Mostrar el registro sencillo del ítem

dc.contributor.advisorLucci, Roberto Oscar
dc.creatorCantero, Santiago Marcelo
dc.date.accessioned2024-04-04T21:51:23Z
dc.date.available2024-04-04T21:51:23Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.12272/10336
dc.description.abstractLos problemas degenerativos relacionados con enfermedades óseas, fracturas, y procedimientos quirúrgicos que requieren implantes ortopédicos han impulsado la búsqueda de materiales avanzados que puedan ser implantados en el cuerpo humano para sustituir o reparar tejidos como hueso, cartílago, ligamentos y tendones. El tiempo que transcurre desde la cirugía hasta la fijación efectiva de los implantes oseointegrables es esencial para el éxito de la intervención. Cualquier movimiento inesperado puede conducir a la formación de una cápsula fibrosa alrededor del implante, lo que resulta en una falla prematura. A pesar de la solución que proporciona la cementación de los implantes, para su colocación, esta técnica presenta problemas de incompatibilidad electroquímica y fisuras interfaciales en el cemento. En este contexto, el titanio se ha destacado como un material biomédico prometedor debido a sus excelentes propiedades mecánicas, su biocompatibilidad y su resistencia a la corrosión. A pesar de lo mencionado, la fabricación de aleaciones de titanio por métodos tradicionales basados en la fusión es compleja y costosa. La alta reactividad del titanio con el oxígeno exige trabajar en condiciones controladas como lo son las atmósferas inertes o bien de alto vacío; lo que ha llevado a la exploración de técnicas alternativas como la pulvimetalúrgia. Además, se presenta el desafío de reducir la rigidez del titanio (110 GPa), que es mucho mayor que la del hueso (1 – 30 GPa); lo cual genera un fenómeno conocido como apantallamiento de tensiones que deriva en la degradación del tejido óseo. La introducción de poros en la estructura del material reduce la rigidez de este, permitiendo disminuir el fenómeno mencionado, mejorando a su vez la biocompatibilidad. Por lo tanto, este trabajo se enfoca en el desarrollo de estructuras porosas de titanio que imiten la arquitectura de los huesos humanos, para su uso en implantes biomédicos, mediante la utilización de la técnica de Gel Casting y Sinterización. Se muestran resultados obtenidos de la fabricación de muestras de titanio a partir de polvos de hidruro de titanio (TiH2) y polvos de resina acrílica (metil metacrilato de metilo), es decir, por la técnica de gel-casting. Luego del proceso de sinterización, se obtienen estructuras con porosidad uniforme, con porosidad gradual en sentido radial y de manera compuesta, mediante agregados de hidroxiapatita. Se muestra el estudio de las variables de fabricación de las muestras en verde mediante gel-casting, como lo ser: mezclado de los polvos, formación del barro, colado en el molde y tiempo de secado. Allí, se obtienen muestras en verde con condiciones mecánicas aptas para su manipulación y buena terminación superficial, copiando adecuadamente la geometría del molde. Se presentan estudios de las variables y parámetros del proceso de sinterización, tales como temperatura, tiempo y control de atmósfera. Los mejores resultados, se encuentran a temperatura de 1300 ºC, con tiempo de sinterización de 240 minutos, en atmósfera de alto vacío. En otro orden, se realiza el estudio de descomposición de la hidroxiapatita, según diferentes condiciones de trabajo. Se encuentra que a temperaturas de sinterización de 780 ºC y tiempos de 420 minutos, la hidroxiapatita no se descompone y las partículas de titanio se sinterizan correctamente.es_ES
dc.formatpdfes_ES
dc.language.isospaes_ES
dc.publisherUniversidad Tecnológica Nacional.Facultad Regional Córdobaes_ES
dc.rightsopenAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.rights.uriAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.subjectTitanioes_ES
dc.subjectBiomaterialeses_ES
dc.subjectPulvimetalúrgiaes_ES
dc.subjectPoroses_ES
dc.subjectGel-castinges_ES
dc.titleDesarrollo de estructuras porosas de titanio para implantes biomédicos obtenidas por gel-casting y sinterizaciónes_ES
dc.typeinfo:eu-repo/semantics/doctoralThesises_ES
dc.description.affiliationFil: Cantero, Santiago Marcelo. Universidad Tecnológica Nacional. Facultad Regional Córdoba.Ingeniería mención materiales; Argentina.es_ES
dc.type.versionacceptedVersiones_ES
dc.rights.useNo comercial. Sólo de uso académico.es_ES


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess