Browsing by Author "Pardini, Oscar"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item On the strategies for incorporating nanosilica aqueous dispersion in the synthesis of waterborne polyurethane silica nanocomposites, Effects on morphology and properties(2016) Peruzzo, Pablo; Anbinder, Pablo; Pardini, Francisco; Pardini, Oscar; Plivelic, Tomas; Amalvy, JavierIn this work the synthesis of waterborne polyurethane/nanosilica nanocomposites by using two differ- ent strategies is presented, starting from a vinyl terminated polyurethane prepolymer (PUP) based on isophorone diisocyanate and polypropylene glycol, and varying the nanosilica content. In one case, the PUP was dispersed in an aqueous solution containing glycerol-functionalized colloidal nanosilica parti- cles and the dispersion was further polymerized; in the other case, the PUP was dispersed in an aqueous media, then colloidal nanosilica was added to the dispersion and then polymerized. A physical mixture was also prepared for comparative purpose. Films were prepared by casting of the aqueous dispersion. The morphology of the dispersions and films depended on the incorporation route of nanoparticles as was observed by SAXS, SEM and TEM. While the blends had significantly less hydrogen bonding between the hard segments of the PU and nanosilica particles, samples prepared by the two different methods proposed in this work showed an strong interaction between both materials in agreement with FTIR and DSC results. Synthesis pathway plays an important role in order to obtain high performance waterborne polyurethane/nanosilica composites, since final properties of the films also depended on the nanoparticle incorporation strategy.Item Polyurethane Poly(2-(Diethyl Amino)Ethyl Methacrylate) blend for drug delivery applications(2015) Echeverría, María Gabriela; Pardini, Oscar; Debandi, María Valeria; François, Nora; Daraio, Marta; Amalvy, JavierA pH-sensitive blend of polyurethane (PU) and poly(2-(diethyl amino)ethyl methacrylate (PDEA) with good film-forming capacity was prepared from the corresponding aqueous dispersions. The polymer matrix was first characterized by using FTIR, DSC, water vapor transmission and water swelling capacity at different pHs. The drug release profile of films was evaluated using a vertical Franz Cell and theophylline as model drug. The water swelling degree increases from 54 to 180% when the pH of the medium is changed from 6 to 2, demonstrating the pH-responsive behavior of the film. The in-vitro release studies indicate that an anomalous transport mechanism governs the theophylline release.Item Starch Polyvinyl Alcohol blends containing Polyurethane as plasticizer(2016) González-Forte, Lucía del Sol; Pardini, Oscar; Amalvy, JavierStarch-based films containing 70wt% of starch and a combination of poly(vinyl alcohol) and a low glass transition temperature polyurethane as plasticizer were prepared. The effect of PVA/PU ratio content on the morphology and physical properties was investigated by infrared spectroscopy (FTIR), X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy and measurements of mechanical properties and water vapor permeability. A relative small amount of PU (less than 15 wt%), significantly changes the properties of the blend due to intermolecular hydrogen bonding interactions between the three components. FTIR and XRD results indicate that blends containing PU are more amorphous than the pure starch/PVA blend and SEM images show a homogeneous matrix due to the good compatibility between starch and PU. Incorporation of PU to the starch/PVA blend shifts the glass transition temperature to lower values and reduce the elastic modulus, indicating a successful plasticization effect. The resulting blends produce films with improved physical properties.