Mostrar el registro sencillo del ítem
Estimación de la evaporación y la evapotranspiración potencial en ciudad de Río Ceballos
dc.contributor.advisor | López, María Laura | |
dc.creator | Achad, Mariana | |
dc.date.accessioned | 2020-03-10T16:43:26Z | |
dc.date.available | 2020-03-10T16:43:26Z | |
dc.date.issued | 2019-11-14 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12272/4398 | |
dc.description.abstract | La problemática en torno al abastecimiento de agua es global. No exentas a ella se encuentran las localidades aledañas a la ciudad de Córdoba, particularmente la región de Las Sierras Chicas. Esto se debe al gran crecimiento demográfico que ha sufrido esta zona en la última década. En este contexto, el desconocimiento de los valores de evapotranspiración potencial y evaporación añaden una dificultad a la gestión del uso del recurso agua. Si bien ambas variables pueden medirse a través de diferente instrumental, éste último demanda no sólo costos importantes en lo referido a instalación, sino que el mantenimiento en muchos casos resulta también oneroso. Como una manera de contribuir con la obtención de valores precisos de evaporación y evapotranspiración potencial en la región de las Sierras Chicas, los objetivos del presente trabajo se enmarcan en la hipótesis de que mediante modelos empíricos sencillos, que utilizan variables meteorológicas de fácil adquisición, es posible estimar la evaporación y la evapotranspiración potencial obteniendo valores similares a aquellos obtenidos a partir de mediciones experimentales. En la primera parte de este trabajo, los valores de Evaporación y Evapotranspiración Potencial Diarios y Mensuales fueron estimados utilizando datos meteorológicos obtenidos en la ciudad de Córdoba y modelos empíricos sencillos. Los valores obtenidos fueron contrastados con las mediciones realizadas en un tanque de Evaporación Clase A. El método de JENSEN Y HAISE resultó ser el más cercano estadísticamente a las mediciones reales de Evaporación Diaria, mientras que el de HARGREAVES, JENSEN Y HAISE, HARBECK, ROHWER y ABTEW lo fueron para determinar la Evaporación Mensual. De la misma manera, LINACRE y MAKKINK resultaron sin diferencias significativas en la estimación de la Evapotranspiración Potencial Diaria, mientras que LINACRE, MAKKINK, FAO-PENMAN-MONTEITH y HARGREAVES lo fueron para determinar la Evapotranspiración Potencial Mensual. Por todo esto, se decidió recomendar el método de JENSEN Y HAISE para estimar la Evaporación, por ser el método común cuyas estimaciones son adecuadas tanto a escala diaria como mensual, y siguiendo el mismo criterio, se recomiendan los métodos de LINACRE y MAKKINK para la estimación de la Evapotranspiración Potencial. Una vez seleccionados los métodos de estimación que mejor representan las condiciones de la región, la segunda parte de este trabajo presenta una aplicación de las metodologías para la optimización de la gestión del agua en el Dique la Quebrada. Esta aplicación consiste en estimar y analizar el consumo que, a lo largo de los años, la población de Sierras Chicas viene realizando del agua del dique, bajo la suposición de que el nivel del dique disminuye exclusivamente a causa de la evaporación y el consumo. Para ello Se contrastaron las estimaciones de evaporación obtenidas con los métodos de JENSEN Y HAISE, HARBECK y HARGREAVES frente al nivel de agua del Dique La Quebrada, para determinar el método que reproduce una tendencia anual en correspondencia con el nivel de dique y para encontrar un coeficiente que permita reproducir la misma evaporación que el dique en término de magnitud. Así, fue posible observar una clara tendencia intra-anual de las pérdidas de dique y la evaporación mensual estimada, que fue cuantificada ajustando estos valores a una función de onda sinusoidal. Posteriormente se aplicaron series temporales para encontrar un coeficiente que permita reproducir la misma evaporación que el dique en término de magnitud. La diferencia entre el nivel de agua del dique y la evaporación permitió entonces estimar el consumo que la población de Sierras Chicas realiza sobre el agua del dique de La Quebrada. De esta manera queda demostrada la importancia de los métodos empíricos como herramienta no sólo conocer el consumo de agua, sino también para predecirlo y contribuir a optimizar la gestión del dique. | es_ES |
