Mostrar el registro sencillo del ítem
Tratamientos de valorización de residuos de la industria agroalimentaria de la región Centro Pampeana Norte
dc.contributor.advisor | Saux, Clara | |
dc.creator | Fermanelli, Clara Soledad | |
dc.date.accessioned | 2019-06-11T16:54:49Z | |
dc.date.available | 2019-06-11T16:54:49Z | |
dc.date.issued | 2018-12-19 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/3677 | |
dc.description | Maestría de la Universidad Tecnológica Nacional en Ingeniería Ambiental | es_ES |
dc.description.abstract | En las siguientes páginas se presenta un estudio de los residuos biomásicos generados por algunas de las principales industrias agroalimentarias de la Región Centro Pampeana Norte y las alternativas para su tratamiento y valorización. Las industrias procesadoras de materias primas de origen agropecuario constituyen las actividades económicas predominantes de la mencionada región, conformada por las provincias de Córdoba, Santa Fe y Entre Ríos. En ella, la industrialización del maní, el arroz y el trigo revisten particular importancia, no sólo por su producción, sino también por los altos volúmenes de residuos que generan, lo que implica una elevada disponibilidad de biomasa residual. El objetivo del presente trabajo es valorizar mediante tratamientos físicos y químicos residuos de la industria agroalimentaria de la región Centro Pampeana Norte y evaluar su potencialidad para generar energía y/o productos de interés a partir de estos residuos. Las cáscaras de arroz y maní representan alrededor del 20% del peso de la cosecha, mientras que la de trigo (salvado/afrechillo) el 16%. En el Capítulo I se presenta la caracterización agroclimática de la zona en evaluación, así como también la producción e industrialización del arroz, el trigo y el maní. Al final del capítulo se expone el volumen de bio-residuos de la industrialización de estos productos. El Capítulo II presenta los objetivos de este trabajo de tesis y la metodología empleada para alcanzarlos. En el Capítulo III se resumen los resultados de la caracterización física y química de los tres residuos, determinando el contenido de cenizas, volátiles y carbono fijo, así como el comportamiento térmico y el Poder Calorífico Superior (PCS), para cada uno de ellos. También se determinaron la composición elemental (contenido de Carbono, Hidrógeno, Nitrógeno y Azufre); las proporciones de biopolímeros (hemicelulosa, celulosa, lignina) y el contenido de hierro, calcio, silicio, potasio y aluminio. Teniendo en cuenta todas las características analizadas, en el Capítulo IV se evalúan los posibles tratamientos de valorización de estos residuos, tanto para la producción de energía, como para la generación de biocombustibles o de productos de mayor valor agregado. Entre las alternativas disponibles para producir bio-energía se encontraron procesos físicos como peletizado y briqueteado y termoquímicos como combustión, co-combustión, torrefacción, pirólisis y gasificación. Entre las opciones para generar productos de mayor valor agregado se analizaron la producción de carbón activado y de paneles aglomerados. De las opciones estudiadas, la pirólisis de biomasa se presentó como un proceso térmico sencillo de gran potencial para ser aplicado en la región. Por este motivo, en el Capítulo V se estudia la pirólisis térmica de los residuos lignocelulósicos para la generación de bio-oil, bio-gas y bio-carbón. Las reacciones se realizaron en un reactor de vidrio de lecho fijo a 550 °C cuando las materias primas fueron las biomasas de los cereales y a 500 °C cuando se trató de la leguminosa. Se estudiaron los rendimientos de las diferentes fracciones así como también la composición de los bio-oils en cuanto a selectividad hacia hidrocarburos y compuestos de interés en la industria química fina. En relación a la fracción sólida, se estimaron los valores de Poder Calorífico Superior y área superficial BET Con la finalidad de mejorar los resultados obtenidos mediante el proceso pirolítico, se realizaron copirólisis de las biomasas citadas con la relación 1:1 de las mezclas Arroz-Trigo, Trigo-Maní y Maní-Arroz. Por último, el Capítulo VI presenta las conclusiones a las que se arribó luego de desarrollar todo el estudio. | es_ES |
