FRVT - Artículos en Revistas Internacionales

Permanent URI for this collectionhttp://48.217.138.120/handle/20.500.12272/396

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    Item
    On the dynamic behavior of the anode–arc–root at the nozzle surface in a non-transferred plasma torch
    (2012) Prevosto, Leandro; Risso, Marcelo Natalio; Infante, Damián Leandro; Cejas, Ezequiel; Kelly, Héctor; Mancinelli, Beatriz
    The dynamic behavior of the anode–arc–root at the nozzle surface of a plasma torch was experimentally investigated in this work. A gas (N2) vortex–stabilized non–transferred arc torch with a thoriated tungsten rod (2wt %) cathode (3.2 mm diameter) and a coaxial anode (5 mm diameter, 30 mm length) was used in the experiment. By using a sweeping Langmuir probe in floating condition, the voltage of the plasma jet outside the nozzle was inferred. Arc voltage waveforms were also obtained. Data have been obtained for an arc current of 100 A and a gas flow rate of 30 Nl min-1. A typical sawtooth shape (i.e., restrike mode) (with a fluctuating level of º  25 %) and a dominant frequency of º 6.5 kHz was observed in the arc voltage waveforms, which is attributed to anode–arc–root movements along the anode surface followed by a restrike at a certain point close to the cathode. By performing a time correlation between the probe and arc voltage oscillograms together with simple estimations, the amplitude of the movement of the arc–root along the anode surface as well its velocity were inferred.
  • Thumbnail Image
    Item
    Effects of non–thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds.
    (2018) Pérez Pizá, María Cecilia; Prevosto, Leandro; Zilli, Carla; Cejas, Ezequiel; Kelly, Héctor; Balestrasse, Karina
    Diaporthe/Phomopsis (D/P) is a complex of seed-borne fungi that severely affects soybean (Glycine max (L.) Merrill), one of the most important crops worldwide. Non-thermal plasma treatment is a fast, economic and ecological friendly technology that can destroy seed-borne fungi and improve seed quality. Soybean seeds were exposed for 1, 2 and 3 minutes to a quasi-stationary (50 Hz) dielectric barrier discharge plasma operating at atmospheric pressure air. Different carrying gases (O2 and N2) and barrier-insulating materials were used. In this work we focused on the ability of plasma to control D/P in soybean seeds and to enhance seed quality. To support these results, different antioxidant enzymes (catalase, superoxide dismutase and guaiacol peroxidase), lipid peroxidation and phytohormones (ABA and AIA) content in seeds were evaluated. The results demonstrated reductions of 29% in catalase activity and increments of 30% in glutathione content after plasma treatment, reversing the oxidative damage caused by D/P fungi. This eco-friendly technology improved soybean seed quality and, for the first time, its efficiency in controlling soybean seed-borne pathogen fungi that colonize the inside of seeds was demonstrated.
  • Thumbnail Image
    Item
    Quantitative Schlieren Diagnostic Applied to a Nitrogen Thermal Plasma Jet.
    (2018) Chamorro, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Kelly, Héctor
    — A quantitative interpretation of the schlieren technique applied to an atmospheric pressure, vortex-stabilized nitrogen thermal plasma jet generated in a direct-current nontransferred arc plasma torch (nitrogen gas flow rate of 25 NL/min, power level of 15 kW), discharging into ambient air is reported. A Z-type, two-mirror schlieren system was used in the research. The technique allowed inferring the temporally averaged values of the temperatures and densities of different species present in the plasma jet in a wide range of radial and axial distances. Deviations from kinetic equilibrium in the calculation of the plasma refractive index were accounted for, but maintaining the assumption of the local chemistry equilibrium. The influence of several assumptions on the accuracy of the measurements was considered. The results have shown that for a distance of 3.5-mm downstream from the nozzle exit, the kinetic equilibrium is realized (being both electron and gas temperatures values around 11 000 K), but noticeable deviation from kinetic equilibrium appears toward the jet border. On the other hand, a marked deviation from the kinetic equilibrium was found in the whole far field of the plasma jet, where the electron temperature remains still quite high (about 10 000 K at 30-mm downstream of the nozzle exit), well decoupled from the gas temperature (about 7000 K at the same distance). The obtained results are in reasonable good agreement with those previously reported by some of the authors by using a double floating probe method in the same plasma torch.
