Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Paoli, Juan Francisco"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    A Machine Learning-Based Clinical Decision Support System for Mental Health Risk Profiling
    (CEUR-WS, 2024-10) Paoli, Juan Francisco; Chatterjee, Parag; Pollo Cattaneo, Maria Florencia
    Clinical Decision Support Systems (CDSS) are increasingly being adopted to enhance healthcare delivery, particularly in mental health. This paper presents the design and implementation of a CDSS framework tailored for mental health-related data, focusing on predictive risk profiling and supporting healthcare professionals in data-driven decision-making. The system integrates machine learning algorithms for both classification and regression tasks, facilitating personalized risk assessments and treatment recommendations. It features a modular architecture, consisting of a data processing pipeline, machine learning engine, and an intuitive user interface, allowing for efficient handling of diverse datasets and seamless integration with existing clinical workflows. The system was tested on multiple open datasets, each requiring varying levels of preprocessing and data cleaning. Key results include the performance of models like Random Forest, Gradient Boosting, and K-Nearest Neighbors, and the significant impact of feature complexity over patient volume on processing times. Despite being deployed on mid-range hardware, the system achieved fast response times, highlighting its feasibility for real-time clinical use. The work underscores the importance of usability, performance efficiency, and interoperability in developing CDSS solutions, paving the way for broader adoption in mental health contexts.

 

UTN | Rectorado

Sarmiento 440

(C1041AAJ)

Buenos Aires, Argentina

+54 11 5371 5600

SECRETARÍAS
  • Académica
  • Administrativa
  • Asuntos Estudiantiles
  • Ciencia y Tecnología
  • Consejo Superior
  • Coordinación Universitaria
  • Cultura y Extensión Universitaria
  • Igualdad de género y Diversidad
  • Planeamiento Académico y Posgrado
  • Políticas Institucionales
  • Relaciones Internacionales
  • TIC
  • Vinculación Tecnológica
  • Comité de Seguridad de la Información
ENLACES UTN
  • DASUTeN
  • eDUTecNe
  • APUTN
  • ADUT
  • FAGDUT
  • FUT
  • SIDUT
ENLACES EXTERNOS
  • Secretaría de Educación
  • CIN
  • CONFEDI
  • CONEAU
  • Universidades