Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Martínez , María Laura"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    ODS of dibenzothiopene with titanium-modified SBA-16.
    (Universidad Tecnológica Nacional., 2015) Rivoira , Lorena Paola; Vallés , Verónica Alejandra; Beltramone , Andrea Raquel; Martínez , María Laura; Ledesma , Brenda Cecilia; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Ledesma , Brenda Cecilia; Martínez , María Laura; Vallés , Verónica Alejandra
    Over the past, oxidative desulfurization (ODS) has drawn considerable interest as a new alter native method for deep sulfur elimination from light oils. This can be attributed to its attrac tive properties, including lower temperature and pressure conditions and lower operating cost [1-3] than conventional hydrodesulfurization (HDS) process. Oxidation of organosulfur com pounds results in the formation of sulfoxides/sulfones, highly polar and hence easily removed by both extraction into polar solvents or by adsorption. Due to their low reactivity, diben zothiophene derivatives (DBTs) are the most refractory species to be eliminated from oils. Hence, the ODS process through which DBTs are converted to their corresponding sulfones involves great interest at present [4-6]. We recently reported a good performance of this sup port in hydrotreating processes [7]. In this work, we describe the preparation and characteriza tion of new mesoporous catalytic materials based on Ti-containing SBA-16. We study here, the effect of the preparation method of titania-modified SBA-16 (characteristics of the active Ti and/or TiO2 species) and the effect of the different operation conditions in ODS of DBT under mild conditions in order to find the best performance. TiO2-modified mesoporous SBA 16 and titanium-substituted mesoporous SBA-16 were developed and tested in the oxidative desulfurization (ODS) of dibenzothiophene prevailing in liquid fuel. We assessed the impact exerted on performance of different reaction variables, including (nature and amount of the active catalytic species, phase system, molar ratio of oxidant H2O2 and DBT, reaction tempe rature, nature of the substrate and reuse of catalysts).
  • Thumbnail Image
    Item
    Probing the Catalytic Activity of Sulfate-Derived Pristine and Post-Teatred Porous TiO2(101) Anatase Mesocrystals by the Oxidative Desulfurization of Dibenzothiophenes.
    (Universidad Tecnológica Nacional., 2017) Rivoira , Lorena Paola; Martínez , María Laura; Falcón , Horacio; Beltramone , Andrea Raquel; Campos , Martín José; Fierro , José; Tartaj , Pedro; Martínez , María Laura
    Mesocrystals (basically nanostructures showing alignment of nanocrystals well beyond crystal size) are attracting considerable attention for modeling and optimiza tion of functionalities. However, for surface-driven applications (heterogeneous catalysis), only those mesocrystals with excellent textural properties are expected to fulfill their potential. This is especially true for oxidative desulfuration of dibenzothiophenes (hard to desulfurize organosulfur com pounds found in fossil fuels). Here, we probe the catalytic activity of anatases for the oxidative desulfuration of dibenzothiophenes under atmospheric pressure and mild temperatures. Specifically, for this study, we have taken advantage of the high stability of the (101) anatase surface to obtain a variety of uniform colloidal mesocrystals (approximately 50 nm) with adequate orientational order and good textural properties (pores around 3−4 nm and surface areas around 200 m2 /g). Ultimately, this stability has allowed us to compare the catalytic activity of anatases that expose a high number of aligned single crystal-like surfaces while differing in controllable surface characteristics. Thus, we have established that the type of tetrahedral coordination observed in these anatase mesocrystals is not essential for oxidative desulfuration and that both elimination of sulfates and good textural properties significantly improve the catalytic activity. Furthermore, the most active mesocrystals have been used to model the catalytic reaction in three-(oil− solvent−catalyst) and two-phase (solvent−catalyst) systems. Thus, we have been able to observe that the transfer of DBT from the oil to the solvent phase partially limits the oxidative process and to estimate an apparent activation energy for the oxidative desulfuration reaction of approximately 40 kJ/mol in the two-phase system to avoid mass transfer limitations. Our results clearly establish that (101) anatase mesocrystals with excellent textural properties show adequate stability to withstand several post treatments without losing their initial mesocrystalline character and therefore could serve as models for catalytic processes different from the one studied here
  • Thumbnail Image
    Item
    Sílica Gel como fuente de silicio: Síntesis y caracterización de matrial mesoporoso.
    (Universidad Tecnológica Nacional., 2015) Ponte , María Virginia; Martínez , María Laura; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Martínez , María Laura
    El material mesoporoso SBA-3 fue sintetizado mediante el método sol-gel, utilizando silicato de sodio como fuente de silicio y bromuro de hexadeciltrimetilamonio (CTAB) como agente director de estructura en condiciones acidas. El silicato sódico se generó in-situ por disolución de silica gel en NaOH. Se estudió el efecto de la variación de temperatura, la concentración de NaOH, y el tiempo de reacción. El mejor material mesoporoso con estructura SBA-3 fue obtenido con las siguientes condiciones de síntesis: temperatura: 25ºC; tiempo de reacción: 45min; concentración de NaOH: 0.8M.
  • Thumbnail Image
    Item
    Synthesis of SBA-1, SBA-3 and SBA-7 mesoporous materials. Study of the effect of time and temperature.
    (Universidad Tecnológica Nacional., 2016) Martínez , María Laura; Ponte , María Virginia; Falcón , Horacio; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Ponte , María Virginia
    In recent years, physicists, chemists and engineers have focused their research on the design of new functional materials. In the synthesis and control of materials in nanometer dimensions, the aim is currently directed towards the development of systems and devices that take advantage of chemical properties and physical principles, where their causes lie in the nanometer scale. Although there are numerous investigations about the synthesis of mesoporous materials from inorganic silicon salt, for example the synthesis of SBA-3. Ting et al [1] studied the synthesis of SBA-1; they obtained mesoporous SBA-1 with cubic structures, with a high porous system, by utilizing agents’ routers short chain structure such as the dodecyltrimethyl ammonium chloride. Recent research also showed that the formation of mesophases is affected by the presence of the counter ions and templates or surfactants can adopt a mesophase or other phases. So, Che et al. [2] found a phase shift 2D-hexagonal cubes from P6mm to Pm3n. We have published results for synthesis of SBA-3 with silica gel as silica source; we have found that the formation of mesophase is function of NaOH concentration in the dissolutions of silica gel. The influence of reaction temperature, time and NaOH concentration was investigated. During studies for the best synthesis conditions for synthesis of SBA-3, we also obtained SBA-1 and SBA-7 mesoporous materials.

 

UTN | Rectorado

Sarmiento 440

(C1041AAJ)

Buenos Aires, Argentina

+54 11 5371 5600

SECRETARÍAS
  • Académica
  • Administrativa
  • Asuntos Estudiantiles
  • Ciencia y Tecnología
  • Consejo Superior
  • Coordinación Universitaria
  • Cultura y Extensión Universitaria
  • Igualdad de género y Diversidad
  • Planeamiento Académico y Posgrado
  • Políticas Institucionales
  • Relaciones Internacionales
  • TIC
  • Vinculación Tecnológica
  • Comité de Seguridad de la Información
ENLACES UTN
  • DASUTeN
  • eDUTecNe
  • APUTN
  • ADUT
  • FAGDUT
  • FUT
  • SIDUT
ENLACES EXTERNOS
  • Secretaría de Educación
  • CIN
  • CONFEDI
  • CONEAU
  • Universidades