dc.description.abstract | A study of lignocellulosic biomass residues from the agri-food industry of the Middle North Pampean Region of Argentina and the alternatives for their treatment and valorization is presented. Middle North Pampean Region is integrated by the provinces of Córdoba, Santa Fe and Entre Ríos. The manufacturing industries of agricultural origin products are the main economic activities of the area. The industrialization of peanuts, rice and wheat are of particular importance, not only for their production, but also for the high volumes of waste, which implies a high availability of residual biomass. The objective of the present work was to valorize biomass residues of the agro-alimentary industry of the Middle North Pampean Region through physical and chemical treatments and to evaluate their potential to generate energy and / or products of interest. Rice husk and peanut shells represent about 20% of the harvest weight, while wheat straw accounts for 16%. Chapter I presents the objectives of this thesis work and the methodology employed to reach them. Chapter II presents the agro-climate characterization of the area under evaluation, as well as the production and industrialization process of rice, wheat and peanuts. At the end of the chapter, the volume of bio-waste from the industrialization of these products is exposed. Chapter III summarizes the results of the physical and chemical characterization of the three by-products, determining ash, volatile and fixed carbon content, as well as thermal behavior and High Heating Value (HHV) for each one of them. Elemental (content of Carbon, Hydrogen, Nitrogen and Sulfur) and biopolymer (content of hemicellulose, cellulose and lignin) compositions of the residues were also determined, together with the proportions of iron, calcium, silicon, potassium and aluminum. Taking into account the analyzed characteristics, in Chapter IV possible treatments for the valorization of these residues were evaluated, as much for the production of energy, as for generating products of greater added value. Physical and thermochemical processes were studied among the alternatives available to produce bio-energy. Pelletizing and briquetting were described for the former and combustion, co-combustion, roasting, pyrolysis and gasification, for the latter. Among the options to generate higher value-added products, the production of activated carbon and agglomerated panels were analyzed. Of the options studied, the pyrolysis of biomass was found to be a simple thermal process with great potential to be applied in the region. For this reason, Chapter V studies the thermal pyrolysis of lignocellulosic waste for the generation of bio-oil, bio-gas and bio-char. The reactions were carried out in a glass fixed-bed reactor at 550 °C when the raw materials were the biomasses of the cereals and at 500 °C when the legume was treated. We studied the yields of the different fractions as well as the composition of the bio-oils in terms of selectivity towards hydrocarbons and compounds of interest in the fine chemical industry. In relation to the solid fraction, HHV values and BET surface area were estimated. In order to improve the results obtained through the pyrolytic process, co-pyrolysis of the aforementioned biomasses was performed with a 1:1 ratio of Rice-Wheat, Wheat-Peanut and Peanut-Rice mixtures. Finally, Chapter VI presents the conclusions that were reached after developing the entire study. | es_ES |
dc.format | text/plain | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Tecnológica Nacional.Facultad Regional Córdoba. Dirección de Posgrado | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Biomasas agrícolas | es_ES |
dc.subject | Bio oils | es_ES |
dc.subject | Pirólisis Térmica | es_ES |
dc.subject | Residuos Industriales | es_ES |
dc.title | Tratamientos de valorización de residuos de la industria agroalimentaria de la región Centro Pampeana Norte | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.rights.holder | Clara Soledad Fermanelli | es_ES |
dc.description.affiliation | Fil: Fermanelli, Clara Soledad. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado; Argentina | es_ES |
dc.type.version | info:eu-repo/semantics/draft | es_ES |
dc.type.snrd | info:ar-repo/semantics/tesis de maestría | es_ES |
dc.relation.references | Akhtar, J. and Saidina Amin, N. (2012) ‘A review on operating parameters for optimum liquid oil yield in biomass pyrolysis’, Renewable and Sustainable Energy Reviews. Elsevier, 16(7), pp. 5101–5109. doi: 10.1016/j.rser.2012.05.033. | es_ES |
dc.relation.references | Antal, M. J. (1995) ‘Cellulose Pyrolysis Kinetics : The Current State of Knowledge’, Industrial & Engineering Chemistry Research, 34(3), pp. 703–717. doi: 10.1021/ie00042a001. | es_ES |
dc.relation.references | Balasundram, V. et al. (2017) ‘Thermogravimetric Studies on the Catalytic Pyrolysis of Rice Husk’, Chemical Engineering transactions, 56(May), pp. 427–432. doi: 10.3303/CET1756072. | es_ES |
dc.relation.references | Baniasadi, M., Tugnoli, A. and Cozzani, V. (2016) ‘Optimization of Catalytic Upgrading of Pyrolysis Products’, Chemical Science Transactions, 49(Patwardhan 2010), pp. 265–270. doi: 10.3303/CET1649045. | es_ES |
dc.relation.references | Basu, P. (2013) Pyrolysis, Biomass Gasification, Pyrolysis and Torrefaction. Elsevier Inc. doi: 10.1016/B978-0-12-396488-5.00005-8. | es_ES |
dc.relation.references | Bertero, M. et al. (2019) ‘Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis’, Renewable Energy. Elsevier Ltd, 132, pp. 11–18. doi: 10.1016/j.renene.2018.07.086. | es_ES |
dc.relation.references | Boroson, M. L. et al. (1989) ‘Product yields and kinetics from the vapor phase cracking of wood pyrolysis tars’, AIChE Journal, 35(1), pp. 120–128. doi: 10.1002/aic.690350113. | es_ES |
dc.relation.references | Bridgwater, A. V. (2012) ‘Review of fast pyrolysis of biomass and product upgrading’, Biomass and Bioenergy. Elsevier Ltd, 38, pp. 68–94. doi: 10.1016/j.biombioe.2011.01.048. | es_ES |
dc.relation.references | Brunauer, S., Emmett, P. H. and Teller, E. (1938) ‘Adsorption of Gases in Multimolecular Layers’, Journal of the American Chemical Society, 60(2), pp. 309–319. doi: 10.1021/ja01269a023. | es_ES |
dc.relation.references | Collard, F. X. and Blin, J. (2014) ‘A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin’, Renewable and Sustainable Energy Reviews. Elsevier, 38, pp. 594–608. doi: 10.1016/j.rser.2014.06.013. | es_ES |
dc.relation.references | Corma Canos, A., Iborra, S. and Velty, A. (2007) ‘Chemical routes for the transformation of biomass into chemicals’, Chemical Reviews, 107(6), pp. 2411–2502. doi: 10.1021/cr050989d. | es_ES |
dc.relation.references | Czernik, S. and Bridgwater, A. V. (2004) ‘Overview of applications of biomass fast pyrolysis oil’, Energy and Fuels, 18(2), pp. 590–598. doi: 10.1021/ef034067u. | es_ES |
dc.relation.references | Dang, Q. et al. (2013) ‘Experimental study on bio-oil upgrading over Pt/SO42-/ZrO2/SBA - 15 catalyst in supercritical ethanol’, Fuel. Elsevier Ltd, 103, pp. 683–692. doi: 10.1016/j.fuel.2012.06.082. | es_ES |
dc.relation.references | Dhyani, V. and Bhaskar, T. (2017) ‘A comprehensive review on the pyrolysis of lignocellulosic biomass’, Renewable Energy. Elsevier Ltd. doi: 10.1016/j.renene.2017.04.035. | es_ES |
dc.relation.references | Dobele, G. et al. (2007) ‘Fast pyrolysis-effect of wood drying on the yield and properties of bio-oil’, BioResources, 2(4), pp. 699–706. doi: 10.15376/biores.2.4.698-706. | es_ES |
dc.relation.references | Fu, Y. et al. (2019) ‘Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption’, Science of the Total Environment. Elsevier B.V., 646, pp. 1567–1577. doi: 10.1016/j.scitotenv.2018.07.423. | es_ES |
dc.relation.references | García, J. R. et al. (2015) ‘Catalytic cracking of bio-oils improved by the formation of mesopores by means of y zeolite desilication’, Applied Catalysis A: General. Elsevier B.V., 503, pp. 1–8. doi: 10.1016/j.apcata.2014.11.005. | es_ES |
dc.relation.references | Herrero, E. R. et al. (2016) ‘Apuntes Curso de Cromatografía en Fase Gaseosa’. Córdoba: UTN - FRC, p. 181. | es_ES |
dc.relation.references | Ibrahim, N. et al. (2012) ‘Influence of Reaction Temperature and Water Content on Wheat Straw Pyrolysis’, World Academy of Science, Engineering and Technology\n, 6(10), pp. 10–21. Available at: http://waset.org/publications/14342/influence-of-reaction-temperature-and-water-content-on-wheat-straw-pyrolysis. | es_ES |
dc.relation.references | Idrees, M., Rangari, V. and Jeelani, S. (2018) ‘Sustainable packaging waste-derived activated carbon for carbon dioxide capture’, Journal of CO2 Utilization. Elsevier, 26(March), pp. 380–387. doi: 10.1016/j.jcou.2018.05.016. | es_ES |
dc.relation.references | Kan, T., Strezov, V. and Evans, T. J. (2016) ‘Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters’, Renewable and Sustainable Energy Reviews. Elsevier, 57, pp. 126–1140. doi: 10.1016/j.rser.2015.12.185. | es_ES |
dc.relation.references | Kumar, A., Jones, D. D. and Hanna, M. A. (2009) ‘Thermochemical biomass gasification: A review of the current status of the technology’, Energies, 2(3), pp. 556–581. doi: 10.3390/en20300556. | es_ES |
dc.relation.references | Li, J. et al. (2007) ‘Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor’, Energy and Fuels, 21(4), pp. 2398–2407. doi: 10.1021/ef060548c. | es_ES |
dc.relation.references | Mamleev, V. et al. (2009) ‘The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis. Interdependence of the steps’, Journal of Analytical and Applied Pyrolysis, 84(1), pp. 1–17. doi: 10.1016/j.jaap.2008.10.014. | es_ES |
dc.relation.references | Ministerio de Energía y Minería - Sebretaría de Energía. República Argentina. (2018) Tabla de conversiones energéticas. Available at: http://www.energia.gob.ar/contenidos/verpagina.php?idpagina=3622 (Accessed: 31 October 2018). | es_ES |
dc.relation.references | Mohan, D., Pittman, C. U. and Steele, P. H. (2006) ‘Pyrolysis of wood/biomass for bio-oil: A critical review’, Energy and Fuels, 20(3), pp. 848–889. doi: 10.1021/ef0502397. | es_ES |
dc.relation.references | Murzin, D. Y. and Simakova, I. L. (2013) Catalysis in Biomass Processing, Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications. Elsevier Ltd. doi: 10.1016/B978-0-08-097774-4.00727-0. | es_ES |
dc.relation.references | Mythili, R. et al. (2013) ‘Characterization of bioresidues for biooil production through pyrolysis’, Bioresource Technology. Elsevier Ltd, 138, pp. 71–78. doi: 10.1016/j.biortech.2013.03.161. | es_ES |
dc.relation.references | Neves, D. et al. (2011) ‘Characterization and prediction of biomass pyrolysis products’, Progress in Energy and Combustion Science. Elsevier Ltd, 37(5), pp. 611–630. doi: 10.1016/j.pecs.2011.01.001. | es_ES |
dc.relation.references | Niazi, L., Lashanizadegan, A. and Sharififard, H. (2018) ‘Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions’, Journal of Cleaner Production, 185, pp. 554–561. doi: 10.1016/j.jclepro.2018.03.026. | es_ES |