dc.description.abstract | The problem of water supplying is global. Not exempt are the small cities surrounding Córdoba, in particular Las Sierras Chicas region, due to the great demographic growth of the last decade. In this context, the uncertainty in the estimation of the potential evapotranspiration and the evaporation of La Quebrada Dam, which supplies the entire region, makes it difficult to manage properly the use of water. Although both variables can be measured using different instruments, these instruments are expensive due to the installation and the maintenance. As a way to contribute to obtain accurate values of evaporation and potential evapotranspiration in the region of the Sierras Chicas, the objectives of the present work are based on the hypothesis that it is possible to estimate evaporation and potential evapotranspiration and to obtain values similar to those measured, by using simple empirical models involving meteorological variables which are easy to acquire. In the first part of this work, the Daily and Monthly Evaporation and Potential Evapotranspiration were estimated using meteorological data obtained in Córdoba City and empiric and simple methods. Resulting values were contrasted with the measurements made in a Class A Evaporation tank. The method JENSEN and HAISE was statistically the closest to the actual Daily Evaporation measurements, while HARGREAVES, JENSEN AND HAISE, HARBECK, ROHWER and ABTEW were the best to determine the Monthly Evaporation. In the same way, LINACRE and MAKKINK were statistically the best to estimate Daily Potential Evapotranspiration, while LINACRE, MAKKINK, FAO-PENMAN-MONTEITH and HARGREAVES were the best to determine the Monthly Potential Evapotranspiration. For all this, it was decided to recommend JENSEN AND HAISE method to estimate the Evaporation, for being the common method whose estimates are suitable both on a daily and monthly basis, and following the same criteria, LINACRE and MAKKINK methods were recommended for the Estimation of Potential Evapotranspiration. Once selected the estimation methods that better represent the conditions of the region, the second part of this work presents the application of the methodologies in the optimization of water management in La Quebrada Dam. This application was based in the estimation and analysis of the consumption that, over the years, the population of Sierras Chicas has been making of the water, with the assumption that the level of the dam decreases exclusively due to evaporation and consumption. The evaporation estimates obtained with the methods of JENSEN and HAISE, HARGREAVES and ROHWER were compared with the level of water of La Quebrada dam, to determine the method that reproduces an annual trend in correspondence with the level of descent of the Dum and to find a coefficient that allows to reproduce the same evaporation that the dam in terms of magnitude. It was possible to observe a clear intra-annual tendency of dam losses and the estimated monthly evaporation, which was quantified by adjusting these values to a sinusoidal wave function. Later, time series were applied to find a coefficient that allows reproducing the same evaporation as the dam in terms of magnitude. The difference between the water level of the dam and the evaporation allowed then to estimate the consumption that the population of Sierras Chicas makes on the water of La Quebrada dam. In this way, the importance of empirical methods as a tool not only to know the consumption of water, but also to predict it and contribute to optimize the management of the dike is demonstrated. | es_ES |
dc.format | text/plain | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Universidad Tecnológica Nacional | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | Evaporación | es_ES |
dc.subject | Evapotranspiración | es_ES |
dc.subject | Sequía | es_ES |
dc.subject | Crisis Hídrica | es_ES |
dc.title | Estimación de la evaporación y la evapotranspiración potencial en ciudad de Río Ceballos | es_ES |
