Mostrar el registro sencillo del ítem

dc.creatorKondic, L.
dc.creatorKramar, M.
dc.creatorPugnaloni, Luis
dc.creatorCarlevaro, Manuel
dc.creatorMischaikow, K.
dc.date.accessioned2018-05-14T13:52:07Z
dc.date.available2018-05-14T13:52:07Z
dc.date.issued2016
dc.identifier.citationPhysical Reviewes_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12272/2829
dc.description.abstractIn the companion paper [Pugnaloni et al., Phys. Rev. E 93, 062902 (2016)], we use classical measures based on force probability density functions (PDFs), as well as Betti numbers (quantifying the number of components, related to force chains, and loops), to describe the force networks in tapped systems of disks and pentagons. In the present work, we focus on the use of persistence analysis, which allows us to describe these networks in much more detail. This approach allows us not only to describe but also to quantify the differences between the force networks in different realizations of a system, in different parts of the considered domain, or in different systems. We show that persistence analysis clearly distinguishes the systems that are very difficult or impossible to differentiate using other means. One important finding is that the differences in force networks between disks and pentagons are most apparent when loops are considered: the quantities describing properties of the loops may differ significantly even if other measures (properties of components, Betti numbers, force PDFs, or the stress tensor) do not distinguish clearly or at all the investigated systems.es_ES
dc.formatapplication/pdf
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.relationhttps://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.062903es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.subjectforce networks; tapped; particulate systems; disks; pentagons; Persistence analysises_ES
dc.titleStructure of force networks in tapped particulate systems of disks and pentagons II Persistence analysises_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.description.affiliationFil: Kondic, L. New Jersey Institute of Technology. Department of Mathematical Sciences; USAes_ES
dc.description.affiliationFil: Kramar, M. Rutgers University. Department of Mathematics; USAes_ES
dc.description.affiliationFil: Pugnaloni, Luis. UTN (Universidad Tecnológica Nacional). Departamento de Ingeniería Mecánica. GMG. CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas); Argentinaes_ES
dc.description.affiliationFil: Carlevaro, Manuel. UTN (Universidad Tecnológica Nacional). Facultad Regional Buenos Aires. UDB Física. CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas); Argentinaes_ES
dc.description.affiliationFil: Mischaikow, K. Rutgers University. Department of Mathematics; USAes_ES
dc.description.peerreviewedPeer Reviewedes_ES
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_ES
dc.type.snrdinfo:ar-repo/semantics/artículoes_ES
dc.rights.useAtribución (Attribution): En cualquier explotación de la obra autorizada por la licencia será necesario reconocer la autoría (obligatoria en todos los casos). No comercial (Non Commercial): La explotación de la obra queda limitada a usos no comerciales. Sin obras derivadas (No Derivate Works): La autorización para explotar la obra no incluye la posibilidad de crear una obra derivada (traducciones, adaptaciones, etc.).es_ES
dc.identifier.doi10.1103/PhysRevE.93.062903


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem