Browsing by Author "Rivoira , Lorena Paola"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Ir-Pt/SBA-15 applied in the optimization of tetralin hydrogenation.(Univesidsad Tecnológica Nacional., 2015) Vallés , Verónica Alejandra; Ledesma , Brenda Cecilia; Rivoira , Lorena Paola; Cussa , jorgelina; Anunziata , Oscar Alfredo; Beltramone , Andrea Raquel; Anunziata , Oscar Alfredo; Anunziata; Cussa , jorgelina; Rivoira , Lorena Paola; Ledesma , Brenda CeciliaBimetallic catalysts have received considerable attention for hydrotreating (HDT) because they show high activity. The features of the catalysts here studied are going to be correlated with their catalytic performance in the hydrogenation of tetralin at mild conditions. The final goal is to find the optimal proportion of each metal in order to be more active and the best reaction conditions (temperature and amount of catalyst). The statistical experiments design is the process of planning an experiment to obtain appropriate data that can be analyzed by statistical methods, to produce concrete and valid conclusions. One of the main advantages in the response curve is to visualize the response for all levels of the experimental factors Experiment design response surface methodology (RSM) is used in this work to model and to optimize the process. Platinum and Iridium nanoparticles were incorporated into SBA-15 support by the wet co-impregnation method. Ir content was set as 1wt. % and Pt was varied from 0 to 1wt. %. The catalysts were characterized by XRD, BET, XPS, TEM, ICP and TPR. XRD profiles are characteristic of the two-dimensional p6mm hexagonal mesostructure with d100 spacing of 10.16 nm; where the d100 spacing upon Ir and Pt incorporation were quite similar to pristine SBA-15. The TEM images and XPS demonstrate that the metal particles were mainly present inside the porous and XPS and TPR corroborated the reduced state of the metals. The catalytic activity was measured in a 4563Parr reactor at 15 atm of hydrogen and 360 rpm. Feed consisted in 50 mL of tetralin in Dodecane, the amount of tetralin is set according to the ratio of catalyst mass/mass reagent corresponding to each reaction. The application of this methodology allows a better understanding of the influence of the different factors: content of metal on catalyst (A), relationship: mass of catalyst/reagent mass (B) and reaction temperature (C), on two responses: conversion at 3 h and at 5 h of reaction time. These factors were carefully selected taking account the influence of the parameters in the reaction. The design was analyzed by Statgraphics and Statistica Soft. We found that, the variable Catalyst has the best influence over the Conversion at the 95.0% confidence level, according to the Pareto.Item Novel and simple one-pot method for the synthesis of Ti02 modified-CMK-3 applied in oxidative desulfurization of refractory organosulfur compounds.(Univesidsad Tecnológica Nacional., 2016) Rivoira , Lorena Paola; Ledesma , Brenda Cecilia; Juárez , Juliana María; Beltramone , Andrea Raquel; Juárez , Juliana María; Ledesma , Brenda CeciliaTi-CMK-3 carbon mesoporous was prepared using a novel synthesis method. This new method avoids the hard template synthesis used commonly. The precursors of silicon, carbon and titanium are incorporated together with the other components during the only step of the synthesis. The method developed here, allows reducing time and energy consumption by 60% and thus, the cost of the overall process of synthesis. Structural and textural characterization of the titanium modified-mesoporous carbon was performed by N2 adsorption, XRD, UV–Vis DRS, XPS, Raman spectroscopy and TEM. The characterization results indicated that the textural and structural properties of the material synthesized by the short time method are comparable with the properties of the material prepared by the hard template method. Ti modified-mesoporous carbon was synthesized by dif- ferent methods in order to prepare catalysts to be tested in the oxidative desulfurization (ODS) of sulfur com- pounds. The catalyst prepared by the one-pot method is capable to oxidize high amount of sulfur (2000 ppm) in only 30 min of reaction time at 60–80 °C. The good performance and stability of the catalyst prepared using a novel synthesis method was attributed to well dispersed anatase nanospecies over the high area mesoporous carbon. Main advantage of the present study is the reduction of time and cost in the synthesis of the new material and the applicability for ODS reactions.Item Study of Ir/Ti-SBA-15 acidity influence on the HDN of indole.(Univesidsad Tecnológica Nacional., 2015) Ledesma , Brenda Cecilia; Vallés , Verónica Alejandra; Rivoira , Lorena Paola; Balangero, Gerardo Simón; Anunziata , Oscar Alfredo; Beltramone, Andrea Raquel; Anunziata , Oscar Alfredo; Rivoira , Lorena Paola; Vallés , Verónica AlejandraThe hydrodenitrogenation of Indole has been studied over a series of Ti-modified SBA-15 supports and their respective Ir-catalysts. Ti-SBA-15 was synthesized using sol-gel method and Ti was added during the synthesis using TEOT as Ti source. Ti was incorporated into the framework replacing the Si atoms in the mesoporous structure. Ir/Ti-SBA-15 with and without F and/or Al were prepared to improve the catalytic activity. F and Al have been incorporated by wetness impregnation method. The effect of the incorporation of F and Al in the mesoporous structure was tested in the hydrodenitrogenation reaction of indole. The catalysts were extensively characterized by X-ray diffraction (XRD), N2 adsorption isotherms, TEM, FTIR and UV-vis-DRS and Raman spectroscopy. The low angle X-ray analysis showed for all the materials intensive reflection, characteristic of SBA-15 structure. The mesoporous structure was maintained after F and Al incorporation. The results showed that Ti incorporation reduces significantly the cluster size and improves considerably the Ir cluster dispersion. The catalytic activity of Ir/Ti-SBA-15 modified with F and Al, with higher acidity, avoided the irreversible adsorption of indole. The catalytic activity was studied in a 4563 Parr reactor, at 250°C, 15 atm of pressure of hydrogen and 360 rpm. The catalysts synthesized had good activity measured in hydrodenitrogenation of indole at mild conditions. The preliminary results show these materials as promising catalysts for HDN reactions