dc.type | info:eu-repo/semantics/masterThesis | es_ES |
dc.rights.holder | Universidad Tecnológica Nacional | es_ES |
dc.description.affiliation | Fil: Achad, Mariana.Universidad Tecnológica Nacional. Facultad Regional Córdoba. Dirección de Posgrado; Argentina | es_ES |
dc.type.version | info:eu-repo/semantics/acceptedVersion | es_ES |
dc.relation.references | Abtew W.: Evapotranspiration Measurements and Modeling for Three Wetland Systems in South Florida. J. Am. Water Resour. Assn. 32, 465-473, 1996. | es_ES |
dc.relation.references | Allen, J.B.., Crow, F.R.: PRedicting lake evaporation by performance of evaporation ponds, pans and tanks. Transactions of the American Society Agricultural Engineers 14, 458-463, 1971. | es_ES |
dc.relation.references | Allen, R.G., Pruitt, W.O.: FAO-24 reference evapotranspiration factors. Journal of Irrigation and Drainage 117, 758-774, 1991 | es_ES |
dc.relation.references | Allen, R.G., Pereira, L. S., Raes, D., Smith, M.: Crop evapotranspiration - Guidelines for computing crop water requirements. Irrigation and Drainage. Food and Agriculture Organization of the United Nations, 56, 1998 | es_ES |
dc.relation.references | Allen R.G.: Crop coefficients. In: Stewart B.A., Howell T.A. (eds.): Encyclopedia of Water Science. Marcel Dekker Publishers, New York, 87-90, 2003. | es_ES |
dc.relation.references | Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E.: Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management 98, 899-920, 2011. | es_ES |
dc.relation.references | Álvarez, M.P., Carol, C., Dapeña, C.: The role of evapotranspiration in the groundwater hydrochemistry of an arid coastal wetland (Península Valdés, Argentina). Science of the Total Environment 506-507, 299-307, 2015 | es_ES |
dc.relation.references | Ahrens, C.D.: Meteorology Today, An Introduction to Weather, Climate, and the Environment, West Publishing Company, Estados Unidos, 1991. | es_ES |
dc.relation.references | Amiro, B.: Measuring boreal forest evapotranspiration using the energy balance residual. Journal of Hydrology 366, 112-118, 2009 | es_ES |
dc.relation.references | Anapalli, S.S., Green, T.R., Reddy, K.N., Gowda, P.H., Sui, D., Fisher, D.K., Moorhead, J.E., Marek, G.W.: Application of an energy balance method for estimating evapotranspiration in cropping systems. Agricultural Water Management 204, 107-117, 2018. | es_ES |
dc.relation.references | Antonopoulos, V.Z., Antonopoulos, A.V.: Daily reference evapotranspiration estimates by artificial neural networks technique and empirical equations using limited input climate variables. Computers and Electronics in Agriculture 132, 86-96, 2017. | es_ES |
dc.relation.references | Azorin-Molina, C., Vicente-Serrano, S.M., Sanchez-Lorenzo, A., McVicar, T.R., MoránTejeda, E., Revuelto, J., El Kenawy, A., Martín-Hernández, N., Tomas-Burguera, M.: Atmospheric evaporative demand observations, estimates and driving factors in Spain (19612011). Journal of Hydrology 523, 262-277, 2015. | es_ES |
dc.relation.references | Blaney, H.F., Morin, K.V.: Evaporation and consumptive use of water empirical formulas. Transactions, American Geophysical Union 23, 76-83, 1942. | es_ES |
dc.relation.references | Bowen, I.S.: The ratio of heat losses by conduction and by evaporation from any water surface. Physics Review 27, 779-787, 1926. | es_ES |
dc.relation.references | Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis - Forecasting and Control, 3° edición, Prentice Hall, 1994. | es_ES |
dc.relation.references | Brown, M.B., Forsythe, A.B.: Robust Tests for Equality of Variances. Journal of the American Statistical Association, 69, 364-367, 1974. | es_ES |
dc.relation.references | Brutsaert, W.H.: Evaporation into the atmosphere. Dordrecht, Holland. D. Reidel Publishing Co, 1982. | es_ES |
dc.relation.references | Capitanelli, R.G.: Los ambientes naturales del Territorio Argentino, publicado en La Argentina: geografía general y sus marcos regionales. Editorial Planeta, segunda edición. Buenos Aires, Argentina, 1992. | es_ES |
dc.relation.references | Carol, E., Braga, F., Da Lio, C., Kruse, E., Tosi, L.: Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: a case study in the Ajó Coastal Plain wetland, Argentina. Environ. Earth Sci. 74, 5839-5847, 2015. | es_ES |