  • Thumbnail Image
    Item
    Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status.
    (2019) Pérez Pizá, María; Prevosto, Leandro; Grijalba, Pablo; Zilli, Carla; Cejas, Ezequiel; Mancinelli, Beatriz; Balestrasse, Karina
    Soybean (Glycine max (L.) Merrill) is a globally important crop, providing oil and protein. Diaporthe/Phomopsis complex includes seed-borne pathogens that affect this legume. Non-thermal plasma treatment is a fast, cost-effective and environmental-friendly technology. Soybean seeds were exposed to a quasi stationary (50 Hz) dielectric barrier discharge plasma operating at atmospheric pressure air. Different carrying gases (O2 and N2) and barrier insulating materials were used. This work was performed to test if the effects of non-thermal plasma treatment applied to healthy and infected seeds persist throughout the entire cycle of plants. To this aim, lipid peroxidation, activity of catalase, superoxide dismutase and guaiacol peroxidase, vegetative growth and agronomic traits were analysed. The results here reported showed that plants grown from infected seedsdid not trigger oxidative stress due to the reduction of pathogen incidence in seeds treated with cold plasma. Vegetative growth revealed a similar pattern for plants grown from treated seeds than that found for the healthy control. Infected control, by contrast, showed clear signs of damage. Moreover, plasma treatment itself increased plant growth, promoted a normal and healthy physiological performance and incremented the yield of plants. The implementation of this technology for seeds treatment before sowing could help reducing the use of agrochemicals during the crop cycle.
  • Thumbnail Image
    Item
    Plasma Cutting of Concrete: Heat Propagation and Molten Material Removal From the Kerf.
    (2019) Chamorro, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Milardovich, Natalio; Mancinelli, Beatriz; Fischfeld, Gerardo
    An experimental investigation of heat propagation in the case of plasma cutting of concrete is reported. The experiments were carried out by using a high-enthalpy nitrogen plasma jet generated in a dc vortex-stabilized nontransferred arc torch. Concrete plates of different thicknesses up to 52 mm and with and without steel reinforcement were used. The plates were placed horizontally while cutting. The heat conduction losses inside the material were estimated by comparing thermocouple measurements and theoretical temperatures obtained with an analytical model of the heat propagation in the material. The influence of the molten concrete layer that separates the plasma to the solid material due to the high viscosity of the liquid concrete was accounted for. The power losses below the material in the extinguishing plasma have also been determined from calorimet ric measurements. For different plate thicknesses and cutting velocities, a complete power balance of the process is performed with the calculation of the cutting efficiency on the basis of various relevant power terms. In addition, the hydrodynamics of the molten concrete layer in the kerf is analyzed. For a mean power level of 11.2 kW and a nitrogen gas flow rate of 25 Nl/min, the torch is able to cut a concrete plate of 52 mm in thickness with a speed of 20 mm/min and a whole efficiency of about 30%. The viscosity force is the main limiting factor on the cutting velocity in thick plates.
  • Thumbnail Image
    Item
    Glow Discharge in a High-Velocity Air Flow: The Role of the Associative Ionization Reactions Involving Excited Atoms.
