Browsing by Author "Minotti, Fernando Oscar"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Cathode-sheath model for field emission sustained atmospheric pressure discharges.(2021-03-16) Cejas, Ezequiel; Prevosto, Leandro; Minotti, Fernando Oscar; Ferreyra, Matías; Chamorro, Juan CamiloThe cathode-sheath region of a discharge in atmospheric pressure air with a flat copper cathode is numerically investigated by using a simple fluid model that takes into account non-local ionization. The effects of the cathode temperature are considered. Results are obtained in a wide current density range of 1–102 A/cm2 , which spans from normal glow discharge, through abnormal glow discharge, up to the early stages of the arcing transition. It is shown that the glow-to-arc transition arises from a field-emission instability at the cathode when the cur rent density is larger than 10 A/cm2 , i.e., when the cathode field exceeds a critical value of about 45 V/lm for the conditions considered. It is also shown that the cathode temperature significantly influences the cathode-sheath region. The proposed model is validated by comparing the numerical results with available experimental data.Item Interpretation of Voltage Measurements in Cutting Torches.(2015) Prevosto, Leandro; Kelly, Héctor; Minotti, Fernando Oscar; Mancinelli, BeatrizAnode-cathode and nozzle-cathode voltages, plenum pressure and gas mass flow measurements in a low current (30 A) cutting torch, operated with oxygen gas, are used as inputs for an electrical model coupled to a simplified fluid model, in order to infer some properties of the plasma-gas structure that are difficult to measure.Item Numerical modeling of the gas breakdown development in the space–charge layer inside the nozzle of a transferred arc torch(2012) Mancinelli, Beatriz; Prevosto, Leandro; Minotti, Fernando OscarDouble–arcing is a phenomenon that occurs when a transferred arc, flowing inside an electrically insulated nozzle, breaks into two separate arcs: one that connects the cathode with the nozzle, and another that connects the nozzle with the anode. Experimental evidence suggests that the reason for double–arcing is a Townsend like breakdown occurring in the thin space–charge layer, which separates the plasma from the metallic nozzle, due to the high voltage drop across it. Breakdown phenomena in a gas between metallic electrodes have been extensively studied; however the present case involves breakdown of a high–temperature gas between one electrode (the nozzle) and a plasma boundary. A 1–D model of the gas breakdown development in the space–charge layer contiguous to the nozzle of a cutting arc torch operated with oxygen is reported. The dynamics of the discharge is analyzed. The kinetic scheme includes processes of ionization of heavy particles by electron impact, electron attachment, electron–ion recombination and ion–ion recombination.Item Numerical Modelling of a Cutting Arc Torch(Jan Awrejcewicz. INTECH, 2014-02-14) Mancinelli, Beatriz; Minotti, Fernando Oscar; Prevosto, Leandro; Kelly, HéctorPlasma cutting is a process of metal cutting at atmospheric pressure by an arc plasma jet, where a transferred arc is generated between a cathode and a work-piece (the metal to be cut) acting as the anode . Small nozzle bore, extremely high enthalpy and operation at relatively low arc current (≈ 10 ÷ 200) A are a few of the primary features of these torches. The physics involved in such arcs is very complicated. The conversion of electric energy into heat within small volumes causes high temperatures and steep gradients. Dissociation, ionization, large heat transfer rates (including losses by radiation), fluid turbulence and electromagnetic phenomena are involved. In addition, wide variations of physical properties, such as density, thermal conductivity, electric conductivity and viscosity have to be taken into account.Item On the use of the Prandtl mixing length model in the cutting torch modeling.(2011-05-25) Mancinelli, Beatriz; Minotti, Fernando Oscar; Kelly, HéctorThe Prandtl mixing length model has been used to take into account the turbulent effects in a 30 A high-energy density cutting torch model. In particular, the model requires the introduction of only one adjustable coefficient c corresponding to the length of action of the turbulence. It is shown that the c value has little effect on the plasma temperature profiles outside the nozzle (the differences being less than 10 %), but severely affects the plasma velocity distribution, with differences reaching about 100 % at the middle of the nozzle-anode gap. Within the experimental uncertainties it was also found that the value c = 0.08 allows to reproduce both, the experimental data of velocity and temperature.