dc.relation.references | Cesanelli, A., Guarracino, L.: Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal 19, 629-639, 2011 | es_ES |
dc.relation.references | Chang, J.: Climate and Agriculture. An Ecological Survey. Aldine, Chicago, 1968. | es_ES |
dc.relation.references | Chen, Y., Yuan, W., Xia, J., Fisher, J.B., Dong, W., Zhang, X., Liang, S., Ye, A., Cai, W., Feng, J.: Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. Journal of Hydrology 528, 537-549, 2015. | es_ES |
dc.relation.references | Cole, G.A.: Textbook of Limnology. Waveland Press Inc., 1994. | es_ES |
dc.relation.references | Conover, W.J.: Practical Nonparametric Statistics. Third Edition, John Wiley & Sons, New York, Estados Unidos, 1999. | es_ES |
dc.relation.references | Contreras, S., Jobbágy, E.G., Villagra, P.E., Nosetto, M.D., Puigdefábregas, J.: Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. Journal of Hydrology 397, 10-22, 2011 | es_ES |
dc.relation.references | Curtis, H., Barnes, N.S., Schnek, A., Massarini, A.: Biología. Editorial Médica Panamericana, 7ª edición, 2007. | es_ES |
dc.relation.references | Custodio, E., Llamas, M.R.: Hidrología Subterránea, 2 Tomos, Ediciones Omega, S.A. Barcelona, España, 1976. | es_ES |
dc.relation.references | Da Cunha, F.F., Magalhaes, F.F., De Castro, M.A.., De Souza, E.J.: Performance of estimative models for daily reference evapotranspiration in the city of Cassilandia, Brazil. Journal of the Brazilian Association of Agricultural Engineering 37, 173-184, 2017. | es_ES |
dc.relation.references | Dalton, J.: Experiments and observations to determine whether the quantity of rain and dew is equal to the quantity of water carried off by rivers and raised by evaporation; with an inquiry into the origin of the springs. Manchester Philosophical Society Memories 5, 346-372, 1802 | es_ES |
dc.relation.references | De Bruin, H.A.R., Keijman, J.Q.: The Priestley-Taylor evaporation model applied to a large shallow lake in the Netherlands. Journal of Applied Meteorology 18, 898-903, 1979. | es_ES |
dc.relation.references | De la Casa, A.C., Ovando, G.G.: Variation of reference evapotranspiration in the central region of Argentina between 1941 and 2010. Journal of Hydrology: Regional Studies 5, 66-79, 2016. | es_ES |
dc.relation.references | Devore, J.L.: Probabilidad y Estadística para ingeniería y ciencias. Editorial Cengage, 8ª edición, México, 2013. | es_ES |
dc.relation.references | Djaman, K., Balde, A.B., Sow, A., Muller, B., Irmak, S., N’Diaye, M.K., Manneh, B., Moukoumbi, Y.D., Futakuchi, K., Saito, K.: Evaluation of sixteen reference evapotranspiration methods under sahelian conditions in the Senegal River Valley. Journal of Hydrology: Regional Studies 3 139-159, 2015 | es_ES |
dc.relation.references | Doorenbos, J., Pruitt, W.O.: Guidelines for predicting crop water requirements. Irrigation and Drainage. Food and Agriculture Organization of the United Nations 24, 1977. | es_ES |
dc.relation.references | Evett, S.R., Tolk, J.A., Howell, T.A.: Soil profile water content determination: sensor accuracy, axial response, calibration, temperature dependence, and precision. Vadose Zone J. 5, 894-907, 2006. | es_ES |
dc.relation.references | FAO, 2009. ETo Calculator. Land and Water Digital Media Series. 36. FAO, Rome, Italy | es_ES |
dc.relation.references | Feng, Y., Ji, Y., Cui, N., Zhao, L., Li, C., Gong, D.: Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management 181, 1-9, 2017. | es_ES |
dc.relation.references | Figuerola, P.I., Rousseaux, M.C., Searles, P.S.: Soil evaporation beneath and between olive trees in a non-Mediterranean climate under two contrasting irrigation regimes. Journal of Arid Environments 97, 182-189, 2013. | es_ES |
dc.relation.references | Fitzgerald, D.: Evaporation. Transactions of the American Society of Mechanical Engineers 15, 581-646, 1886. | es_ES |
dc.relation.references | García Benavidez, J., López Díaz, J.: Fórmula para el cálculo de la evapotranspiración potencial adaptada al trópico (15ºN-15ºS). Agronomía Tropical 20, 335-345, 1970 | es_ES |
dc.relation.references | Giménez, R., Mercau, J.L., Houspanossian, J., Jobbágy, E.G.: Balancing agricultural and hydrologic risk in farming systems of the Chaco plains. Journal of Arid Environments 123, 8192, 2015 | es_ES |
dc.relation.references | Hamdi, M.R., Bdour, A.N., Tarawneh, Z.S.: Developing Reference Crop Evapotranspiration Time Series Simulation Model Using Class a Pan: A Case Study for the Jordan Valley /Jordan. Journal of Earth and Environmental Sciences 1, 33-44, 2008 | es_ES |
dc.relation.references | Harbeck, G.E., Kohler, M.A., Koberg, G,E. y otros.: Water loss investigations, Vol. 1, Lake Hefner studies, U.S. Geological Survey Paper 269. U.S. Government Printing Office, Washington, D.C., 1954. | es_ES |
dc.relation.references | Hargreaves, G. H.: Moisture availability and crop production. Trans. ASAE, 18-5, 980-984, 1975. | es_ES |
dc.relation.references | Hargreaves, G.H., ASCE F., y Allen R.G.: History and Evaluation of Hargreaves Evapotranspiration 129, 53-63, 2003 | es_ES |
dc.relation.references | Hargreaves, G.H., Samani, Z.A.: Estimating potential evapotranspiration. J. Irrig. Drain. Eng. 108, 223-230, 1982. | es_ES |
dc.relation.references | Harrison, L.P.: Fundamentals concepts and definitions relating to humidity. In Wexler, A (Editor) Humidity and moisture 3, Reinhold Publishing Co. New York. Estados Unidos, 1963 | es_ES |
dc.relation.references | Hernández, M. A., Scatizza, C., Rojo, M., Preiato, S.A., Hernández, L.: Un método para estimar la sensibilidad hidrológica aplicado en la cuenca del Golfo San Jorge. Provincia de Chubut. Argentina. Boletín Geológico y Minero 120, 523-532, 2009. | es_ES |
dc.relation.references | Horton, J.S.: Evapotranspiration and water research as related to riparian and phreatophyte management: an abstract bibliography. Forest Service, U.S. Department of Agriculture N° 1234, 1973 | es_ES |
dc.relation.references | Israelsen, O.W., Hansen, V.E.: Principios y aplicaciones del riego, Editorial Reverte, 3ª Edición; España, 2003 | es_ES |
dc.relation.references | Ivanov N.N.: About potential evapotranspiration estimation. Izv VGO 86, 189-196, 1954. | es_ES |
dc.relation.references | Jain S.K., Singh, V.P.: Water Resources Systems Planning and Management. Amsterdam; Boston: Elsevier, 2003. | es_ES |
dc.relation.references | Jensen, M.E., Haise, H.R.: Estimating evapotranspiration from solar radiation. Irrigation and Drainage Div. ASCE 89, 15-41, 1963 | es_ES |
dc.relation.references | Juárez, S.H., Ferreira, L.J.: Recopilación de datos de evaporación en tanque de la red del Servicio Meteorológico Nacional. Revista Digital del Servicio Meteorológico Nacional. Repositorio Digital, 2014. | es_ES |
dc.relation.references | Keshtegar, B., Piri, J., Kisi, O.: A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method. Computers and Electronics in Agriculture 127, 120-130, 2016. | es_ES |
dc.relation.references | Kogan, F., Guo, W.: Strong 2015–2016 El Niño and implication to global ecosystems from space data. International Journal of Remote Sensing 38, 161-178, 2017. | es_ES |
dc.relation.references | Kohler, M.A.: Lake and pan evaporation: Water-loss investigations: Lake Hefner Studies. Tech. Report. Prof Paper 269. Geol. Survey. EE.UU., 127-148, 1954. | es_ES |
dc.relation.references | Landeras, G., Ortiz-Barredo, A., López, J.J.: Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agricultural water management 95, 553-565, 2008. | es_ES |
dc.relation.references | Li, S., Kang, S., Zhang, L., Zhang, J., Du, T., Tong, L., Ding, R.: Evaluation of six potential evapotranspiration models for estimating crop potential and actual evapotranspiration in arid regions. Journal of Hydrology 543, 450-461, 2016 | es_ES |
dc.relation.references | Linacre, E.T.: A simple formula for estimating evapotranspiration rates in various climates, using temperature data along. Agricultural Meteorology 18, 409-424, 1977. | es_ES |
dc.relation.references | Linsley, R.K.: Evaporación y transpiración. Geología para ingenieros. Mc. Graw-Hill, México, 123-155, 1992. | es_ES |
dc.relation.references | Liu, Q., McVicar, T.R.: Assessing climate change induced modification of Penman potential evaporation and runoff sensitivity in a large water-limited basin. Journal of Hydrology 464-465, 352-362, 2012 | es_ES |