    (2019) Cejas, Ezequiel; Mancinelli, Beatriz; Prevosto, Leandro
    A kinetic scheme for non-equilibrium regimes of atmospheric pressure air discharges is developed. A distinctive feature of this model is that it includes associative ionization with the participation of N(2D, 2P) atoms. The thermal dissociation of vibrationally excited nitrogen molecules and the electronic excitation from all the vibrational levels of the nitrogen molecules are also accounted for. The model is used to simulate the parameters of a glow discharge ignited in a fast longitudinal flow of preheated (T0 = 1800–2900 K) air. The results adequately describe the dependence of the electric field in the glow discharge on the initial gas temperature. For T0 = 1800 K, a substantial acceleration in the ionization kinetics of the discharge is found at current densities larger than 3 A/cm2 , mainly due to the N(2P) + O(3P) → NO+ + e process; being the N(2P) atoms produced via quenching of N2(A3P u +) molecules by N(4S) atoms. Correspondingly, the reduced electric field noticeably falls because the electron energy (6.2 eV) required for the excitation of the N2(A3P u +) state is considerably lower than the ionization energy (9.27 eV) of the NO molecules. For higher values of T0, the associative ionization N(2D) + O(3P) → NO+ + e process (with a low–activation barrier of 0.38 eV) becomes also important in the production of charged particles. The N(2D) atoms being mainly produced via quenching of N2(A3P u +) molecules by O(3P) atoms.
  • Thumbnail Image
    Item
    Ambient Species Density and Gas Temperature Radial Profiles Derived from a Schlieren Technique in a Low Frequency Non-thermal Oxygen Plasma Jet.
    (2017) Chamorro, Juan Camilo; Prevosto, Leandro; Cejas, Ezequiel; Kelly, Héctor; Mancinelli, Beatriz; Fischfeld, Gerardo
    A quantitative interpretation of the schlieren technique applied to a non-thermal atmospheric-pressure oxygen plasma jet driven at low-frequency (50 Hz) is reported. The jet was operated in the turbulent regime with a hole-diameter based Reynolds number of 13,800. The technique coupled to a simplified kinetic model of the jet effluent region allowed deriving the temporally-averaged values of the gas temperature of the jet by processing the gray-level contrast values of digital schlieren images. The penetration of the ambient air into the jet due to turbulent diffusion was taken into account. The calibration of the optical system was obtained by fitting the sensitivity parameter so that the oxygen fraction at the nozzle exit was unity. The radial profiles of the contrast in the discharge off case were quite symmetric on the whole outflow, but with the discharge on, relatively strong departures from the symmetry were evident in the near field. The time-averaged gas temperature of the jet was relatively high, with a maximum departure of about 55 K from the room temperature; as can be expected owing to the operating molecular gas. The uncertainty in the temperature measurements was within 6 K, primarily derived from errors associated to the Abel inversion procedure. The results showed an increase in the gas temperature of about 8 K close to the nozzle exit; thus suggesting that some fast-gas heating (with a heating rate *0.3 K/ls) still occurs in the near field of the outflow.
  • Thumbnail Image
    Item
    On the physical processes ruling an atmospheric pressure air glow discharge operating in an intermediate current regime
    (2015-02-06) Prevosto, Leandro; Kelly, Héctor; Mancinelli, Beatriz; Chamorro, Juan Camilo; Cejas, Ezequiel
    Low-frequency (100 Hz), intermediate-current (50 to 200 mA) glow discharges were experimentally investigated in atmospheric pressure air between blunt copper electrodes. Voltage–current characteristics and images of the discharge for different inter-electrode distances are reported. A cathode-fall voltage close to 360V and a current density at the cathode surface of about 11 A/cm2, both independent of the discharge current, were found. The visible emissive structure of the discharge resembles to that of a typical low-pressure glow, thus suggesting a glow-like electric field distribution in the discharge. A kinetic model for the discharge ionization processes is also presented with the aim of identifying the main physical processes ruling the discharge behavior. The numerical results indicate the presence of a non-equilibrium plasma with rather high gas temperature (above 4000 K) leading to the production of components such as NO, O, and N which are usually absent in low-current glows. Hence, the ionization by electron-impact is replaced by associative ionization, which is independent of the reduced electric field. This leads to a negative current-voltage characteristic curve, in spite of the glow-like features of the discharge. On the other hand, several estimations show that the discharge seems to be stabilized by heat conduction; being thermally stable due to its reduced size. All the quoted results indicate that although this discharge regime might be considered to be close to an arc, it is still a glow discharge as demonstrated by its overall properties, supported also by the presence of thermal non-equilibrium. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907661]