Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yannarelli, Gustavo"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved.
    (2021-01-05) Pérez Pizá, María Cecilia; Grijalba, Pablo Enrique; Cejas, Ezequiel; Chamorro, Juan Camilo; Ferreyra, Matías; Zilli, Carla; Vallecorsa, Pablo; Yannarelli, Gustavo; Prevosto, Leandro; Balestrasse, Karina; Santa Cruz, Diego
    BACKGROUND: The Diaporthe/Phomopsis complex (D/P) is a group of soybean seed-borne fungi. The use of chemical fungicides, either for seed treatment or during the crop cycle, is the most adopted practice for treating fungal diseases caused by this complex. Worldwide, there is a search for alternative seed treatments that are less harmful to the environment than chemicals. Non-thermal plasma (NTP) is a novel seed treatment technology for pathogen removal. This research aimed to evaluate the effects of NTP on the in vitro performance of pure cultures of Diaporthe longicolla and elucidate the mechanisms underlying these effects. RESULTS: Active D. longicolla mycelium, growing in vitro, was exposed to different NTP treatments, employing a dielectric bar rier discharge arrangement with different carrier gases (N2 or O2). Fungal growth, fresh biomass and colony appearance were negatively affected by plasma treatments (TN3 and TO3). Lipid peroxidation and antioxidant activities were higher in plasma treated colonies comparison with non-exposed colonies (control). Fungal asexual spores (conidia) were also exposed to NTP, showing high susceptibility. CONCLUSION: Exposure of D. longicolla colonies to NTP severely compromised fungal biology. Ozone production during treat ment and lipid peroxidation of fungal cell membranes appeared to be involved in the observed effects. © 2020 Society of Chemical Industry
  • Thumbnail Image
    Item
    Enhancement of soybean nodulation by seed treatment with non–thermal plasmas
    (2020-03-18) Pérez Pizá, María Cecilia; Cejas, Ezequiel; Zilli, Carla; Prevosto, Leandro; Mancinelli, Beatriz; Santa Cruz, Diego; Yannarelli, Gustavo; Balestrasse, Karina
    Soybean (Glycine max (L.) Merrill) is one of the most important crops worldwide providing dietary protein and vegetable oil. Most of the nitrogen required by the crop is supplied through biological N2 fxation. Non-thermal plasma is a fast, economical, and environmental-friendly technology that can improve seed quality, plant growth, and crop yield. Soybean seeds were exposed to a dielectric barrier discharge plasma operating at atmospheric pressure air with superimposed fows of O2 or N2 as carrying gases. An arrangement of a thin phenolic sheet covered by polyester flms was employed as an insulating barrier. We focused on the ability of plasma to improve soybean nodulation and biological nitrogen fxation. The total number of nodules and their weight were signifcantly higher in plants grown from treated seeds than in control. Plasma treatments incremented 1.6 fold the nitrogenase activity in nodules, while leghaemoglobin content was increased two times, indicating that nodules were fxing nitrogen more actively than control. Accordingly, the nitrogen content in nodules and the aerial part of plants increased by 64% and 23%, respectively. Our results were supported by biometrical parameters. The results suggested that diferent mechanisms are involved in soybean nodulation improvement. Therefore, the root contents of isofavonoids, glutathione, auxin and cytokinin, and expansin (GmEXP1) gene expression were determined. We consider this emerging technology is a suitable pre-sowing seed treatment.

 

UTN | Rectorado

Sarmiento 440

(C1041AAJ)

Buenos Aires, Argentina

+54 11 5371 5600

SECRETARÍAS
  • Académica
  • Administrativa
  • Asuntos Estudiantiles
  • Ciencia y Tecnología
  • Consejo Superior
  • Coordinación Universitaria
  • Cultura y Extensión Universitaria
  • Igualdad de género y Diversidad
  • Planeamiento Académico y Posgrado
  • Políticas Institucionales
  • Relaciones Internacionales
  • TIC
  • Vinculación Tecnológica
  • Comité de Seguridad de la Información
ENLACES UTN
  • DASUTeN
  • eDUTecNe
  • APUTN
  • ADUT
  • FAGDUT
  • FUT
  • SIDUT
ENLACES EXTERNOS
  • Secretaría de Educación
  • CIN
  • CONFEDI
  • CONEAU
  • Universidades