dc.relation.references | Ma, Y.J., Li, X.Y., Wilson, M., Wu, X.C., Smith, A., Wu, J.: Water loss by evaporation from China’s South-North Water Transfer Project. Ecological Engineering 95, 206-215, 2016 | es_ES |
dc.relation.references | Magliano, P.N., Murray, F., Baldi, G., Aurand, S., Páez, R.A., Harder, W., Jobbágy, E.G.: Rainwater harvesting in Dry Chaco: Regional distribution and local water balance. Journal of Arid Environments 123, 93-102, 2015 | es_ES |
dc.relation.references | Makkink, G.F.: Ekzameno de la fórmula de Penman. Netherlands Journal of Agricultural Science 5, 290-305, 1957 | es_ES |
dc.relation.references | Malamos, N., Barouchas, P.E., Tsirogiannis, I.L., Liopa-Tsakalidi A. and Koromilas, Th.: Estimation of monthly FAO Penman-Monteith evapotranspiration in GIS environment, through a geometry independent algorithm. Agriculture and Agricultural Science Procedia 4, 290-299, 2015. | es_ES |
dc.relation.references | Masmoudi-Charfi, C., Habaie, H.: Rainfall Distribution Functions for IrrigationScheduling: Calculation ProceduresFollowing Site of Olive (Olea europaeaL.) Cultivation and Growing Periods. American Journal of Plant Sciences 5, 2094-2133, 2014. | es_ES |
dc.relation.references | Mayr, C., Lücke, A., Stichler, W., Trimborn, P., Ercolano, B., Oliva, G., Ohlendorf, C., Soto, J., Fey, M., Haberzettl, T., Janssen, S., Schäbitz, F., Schleser, G.H., Wille, M., Zolitschka, B.: Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H) Journal of Hydrology 334, 53-63, 2007 | es_ES |
dc.relation.references | McGuiness, J.L., Bordine, E.F.: A comparison of lysimeter derived potential evapotranspiration with computed values. ARS, USDA in cooperation with Ohio Agr. Res. and Development Center. Tech. Bull. No. 1452. 71 p., 1972. | es_ES |
dc.relation.references | McVicar, T.R., Van Niel, T.G., Li, L.T., Hutchinson, M.F., Mu, X.M., Liu, Z.H.: Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338, 196-220, 2007 | es_ES |
dc.relation.references | Mehdizadeh, S., Behmanesh, J., Khalili, K.: Using MARS, SVM, GEP and empirical equations for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture 139, 103-114, 2017. | es_ES |
dc.relation.references | Meyer, A.F.: Computing run-off from rain fall and other physical data. Transactions of the American Society of Civil Engineers 79, 1056-1155, 1915. | es_ES |
dc.relation.references | Mohawesh, O.E.: Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments. Plant, Soil and Environment 57, 145-152, 2011. | es_ES |
dc.relation.references | Monteith, J.L.: Gas exchange in plant communities. Environmental Control of plant growth. Academy Press, New York, 95-112, 1963 | es_ES |
dc.relation.references | Morilla, C.R.: Análisis de series temporales. Editorial La Muralla, España, 2000. | es_ES |
dc.relation.references | Mugabe, F.T., Hodnett, M.G., Senzanje, A.: Opportunities for increasing productive water use from dam water: a case study from semi-arid Zimbabwe. Agricultural Water Management 62, 149-163, 2003. | es_ES |
dc.relation.references | Muniandy, J.M., Yusop, Z., Askari, M.: Evaluation of reference evapotranspiration models and determination of crop coefficient for Momordica charantia and Capsicum annuum. Agricultural Water Management 169, 77-89, 2016. | es_ES |
dc.relation.references | Muñoz Cárpena, R., Ritter Rodríguez, A.: Hidrología Agroforestal. Editorial Mundi-prensa, 1ª edición. Canarias, España, 2005 | es_ES |
dc.relation.references | NOAA (National Oceanic and Atmospheric Administration). Accedido por última vez el 15 de diciembre de 2017. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. | es_ES |
dc.relation.references | Nosetto, M.D., Paez, R.A., Ballesteros, S.I, Jobbágy, E.G.: Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems and Environment 206, 60-70, 2015. | es_ES |
dc.relation.references | Okun, D.A., Wang, L.K., Shammas, N.K.: Water Supply and Distribution and Wastewater Collection John Wiley and Sons., 2010. | es_ES |
dc.relation.references | Penman, H.L.: Natural evaporation from open water, bare soil and grass. Royal Society Proceedings Series A 193, 120-145, 1948. | es_ES |