dc.relation.references | Niu, Y. et al. (2013) ‘The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass’, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 35(17), pp. 1663–1669. doi: 10.1080/15567036.2010.509084. | es_ES |
dc.relation.references | Oudenhoven, S. R. G. et al. (2013) ‘Demineralization of wood using wood-derived acid: Towards a selective pyrolysis process for fuel and chemicals production’, Journal of Analytical and Applied Pyrolysis. Elsevier B.V., 103, pp. 112–118. doi: 10.1016/j.jaap.2012.10.002. | es_ES |
dc.relation.references | Patwardhan, P. R., Brown, R. C. and Shanks, B. H. (2011) ‘Product distribution from the fast pyrolysis of hemicellulose’, ChemSusChem, 4(5), pp. 636–643. doi: 10.1002/cssc.201000425 | es_ES |
dc.relation.references | Pecha, B. and Garcia-Perez, M. (2015) Pyrolysis of Lignocellulosic Biomass, Bioenergy. Anju Dahiya. doi: 10.1016/B978-0-12-407909-0.00026-2. | es_ES |
dc.relation.references | Perego, C. and Bosetti, A. (2011) ‘Biomass to fuels: The role of zeolite and mesoporous materials’, Microporous and Mesoporous Materials. Elsevier Inc., 144(1–3), pp. 28–39. doi: 10.1016/j.micromeso.2010.11.034. | es_ES |
dc.relation.references | Segura, C. and Berg, A. (2013) ‘Pirólisis rápida de biomasa’, (November 2016). | es_ES |
dc.relation.references | Sharifzadeh, M. et al. (2019) ‘The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions’, Progress in Energy and Combustion Science. Elsevier Ltd, 71, pp. 1–80. doi: 10.1016/J.PECS.2018.10.006. | es_ES |
dc.relation.references | Shen, J. et al. (2009) ‘Effects of particle size on the fast pyrolysis of oil mallee woody biomass’, Fuel. Elsevier Ltd, 88(10), pp. 1810–1817. doi: 10.1016/j.fuel.2009.05.001. | es_ES |
dc.relation.references | Sitthisa, S., An, W. and Resasco, D. E. (2011) ‘Selective conversion of furfural to methylfuran over silica-supported NiFe bimetallic catalysts’, Journal of Catalysis. Elsevier Inc., 284(1), pp. 90–101. doi: 10.1016/j.jcat.2011.09.005. | es_ES |
dc.relation.references | Wang, X. et al. (2018) ‘Synthesis of bis(amino)furans from biomass based 5-hydroxymethyl furfural’, Journal of Energy Chemistry. Elsevier B.V., 27(1), pp. 209–214. doi: 10.1016/j.jechem.2017.06.015. | es_ES |
dc.relation.references | Williams, P. T. and Besler, S. (1996) ‘The Influence of Temperature and Heating Rate on the Slow Pyrolysis of Biomass’, Renewable Energy, 7(3), pp. 233–250. doi: 10.1016/0960-1481(96)00006-7. | es_ES |
dc.relation.references | Xu, J. et al. (2010) ‘Biofuel production from catalytic cracking of woody oils’, Bioresource Technology. Elsevier Ltd, 101(14), pp. 5586–5591. doi: 10.1016/j.biortech.2010.01.148. | es_ES |
dc.relation.references | Xu, W. et al. (2017) ‘Optimization of organic pollutants removal from soil eluent by activated carbon derived from peanut shells using response surface methodology’, Vacuum. Elsevier Ltd, 141, pp. 307–315. doi: 10.1016/j.vacuum.2017.04.031. | es_ES |
dc.relation.references | Yemiş, O. and Mazza, G. (2011) ‘Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction’, Bioresource Technology, 102(15), pp. 7371–7378. doi: 10.1016/j.biortech.2011.04.050. | es_ES |
dc.relation.references | Zhou, S. et al. (2013) ‘Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood’, Energy and Fuels, 27(3), pp. 1428–1438. doi: 10.1021/ef3019832. | es_ES |
dc.relation.references | Zhou, Z. et al. (2019) ‘Real-time monitoring biomass pyrolysis via on-line photoionization ultrahigh-resolution mass spectrometry’, Fuel. Elsevier, 235(August 2018), pp. 962–971. doi: 10.1016/j.fuel.2018.08.098. | es_ES |
dc.contributor.coadvisor | Córdoba, Agostina | |
dc.rights.use | https://creativecommons.org/licenses/by/-nc-nd/4.0/deed.es | es_ES |
dc.rights.use | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |