increases in temperature and pressure decreased the selectivity to DMF. The catalysts were broadly characterized by XRD, N2-isotherms, XPS, TPR, TEM and NH3-TPD. It was found that the metal particles were well reduced and highly dispersed on the surface of the support of large surface area and narrow pore distribution. The PtIr alloy species active sites were very active and selective towards the formation of the desired DMF. PtIr-CMK-3 showed an excellent activity, selectivity and stability to be applied in this process.Item Novel preparation of CMK-3 nanostructured material modified with titania applied in hydrogen uptake and storage.(Universidad Tecnológica Nacional., 2017) Juárez , Juliana María; Ledesma , Brenda Cecilia; Gómez Costa, Marcos Bruno; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Ledesma , Brenda CeciliaThis work deals with the development of a novel procedure to synthesize titania-modified nano structured carbon employing Ti-SBA-15 as hard template. The new mesoporous carbon displays high specific surface area of 1044 m2/g and large pore volume of 0.7 cm3/g. XRD pattern of Ti-CMK-3 indicates that the ordered structure of this material is similar to the CMK-3. XRD, XPS and UVeVis-DRS analysis indicated that Ti is highly dispersed as anatase phase in Ti-CMK-3. The synthesized Ti-CMK-3 exhibited significantly enhanced H2 storage properties (2.6 wt%, equivalent to 13 mmol/g) compared with CMK-3 without Ti (2.2 wt%, 11 mmol/g) at 77 K and 10 bar.