dc.relation.references | Penman, H.L.: Evaporation, an introductory survey. Netherlands Journal of Agricultural Science 4, 9-29, 1956. | es_ES |
dc.relation.references | Penman, H.L.: Vegetation and hydrology. Technical Communication 53. Commonwealth Bureau of Soils, 1963. | es_ES |
dc.relation.references | Peña, D.: Introducción a la estadística para las Ciencias Sociales. Editorial McGraw-Hill, España, 1997. | es_ES |
dc.relation.references | Pepió, M.: Series Temporales. Edicions UPC. Barcelona, 2001. | es_ES |
dc.relation.references | Pereira, L.S., Allen, R.G., Smith, M., Raes, D.: Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management 147, 4-20, 2015. | es_ES |
dc.relation.references | Pereira, F.L., Valente, F., David, J.S., Jackson, N., Minunno, F., Gash, J.H.: Rainfall interception modelling: Is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in all forest types?. Journal of Hydrology 534, 606-615, 2016. | es_ES |
dc.relation.references | Pérez López, C.: Series temporales: técnicas y herramientas. Editorial Garceta, España, 2011. | es_ES |
dc.relation.references | Pizarro, R., Hernández, I., Muñoz, J., Torres, H.: Elementos técnicos de Hidrología III, UNESCO-ORCYT. Editorial Universidad de Talca, Chile, 1998. | es_ES |
dc.relation.references | Poyen, F.B., Ghosh, A.K., Kundu, P.: Review on different evapotranspiration empirical equations. International Journal of Advanced Engineering, Management and Science 2, 17-24, 2016. | es_ES |
dc.relation.references | Priestley, C.H.B., Taylor, R.J.: On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92, 1972. | es_ES |
dc.relation.references | Qiu, G.Y., Li, H.Y., Zhang Q.T., Chen, W., Liang X.J., Li, X.Z.: Effects of evapotranspiration on mitigation of urban temperature by vegetation and urban agriculture. Journal of Integrative Agriculture 12(8), 1307-1315, 2013 | es_ES |
dc.relation.references | Rahimikhoob, A.: An evaluation of common pan coefficient equations to estimate reference evapotranspiration in a subtropical climate (north of Iran). Irrigation Science 27, 289-296, 2009. | es_ES |
dc.relation.references | Ricard, M.F., Viglizzo, E.F., Podestá, G.: Comparison of adaptative strategies to climate variability in rural areas of Argentine Chaco and US Southern Plains during the last century. Journal of Arid Environments 123, 68-80, 2015 | es_ES |
dc.relation.references | Rohwer, D.: Evaporation from free water surfaces, Technical Bulletin no. 27 1, U.S. Department of Agriculture, 1931. | es_ES |
dc.relation.references | Romanenko, V. A.: Computation of the autumn soil moisture using a universal relationship for a large area, Proc. Ukrainian Hydrometeorological Research Institute 3, Kiev, 1961. | es_ES |
dc.relation.references | Rosenberg, N.J., 1974. Microclimate: The Biological Environment. Wiley, New York. | es_ES |
dc.relation.references | Rosenberry, D.O., Winter, T.C., Buso, D.C., Likens, G.E.: Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. Journal of Hydrology 340, 149-166, 2007. | es_ES |
dc.relation.references | Rousseaux, M.C., Benedetti, J.P., Searles, P.S.: Leaf-level responses of olive trees (Olea europaea) to the suspension of irrigation during the winter in an arid region of Argentina. Scientia Horticulturae 115, 135-141, 2008 | es_ES |
dc.relation.references | Rousseaux, M.C., Figuerola, P.I., Correa-Tedesco, G., Searles, P.S.: Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.) grove under two irrigation regimes in an arid region of Argentina. Agricultural Water Management 96, 1037-1044, 2009 | es_ES |
dc.relation.references | Salter, P.J., Goode, J.E.: Crop Responses to Water at Different Stages of Growth. (Beeinflussungen der Pflanzen durch Wasser in verschiedenen Wachstumsstadien.) Research Review No. 2. Commonwealth Agricultural Bureaux, Farnham Royal, Bucks, England, 1967. | es_ES |
dc.relation.references | Sayago, S., Ovando, G., Bocco, M.: Landsat images and crop model for evaluating water stress of rainfed soybean. Remote Sensing of Environment 198, 30-39, 2017. | es_ES |
dc.relation.references | Sharma, A.N., Walter, M.T.: Estimating long-term changes in actual evapotranspiration and water storage using a one-parameter model. Journal of Hydrology 519, 2312-2317, 2014. | es_ES |
