Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tourn, Benjamín A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    A regularized approach for derivative-based numerical solution of non-linearities in phase change static hysteresis modeling
    (International Communications in Heat and Mass Transfer, 2025-04) Dittler, Ramiro A.; Demarchi, María Cecilia; Álvarez-Hostos, Juan C.; Albanesi, Alejandro E.; Tourn, Benjamín A.
    Phase change materials (PCMs) represent a promising solution for thermal energy storage (TES) since they can store and release energy in the form of latent heat during solid↔liquid transitions. Nevertheless, accurately simulating the thermal behavior of PCMs remains challenging due to the non-linearities concerning latent heat effects and enthalpy hysteresis. This work introduces a stable and robust procedure based on the finite element method (FEM) under a mixed enthalpy–temperature formulation to address such non-linearities, which enables the numerical solutions using derivative-based algorithms such as the Newton–Raphson (NR) method. The static hysteresis model (SHM) is implemented in the FEM-based formulation via a regularization of the liquid fraction function in response to the sign of the temperature rate. This novel approach ensures a continuous and smooth heating↔cooling transition while retaining the SHM energy-conservative features to properly solve its non-linearities. The method is validated through a one-dimensional benchmark problem, demonstrating high performance and physical fidelity for both complete and partial phase changes. It achieves second-order convergence rates, ensures numerical stability even for large time steps, and maintains accuracy under diverse thermal boundary conditions. Finally, the method is extended to two-dimensional problems, highlighting its robustness and scalability for practical applications in TES systems.

 

UTN | Rectorado

Sarmiento 440

(C1041AAJ)

Buenos Aires, Argentina

+54 11 5371 5600

SECRETARÍAS
  • Académica
  • Administrativa
  • Asuntos Estudiantiles
  • Ciencia y Tecnología
  • Consejo Superior
  • Coordinación Universitaria
  • Cultura y Extensión Universitaria
  • Igualdad de género y Diversidad
  • Planeamiento Académico y Posgrado
  • Políticas Institucionales
  • Relaciones Internacionales
  • TIC
  • Vinculación Tecnológica
  • Comité de Seguridad de la Información
ENLACES UTN
  • DASUTeN
  • eDUTecNe
  • APUTN
  • ADUT
  • FAGDUT
  • FUT
  • SIDUT
ENLACES EXTERNOS
  • Secretaría de Educación
  • CIN
  • CONFEDI
  • CONEAU
  • Universidades