dc.relation.references | Shrestha, N.K., Shukla, S.: Support vector machine based modeling of evapotranspiration using hydro-climatic variables in a sub-tropical environment. Agricultural and Forest Meteorology 200, 172-184, 2015. | es_ES |
dc.relation.references | Siegel, S.: Estadística No Paramétrica. Editorial Trillas. México, México, 1970 | es_ES |
dc.relation.references | Soil Science Society of America, 2008. Glossary of Soil Science Terms. Soil Science Society of America, Madison, Wisconsin. 2008. | es_ES |
dc.relation.references | Tetens, O.: Uber einige meteorologische Begriffe. Z. Geophys. 6, 297-309, 1930 | es_ES |
dc.relation.references | Tian, F., Qiu, G.Y., Yang, Y.H., Lü, Y.H., Xiong, Y.: Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products. Journal of Hydrology 498, 210-220, 2013 | es_ES |
dc.relation.references | Thornthwaite, C.W.: An approach toward a rational classification of climate. Geogr. Rev. 38, 55-94, 1948 | es_ES |
dc.relation.references | Torres, A.F., Walker, W.R., McKee, M.: Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agricultural Water Management 98, 553-562, 2011. | es_ES |
dc.relation.references | Troin, M., Vallet-Coulomb, C., Sylvestre, F., Piovano E.: Hydrological modelling of a closed lake (Laguna Mar Chiquita, Argentina) in the context of 20th century climatic changes. Journal of Hydrology 393, 233-244, 2010. | es_ES |
dc.relation.references | Tukimat, N.N.A., Harun, S., Shahid, S: Comparison of different methods in estimating potentialevapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics 113, 77-85, 2012. | es_ES |
dc.relation.references | Turc, L.: Evaluation des besoins en eau d'irrigation, évapotranspiration potentielle, formulation simplifié et mise à jour. Annales agronomiques, 12, 13-49, 1963. | es_ES |
dc.relation.references | Valiantzas, J.D.: Temperature-and humidity-based simplified Penman’s ET0 formulae. Comparisons with temperature-based Hargreaves-Samani and other methodologies. Agricultural Water Management 208, 326-334, 2018. | es_ES |
dc.relation.references | Van Bavel, C.H.M., Van Bavel, M.G., Lascano, R.J.: Daily measurement and calculation of crop water use. Evapotranspiration and irrigation Scheduling, Proc. of the Int. Conf., San Antonio, TX. 3-6 Nov, 1088-1092, 1996. | es_ES |
dc.relation.references | Venturini, V., Islam, S., Rodriguez, L.: Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model. Remote Sensing of Environment 112, 132-141, 2008 | es_ES |
dc.relation.references | Venturini, V., Rodriguez, L., Bisht, G.: A comparison among different modified Priestley and Taylor equations to calculate actual evapotranspiration with MODIS data. International Journal of Remote Sensing 32, 1319-1338, 2011 | es_ES |
dc.relation.references | Viessman, W., Lewis, G.L., Knapp, J.W.: Introduction to Hydrology. Editorial Harper and Row, 3ª Edición; Estados Unidos, 1989. | es_ES |
dc.relation.references | Wacker, S., Gröbner, J., Zysset, C., Diener, L., Tzoumanikis, P., Kazantzidis, A., Vuilleumier, L., Stöckli, R., Nyeki, S., Kämpfer, N.: Cloud observations in Switzerland using hemispherical sky cameras, J. Geophys. Res. Atmos., 120, 695-707, 2015. | es_ES |
dc.relation.references | Walpole, R.E., Myers, R.H., Myers, S.L., Ye K.: Probability & Statistics for Engineers & Scientists, Editorial Prentice Hall, 9ª edición, Boston, 2012. | es_ES |
dc.relation.references | Wang, L., Niu, Z., Kisi, O., Li, C., Yu, D.: Pan evaporation modeling using four different heuristic approaches. Computers and Electronics in Agriculture 140, 203-213, 2017 | es_ES |
dc.relation.references | Ward, A.D., Trimble. S.W., Burckhard, S.R., Lyon, J.G.: Environmental Hydrology. CRC Press, 3a edición, 2015. | es_ES |
dc.relation.references | Xu, C.-Y., Singh, V.P.: A Review on Monthly Water Balance Models for Water Resources Investigations. Water Resources Management 12, 31-50, 1998. | es_ES |
dc.relation.references | Xu, C.-Y, Singh, V.P.: Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological processes 14, 339-349, 2000. | es_ES |
dc.rights.use | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | es_ES |
dc.rights.use | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |